Standards and Methods for Evaluating the Success of Reclamation Contents

Total Page:16

File Type:pdf, Size:1020Kb

Standards and Methods for Evaluating the Success of Reclamation Contents Chapter 7 Standards and Methods for Evaluating the Success of Reclamation Contents Page Chapter Overview . 207 Performance Bonds and the Bond Release Process . 208 Standards and Methods Used To Judge Reclamation Success . 209 Types of Standards: Performances. Design . 209 Federal and State Standards . 209 State Experience With Reclamation Evaluation and Bond Release . 222 North Dakota . 222 Montana . 223 Wyoming . 224 Colorado . 225 New Mexico . 226 Chapter7 References . 226 List of Tables Table No. Page 7-1. Selected Performance Requirements and Standards in SMCRA . 210 7-2. State Revegetation performance Standards by Land Use Category . 212 7-3. Maximum Recommended Total Dissolved Solids Concentrations in Water for Various Uses . 218 List of Figures Figure No. Page 7-1. Reference Area . 214 7-2. Control Area . 216 Chapter 7 Standards and Methods for Evaluating the Success of Reclamation CHAPTER OVERVIEW Few aspects of the process for evaluating the impractical to actually measure spoils water qual- success of reclamation have been firmly estab- ity. Therefore, evaluations will have to be made lished under the Federal and State regulatory with incomplete knowledge and available predic- programs, leaving many uncertainties and is- tive tooIs. Similarly, some reconstructed surface sues. None of the five States examined during this drainage systems are unlikely to experience peak assessment has established bond release criteria flow events during the liability period, and predic- for Phases II and Ill. Most existing evaluation tech- tive techniques and design criteria must be used niques and standards which the States could draw to evaluate these drainages. on to develop Phase II and I I I criteria have seri- ous limitations. These limitations are particularly There also is uncertainty about whether suc- problematic in revegetation and hydrology–the cessful revegetation and hydrologic restoration two areas emphasized in the Surface Mining Con- are sufficiently reliable indicators of success for trol and Reclamation Act (SMCRA) performance soils, overburden, and wildlife. Of particular standards. concern is the time factor involved i n spoi Is oxi- dation and the potential for deleterious overbur- To date, no method for evaluating revegeta- den material to cause problems in the root zone tion adequately addresses both changes over after regraded spoils sampling. time and spatial diversity over a large area. There is general agreement that revegetation Legal questions about liability under the mix standards should accommodate the climatic and of performance and design standards currently temporal variations that affect all aspects of vege- used by regulatory authorities are unresolved. If tation. However, the most widespread method regulatory authorities require a certain reclama- for doing this–reference areas–assumes that tion design, and that design fails, are operators vegetation on a few acres wiII vary in the same still liable for repairing the reclamation failure? manner as, and thus can adequately represent, A recent slump in Colorado (see below) raises this vegetation over thousands of acres. question. Evaluation of hydrologic restoration is even I n addition, there are practical questions about more unclear. Although the SMCRA performance the relative effectiveness of performance and de- standards emphasize hydrology, most reclama- sign standards. Performance standards better en- tion evaluations have focused on revegetation courage innovation and selection of the most success. As a result, neither operators nor regu- cost-effective reclamation methods. However, latory authorities have much experience with they also have a greater potential for reclamation applying hydrologic success standards, and the failure if innovation is not conducted responsi- few standards currently in place are of question- bly and if monitoring data are not routinely used able practicality. The greatest uncertainties in to track and modify new practices. On the other evaluation of hydrologic restoration are insur- hand, while design standards seem to provide mountable, and will simply have to be recog- greater protection against failures and operator nized in the evaluation process. The hundreds irresponsibility, they can stifle innovation and of years predicted to be necessary for resatura- may not ensure achievement of the desired per- tion of many spoils-aquifers in the West make it formance. 207 208 . Western Surface Mine Permitting and Reclamation PERFORMANCE BONDS AND THE BOND RELEASE PROCESS SMCRA requires that surface mined lands be proved reclamation plan, he may apply for restored to a condition capable of supporting the the release of up to 60 percent of the bond premining land uses or to higher or better uses for that area. Topsoiling maybe required for (24). All of the data collection and analysis con- the release of this phase, at the regulatory ducted by operators and regulators described in authority’s discretion. the preceding chapters is directed toward meet- ● Phase II: A second portion of the bond may ing this requirement. This chapter examines the be released after vegetation has been es- criteria and methods used to judge the success tablished on the regraded mined lands and of reclamation efforts. those lands are not contributing suspended The Federal regulations define “reclamation” solids to streamflow or runoff outside of the permit area in excess of the regulatory re- as “those actions taken to restore mined land as required by this chapter to a postmining land use quirements. The amount of this second re- lease usually is 15 to 25 percent. The pre- approved by the regulatory authority”(l7). The cise amount is left to the discretion of the basic reclamation requirements in the Federal regulations provide only a general outline of rec- State regulatory authority, which must retain lamation performance standards, however; they a sufficient amount of the bond to cover the can rarely be applied without substantial inter- cost of hiring a third party to reestablish vege- pretation and refinement by State regulatory au- tation should the operator forfeit. thorities. This fits with the intent of SMCRA, that ● Phase III: The remaining bond monies are the primary governmental responsibility for reg- released only after the operator has success- ulating surface mining and reclamation should fully completed all surface coal mining and rest with the States (see ch. 4) (23). reclamation activities in accordance with regulatory requirements and with his permit. In order to receive a surface mining permit SMCRA specifies that, in areas where the under SMCRA, operators must put up a perform- average annual precipitation is less than 26 ance bond. A bond may either cover an entire inches (virtually all of the study area), the op- permit area or may be filed in increments as the erator must assume responsibility and liabil- mine progresses. The amount of the bond is set ity for successful revegetation for 10 years by the regulatory authority and must be sufficient after the last year of augmented seeding, to pay for completion of the reclamation plan in fertilizing, irrigating, or other work. Final the event of forfeiture. For the very large surface success evaluation and final bond release mines prevalent in the West, this usually means cannot occur until this liability period has bonds of millions of dollars. elapsed. In practice, evaluation of reclamation success To date, none of the five State regulatory au- has become virtually synonymous with bond re- thorities has formulated criteria for all phases lease. Therefore, the procedures for bond release of bond release. Moreover, because permitting outlined in SMCRA have shaped the way recla- and bonding under SMCRA only began in the West mation success is evaluated. Instead of keeping in 1979 and 1980, very few operators are suffi- the entire bond until reclamation has been judged ciently advanced in their reclamation activities a complete success, which would be financially to apply for any type of bond release. There have burdensome for an operator, the Act provides for been a few Phase I releases (discussed further be- a phased release of the bond in portions that re- low), but no Phase II or final releases of any bonds flect the operator’s reclamation costs (25). The posted under SMCRA. In the next few years, how- phases of bond release described in SMCRA are: ever, more and more operators will be filing for ● phase I: When an operator completes the release of various portions of their bonds. Regu- backfilling, regrading, and drainage control latory authorities will then have to decide wheth- of a bonded area in accordance with the ap- er they need to develop more specific criteria for Ch. 7—Standards and Methods for Evaluating the Success of Reclamation ● 209 evaluating reclamation. Preliminary indications their criteria and evaluations. This means, how- are that criteria will differ significantly among the ever, that operators must proceed on the assump- States, depending on environmental and mining tion that bond release criteria will be the same conditions and regulatory philosophies. as the revegetation and other performance and design standards in SMCRA and the regulatory The State regulatory authorities are drawing up programs. Regulators’ flexibility to establish standards for judging reclamation as those stand- more detailed criteria may be limited by ap- ards are needed. By waiting until applications for proved reclamation plans that establish de facto bond release
Recommended publications
  • Sagebrush Establishment on Mine Lands
    2000 Billings Land Reclamation Symposium BIG SAGEBRUSH (ARTEMISIA TRIDENTATA) COMMUNITIES - ECOLOGY, IMPORTANCE AND RESTORATION POTENTIAL Stephen B. Monsen and Nancy L. Shaw Abstract Big sagebrush (Artemisia tridentata Nutt.) is the most common and widespread sagebrush species in the Intermountain region. Climatic patterns, elevation gradients, soil characteristics and fire are among the factors regulating the distribution of its three major subspecies. Each of these subspecies is considered a topographic climax dominant. Reproductive strategies of big sagebrush subspecies have evolved that favor the development of both regional and localized populations. Sagebrush communities are extremely valuable natural resources. They provide ground cover and soil stability as well as habitat for various ungulates, birds, reptiles and invertebrates. Species composition of these communities is quite complex and includes plants that interface with more arid and more mesic environments. Large areas of big sagebrush rangelands have been altered by destructive grazing, conversion to introduced perennial grasses through artificial seeding and invasion of annual weeds, principally cheatgrass (Bromus tectorum L.). Dried cheatgrass forms continuous mats of fine fuels that ignite and burn more frequently than native herbs. As a result, extensive tracts of sagebrush between the Sierra Nevada and Rocky Mountains are rapidly being converted to annual grasslands. In some areas recent introductions of perennial weeds are now displacing the annuals. The current weed invasions and their impacts on native ecosystems are recent ecological events of unprecedented magnitude. Restoration of degraded big sagebrush communities and reduction of further losses pose major challenges to land managers. Loss of wildlife habitat and recent invasion of perennial weeds into seedings of introduced species highlight the need to stem losses and restore native vegetation where possible.
    [Show full text]
  • Reclaiming Abandoned Mine Lands Reduces Impact of Acid Mine
    NONPOINT SOURCE SUCCESS STORY ReclaimingPennsylvania Abandoned Mine Lands Reduces Impact of Acid Mine Drainage in the Bennett Branch Basin Waterbodies Improved Acid mine drainage (AMD) degraded water quality in Pennsylvania’s Bennett Branch Sinnemahoning Creek. As a result, Pennsylvania added the stream to its 1996 Clean Water Act (CWA) section 303(d) list of impaired waters for high metal concentrations. To address the AMD problem, significant partnerships were developed with the mining industry to accomplish mine reclamation and to use recoverable coal and waste coal resources. Water quality in Bennett Branch has dramatically improved after restoration, with decreased metal concentrations and increased alkalinity. Problem Bennett Branch Sinnemahoning Creek (Bennett Branch) is a 38-mile-long wild and scenic river in Clearfield, Elk and Cameron counties in north-central Pennsylvania (Figure 1). Bennet Branch flows into the Susquehanna River, which empties into the Chesapeake Bay. Restoring Bennett Branch is a priority because the watershed contains much of the state’s growing elk population and also has enormous potential for growth in tourism and other outdoor recreation. Coal mining in the area began in the late 1800s. Extensive underground mining was underway by the early 1900s; surface and strip mining began in the 1940s. Both continue to a limited extent today. Many established mines were eventually abandoned and left unclaimed. Drainage from these abandoned mine lands contribute dissolved metals to Bennett Branch. The Pennsylvania Department of Environmental Protection (PADEP) first designated Bennett Branch Figure 1. Bennett Branch flows through coal mining as impaired for metals in 1996, and placed much of lands in north-central Pennsylvania.
    [Show full text]
  • Is NRCS a Potential Partner? Is NRCS a Potential Partner? •Past • NRCS Origins & Mission • Rural Abandoned Mine Program (RAMP)
    Abandoned Mine Land Reclamation Is NRCS a Potential Partner? Is NRCS a Potential Partner? •Past • NRCS Origins & Mission • Rural Abandoned Mine Program (RAMP) • Present • Programs • Abandoned Mine Reclamation Activities • Future • Potential NRCS Assistance for Abandoned Mine Sites “Helping People Help the Land” Dust“Dust Bowl” Bowl of the 1930’s 1932- Soil Erosion Service 1935- Soil Conservation Service Rural Abandoned Mines Program (RAMP) RAMP • 1977 – 1997 • Surface Mining Control & Reclamation Act (SMCRA) • Established “to protect people and the environment from pre-1977 coal mining activities.” • Funding from Abandoned Mine Reclamation Fund ($0.35/ton surface; $0.15/ton underground) 1994 - NaturalPlantSnowSoil MaterialResources Survey Survey Center Inventory NRCS CONSERVATION PROGRAMS “Helping People Help the Land” Technical- and Cost-share Assistance to Agricultural Producers Conservation Programs Wetlands Reserve Program (WRP) Wildlife Habitat Incentive Program (WHIP) Emergency Watershed Protection Program (EWP) Environmental Quality Incentives Program (EQIP) EQIP Environmental Quality Incentives Program • Voluntary • Cropland, rangeland, grassland, pastureland, private non-industrial forestland • Statewide Initiatives • County Allocations for Local Resource Concerns • Competitive application/ranking process • 50 – 90% cost-share to install “approved conservation practices” FY-08 EQIP in California Total: ~$30m Wildlife Habitat ($1m) Dairies ($6m) Counties ($17.5m) Air Quality ($5.5m) http://www.ca.nrcs.usda.gov/programs/eqip/2008/statepriorities2008.html
    [Show full text]
  • Utah Nonpoint Source Management Plan for Abandoned Mines in Utah
    UTAH NONPOINT SOURCE MANAGEMENT PLAN FOR ABANDONED MINES IN UTAH Appendix F of the State NPS Management Plan January 2018 Prepared by: The Utah Department of Environmental Quality In cooperation with the Water Quality Task Force UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY Page 1 Table of Contents 1 INTRODUCTION ....................................................................................................................................................... 5 1.1 Potential Effects of Abandoned Mines ............................................................................................................... 6 1.2 Implementation of Control Strategies ................................................................................................................ 7 1.3 Examples of 319 Funded Projects ....................................................................................................................... 7 1.4 Follow-up monitoring......................................................................................................................................... 8 1.5 Mining Technical Advisory Committee ............................................................................................................. 8 2 ENVIRONMENTAL SETTING ................................................................................................................................. 9 2.1 Mine Locations....................................................................................................................................................
    [Show full text]
  • Surface Mining Control and Reclamation Act of 19771
    G:\COMP\MINING\SURFACE MINING CONTROL AND RECLAMATION ACT OF....XML SURFACE MINING CONTROL AND RECLAMATION ACT OF 1977 1 [Public Law 95–87] [As Amended Through P.L. 116–260, Enacted December 27, 2020] øCurrency: This publication is a compilation of the text of Public Law 95-87. It was last amended by the public law listed in the As Amended Through note above and below at the bottom of each page of the pdf version and reflects current law through the date of the enactment of the public law listed at https:// www.govinfo.gov/app/collection/comps/¿ øNote: While this publication does not represent an official version of any Federal statute, substantial efforts have been made to ensure the accuracy of its contents. The official version of Federal law is found in the United States Statutes at Large and in the United States Code. The legal effect to be given to the Statutes at Large and the United States Code is established by statute (1 U.S.C. 112, 204).¿ AN ACT To provide for the cooperation between the Secretary of the Interior and the States with respect to the regulation of surface coal mining operations, and the acquisition and reclamation of abandoned mines, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That this Act may be cited as the ‘‘Surface Mining Control and Reclamation Act of 1977’’. TABLE OF CONTENTS TITLE I—STATEMENT OF FINDINGS AND POLICY Sec. 101. Findings. Sec.
    [Show full text]
  • Future of Shrubs in Oil Sands Reclamation Workshop
    Future of Shrubs in Oil Sands Reclamation Workshop Oil Sands Research and Information Network University of Alberta December, 2013 Oil Sands Research and Information Network The Oil Sands Research and Information Network (OSRIN) is a university-based, independent organization that compiles, interprets and analyses available knowledge about managing the environmental impacts to landscapes and water impacted by oil sands mining and gets that knowledge into the hands of those who can use it to drive breakthrough improvements in regulations and practices. OSRIN is a project of the University of Alberta’s School of Energy and the Environment (SEE). OSRIN was launched with a start-up grant of $4.5 million from Alberta Environment and a $250,000 grant from the Canada School of Energy and Environment Ltd. OSRIN provides: Governments with the independent, objective, and credible information and analysis required to put appropriate regulatory and policy frameworks in place Media, opinion leaders and the general public with the facts about oil sands development, its environmental and social impacts, and landscape/water reclamation activities – so that public dialogue and policy is informed by solid evidence Industry with ready access to an integrated view of research that will help them make and execute environmental management plans – a view that crosses disciplines and organizational boundaries OSRIN recognizes that much research has been done in these areas by a variety of players over 40 years of oil sands development. OSRIN synthesizes this collective knowledge and presents it in a form that allows others to use it to solve pressing problems. Citation This report may be cited as: Oil Sands Research and Information Network, 2013.
    [Show full text]
  • Prediction of Water Quality at Surface Coal Mines
    Prediction of Water Quality at Surface Coal Mines Prepared by Members of the Prediction Workgroup of the Acid Drainage Technology Initiative (ADTI) Edited by Robert L. P. Kleinmann Published by The National Mine Land Reclamation Center Located at West Virginia University in Morgantown, West Virginia ADTI is a government/industry joint venture dedicated to the development and use of best science applications to the problem of acid mine drainage. The National Energy Technology Laboratory of the U.S. Department of Energy prepared this document for publication. The U.S. Office of Surface Mining and the National Mining Association provided funds to offset the printing costs. Table of Contents Chapter 1: Introduction and Recommendations.......................................................................... 1 THE NATURE OF THE PROBLEM................................................................................................1 OUR OBJECTIVES.......................................................................................................................2 FORMATION OF ACID MINE DRAINAGE ...................................................................................2 METHODS OF PREDICTION.......................................................................................................3 RECOMMENDATIONS................................................................................................................6 Chapter 2: How Geology Affects Mine Drainage Prediction...................................................... 8 INTRODUCTION
    [Show full text]
  • Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: a Global Systematic Review
    remote sensing Review Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review Phillip B. McKenna 1,*, Alex M. Lechner 2 , Stuart Phinn 3 and Peter D. Erskine 1 1 Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] 2 Lincoln Centre for Water and Planetary Health, School of Geography, The University of Lincoln, Lincoln LN6 7TS, UK; [email protected] 3 School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] * Correspondence: [email protected] Received: 8 September 2020; Accepted: 23 October 2020; Published: 28 October 2020 Abstract: The mining industry has been operating across the globe for millennia, but it is only in the last 50 years that remote sensing technology has enabled the visualization, mapping and assessment of mining impacts and landscape recovery. Our review of published literature (1970–2019) found that the number of ecologically focused remote sensing studies conducted on mine site rehabilitation increased gradually, with the greatest proportion of studies published in the 2010–2019 period. Early studies were driven exclusively by Landsat sensors at the regional and landscape scales while in the last decade, multiple earth observation and drone-based sensors across a diverse range of study locations contributed to our increased understanding of vegetation development post-mining. The Normalized Differenced Vegetation Index (NDVI) was the most common index, and was used in 45% of papers; while research that employed image classification techniques typically used supervised (48%) and manual interpretation methods (37%).
    [Show full text]
  • Restoration Appalachia: a Visual and Literary Analysis of Ecological Disturbance and Restoration Potentials in the Central Appalachian Coalfields
    RESTORATION APPALACHIA: A VISUAL AND LITERARY ANALYSIS OF ECOLOGICAL DISTURBANCE AND RESTORATION POTENTIALS IN THE CENTRAL APPALACHIAN COALFIELDS Ellison J. Heil An independent project submitted in partial fulfillment of the requirements for the degree of Master of Environmental Horticulture University of Washington 2019 Program Authorized to Offer Degree: School of Environmental and Forest Sciences College of the Environment University of Washington Table of Contents List of Figures and Abbreviations 4 Executive Summary 6 1. Introduction 7 1.1 The Alleghanian Orogeny and the Great Alleghany Bituminous Coal Field 7 1.2 Appalachia: Place and Space 9 1.3 Resource Extraction 11 1.3.1 Timber: Logging and Fire 11 1.3.2 Coal: Traditional Shaft Mining 13 1.3.3 Coal: Modern Surface Mining 17 2. Restoration Ecology 21 2.1 Restoration Ecology and Ecological Restoration 21 2.2 Pre-Anthropogenic Disturbance Ecosystem 21 2.3 Disturbance: 24 2.3.1 Timber Harvest 24 2.3.2 Traditional Shaft Mining 27 2.3.3 Modern Surface Mining 28 2.4 Stand Succession 28 2.5 Soil and Water Health 31 2.6 Ecosystem Services 31 3. Policy and Community Collaboration 32 3.1 Surface Mining Control and Reclamation Act of 1977 32 3.2 Environmental Protection Agency: Clean Air and Water Acts 32 3.3 Collaboration of Stakeholders in Mining Restoration 33 3.3.1 Office of Surface Mine Reclamation Enforcement 34 3.3.2 Abandoned Mine Lands 34 3.3.3 Appalachian Regional Reforestation Initiative 35 4. Restoration Techniques and Management Activities 36 4.1 Pre-SMCRA Reclamation 36 4.2 Post-SMCRA Reclamation 36 4.3 The Forestry Reclamation Approach 39 4.3.1 Step 1: Create Rooting Medium 39 4.3.2 Step 2: Loosely Graded Topsoil 39 4.3.3 Step 3: Native and Non-competitive Groundcovers 40 4.3.4 Step 4: Early Succession and Commercially Valuable Trees 40 4.3.5 Step 5: Proper Planting Techniques 41 2 4.4 Green Forest Works 41 4.5 Restoring Ecosystem Services 42 5.
    [Show full text]
  • 2015, Volume 4, Issue 2
    Journal of The American Society of Mining and Reclamation (JASMR) An Official Online Publication of the American Society of Mining and Reclamation ISSN Number 2328-8744 Volume 4, Number 2, 2015 Journal American Society of Mining and Reclamation, 2015 Vol.4, No.2 Journal of the American Society of Mining JASMR Editorial Board and Reclamation Dr. Robert Darmody The Journal of the American Society of Mining and Reclamation (JASMR) promotes the exchange of basic and applied solutions for the reclamation, Dr. Jeff Skousen restoration, and revitalization of landscapes impacted by the extraction of natural Dr. Gerard Schuman resources—including, but not limited to coal, minerals, gas, and oil. Contributions reporting original research, case studies, field demonstrations, or policy dealing Dr. George Vance with some aspect of ecosystem reclamation are accepted from all disciplines for Editor-in-Chief: consideration by the editorial board. Dr. Richard I. Barnhisel Contributions to JASMR The Journal of the American Society of Mining and Reclamation Associate Editors: publishes contributions under the headings Research Papers, Case Studies, Dr. Fred Brenner, Grove Demonstrations, Policy Papers and Review articles. All papers are peer reviewed. City College Manuscripts may be volunteered, invited, or coordinated as a symposium. Dr. Suzette Burckhard S Research Papers: Emphasis is given to the understanding of underlying processes Dakota State University rather than to monitoring. Applying these principals to specific, replicated Dr. Jon Bryan Burley, laboratory, glasshouse, and field problems dealing with reclamation are Michigan State encouraged. These reports are grouped into the following ASMR defined groups: University ecology, forestry and wildlife, geotechnical engineering, land use planning and Ms.
    [Show full text]
  • A GUIDE to ABANDONED MINE RECLAMATION © Published in the United States of America
    ...bringing the land back to life A GUIDE TO ABANDONED MINE RECLAMATION © Published in the United States of America. Copyright 1996 by the Montana Department of Environmental Quality. All rights reserved. This publication was produced with United States Department of Interior Office of Surface Mining Reclamation and Enforcement financial support and does not necessarily reflect that agency’s views. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopy, recording or otherwise without the prior written consent of the Montana Department of Environmental Quality. MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY P.O. Box 200901 Helena, MT 59620-0901 Written by Cassandra Noble Contributing Author John Koerth Acknowledgments Production of this Guide was a combined staff effort of the Montana Department of Environmental Quality, with the assistance of Kim Tintinger, Renewable Technologies, Inc., of Butte, Montana, and Natalie Anderson of Integrated Geoscience, Inc. of Helena, Montana. The members of the DEQ Abandoned Mine Reclamation staff are: Vic Andersen, Joel Chavez, Dale Herbort, John Koerth,Tom Mostad, Cassandra Noble, Ben Quiñones, and Jack Yates. It is through their daily work that once-degraded abandoned mine lands are brought back to life. TABLE OF CONTENTS Introduction ................................................................................. 1 Montana’s Mining History Coal Mining ..........................................................................
    [Show full text]
  • An Assessment of Abandoned Mine Reclamation in South Africa Using a Survey of Environmental Experts
    AN ASSESSMENT OF ABANDONED MINE RECLAMATION IN SOUTH AFRICA USING A SURVEY OF ENVIRONMENTAL EXPERTS by Andisiwe Stuurman B.S. Microbiology, University of Fort Hare, 2011 B.S. (Honors), University of Fort Hare, 2012 A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science degree Department of Geography and Environmental Resources in the Graduate School Southern Illinois University Carbondale May 2015 THESIS APPROVAL AN ASSESSMENT OF ABANDONED MINE RECLAMATION IN SOUTH AFRICA USING A SURVEY OF ENVIRONMENTAL EXPERTS By Andisiwe Stuurman A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the field of Geography and Environmental Resources Approved by: Dr. Silvia Secchi, Chair Professor Patricia MccCubbin Dr. Leslie Duram Graduate School Southern Illinois University Carbondale April 10, 2015 AN ABSTRACT OF THE THESIS OF ANDISIWE STUURMAN, for the Master of Science degree in Geography and Environmental Resources, presented on APRIL 10, 2015, at Southern Illinois University Carbondale. TITLE: AN ASSESSMENT OF ABANDONED MINE RECLAMATION IN SOUTH AFRICA USING A SURVEY OF ENVIRONMENTAL EXPERTS MAJOR PROFESSOR: Dr. Silvia Secchi Abandoned mines are those in which mining activity has ceased and there is no entity or company that can be traced to take responsibility for their maintenance or reclamation. It has been reported that there are approximately 6,150 abandoned mines in South Africa and it is estimated that it will cost $US4.2 billion to rehabilitate these mines over a very long period of time. The South African Department of Mineral Resources has set a reclamation target of 12 abandoned mines per year.
    [Show full text]