Epipolar Geometry and Stereo Vision
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Camera Models and Fundamental Concepts Used in Geometric Computer Vision Full Text Available At
Full text available at: http://dx.doi.org/10.1561/0600000023 Camera Models and Fundamental Concepts Used in Geometric Computer Vision Full text available at: http://dx.doi.org/10.1561/0600000023 Camera Models and Fundamental Concepts Used in Geometric Computer Vision Peter Sturm [email protected] Srikumar Ramalingam [email protected] Jean-Philippe Tardif [email protected] Simone Gasparini [email protected] Jo~aoBarreto [email protected] Boston { Delft Full text available at: http://dx.doi.org/10.1561/0600000023 Foundations and Trends R in Computer Graphics and Vision Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision, Foundations and Trends R in Computer Graphics and Vision, vol 6, nos 1{2, pp 1{183, 2010 ISBN: 978-1-60198-410-4 c 2011 P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini and J. Barreto All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. -
Epipolar Geometry and Stereo Vision
03/01/12 Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from Hartley & Zisserman Last class: Image Stitching • Two images with rotation/zoom but no translation .X x x' f f' This class: Two-View Geometry • Epipolar geometry – Relates cameras from two positions • Stereo depth estimation – Recover depth from two images Depth from Stereo • Goal: recover depth by finding image coordinate x’ that corresponds to x X X z x x x’ f f x' C Baseline C’ B Depth from Stereo • Goal: recover depth by finding image coordinate x’ that corresponds to x • Sub-Problems 1. Calibration: How do we recover the relation of the cameras (if not already known)? 2. Correspondence: How do we search for the matching point x’? X x x' Correspondence Problem x ? • We have two images taken from cameras with different intrinsic and extrinsic parameters • How do we match a point in the first image to a point in the second? How can we constrain our search? Key idea: Epipolar constraint Key idea: Epipolar constraint X X X x x’ x’ x’ Potential matches for x have to lie on the corresponding line l’. Potential matches for x’ have to lie on the corresponding line l. Epipolar geometry: notation X x x’ • Baseline – line connecting the two camera centers • Epipoles = intersections of baseline with image planes = projections of the other camera center • Epipolar Plane – plane containing baseline (1D family) Epipolar geometry: notation X x x’ • -
Camera Models and Fundamental Concepts Used in Geometric Computer Vision Peter Sturm, Srikumar Ramalingam, Jean-Philippe Tardif, Simone Gasparini, Joao Barreto
Camera Models and Fundamental Concepts Used in Geometric Computer Vision Peter Sturm, Srikumar Ramalingam, Jean-Philippe Tardif, Simone Gasparini, Joao Barreto To cite this version: Peter Sturm, Srikumar Ramalingam, Jean-Philippe Tardif, Simone Gasparini, Joao Barreto. Camera Models and Fundamental Concepts Used in Geometric Computer Vision. Foundations and Trends in Computer Graphics and Vision, Now Publishers, 2011, 6 (1-2), pp.1-183. 10.1561/0600000023. inria-00590269 HAL Id: inria-00590269 https://hal.inria.fr/inria-00590269 Submitted on 3 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Foundations and TrendsR in Computer Graphics and Vision Vol. 6, Nos. 1–2 (2010) 1–183 c 2011 P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini and J. Barreto DOI: 10.1561/0600000023 Camera Models and Fundamental Concepts Used in Geometric Computer Vision By Peter Sturm, Srikumar Ramalingam, Jean-Philippe Tardif, Simone Gasparini and Jo˜aoBarreto Contents 1 Introduction and Background Material 3 1.1 Introduction 3 1.2 Background Material 6 2 Technologies 8 2.1 Moving Cameras or Optical Elements 8 2.2 Fisheyes 14 2.3 Catadioptric Systems 15 2.4 Stereo and Multi-camera Systems 31 2.5 Others 33 3 Camera Models 36 3.1 Global Camera Models 41 3.2 Local Camera Models 66 3.3 Discrete Camera Models 72 3.4 Models for the Distribution of Camera Rays 75 3.5 Overview of Some Models 82 3.6 So Many Models . -
Structure from Motion and Optical Flow
CS4501: Introduction to Computer Vision Structure from Motion and Optical Flow Various slides from previous courses by: D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC), S. Seitz (MSR / Facebook), J. Hays (Brown / Georgia Tech), A. Berg (Stony Brook / UNC), D. Samaras (Stony Brook) . J. M. Frahm (UNC), V. Ordonez (UVA), Steve Seitz (UW). Last Class • More on Epipolar Geometry • Essential Matrix • Fundamental Matrix Today’s Class • More on Epipolar Geometry • Essential Matrix • Fundamental Matrix • Optical Flow Estimating depth with stereo • Stereo: shape from “motion” between two views • We’ll need to consider: • Info on camera pose (“calibration”) • Image point correspondences scene point image plane optical center Key idea: Epipolar constraint X X X x x ’ x ’ x ’ Potential matches for x have to lie on the corresponding line l’. Potential matches for x’ have to lie on the corresponding line l. Epipolar geometry: notation X x x ’ • Baseline – line connecting the two camera centers • Epipoles = intersections of baseline with image planes = projections of the other camera center • Epipolar Plane – plane containing baseline (1D family) Epipolar geometry: notation X x x ’ • Baseline – line connecting the two camera centers • Epipoles = intersections of baseline with image planes = projections of the other camera center • Epipolar Plane – plane containing baseline (1D family) • Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs) Epipolar Geometry: -
Stereo and Structure from Motion
Stereo and Structure from Motion CS143, Brown James Hays Many slides by Kristen Grauman, Robert Collins, Derek Hoiem, Alyosha Efros, and Svetlana Lazebnik Depth from disparity X (X – X’) / f = baseline / z z X – X’ = (baseline*f) / z x x’ z = (baseline*f) / (X – X’) f f baseline C C’ Outline • Human stereopsis • Stereograms • Epipolar geometry and the epipolar constraint – Case example with parallel optical axes – General case with calibrated cameras General case, with calibrated cameras • The two cameras need not have parallel optical axes. Vs. Stereo correspondence constraints • Given p in left image, where can corresponding point p’ be? Stereo correspondence constraints Epipolar constraint Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view. • It must be on the line carved out by a plane connecting the world point and optical centers. Epipolar geometry Epipolar Line • Epipolar Plane Epipole Baseline Epipole http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html Epipolar geometry: terms • Baseline: line joining the camera centers • Epipole: point of intersection of baseline with image plane • Epipolar plane: plane containing baseline and world point • Epipolar line: intersection of epipolar plane with the image plane • All epipolar lines intersect at the epipole • An epipolar plane intersects the left and right image planes in epipolar lines Why is the epipolar constraint useful? Epipolar constraint This is useful because it reduces the correspondence problem to a 1D search along an epipolar line. Image from Andrew Zisserman Example What do the epipolar lines look like? 1. O l Or 2.