Resource Guide

Total Page:16

File Type:pdf, Size:1020Kb

Resource Guide RESOURCE GUIDE THE ULTIMATE GUIDE TO PLASTIC INJECTION MOLDING TERMINOLOGY FIRST EDITION 1 The GreenLeaf Industries team is passionate about integrating Engineered Quality, Reliable Delivery and Cost Containment into every design and project. We are a family owned, made in America manufacturer that is committed to supporting our clients and the Plastic Injection Molding Industry. It is our pleasure to introduce our latest resource guide to help designers, engineers and purchasing professionals navigate the world of plastic injection molding. A ADDITIVE MANUFACTURING – This is actually the technical term for 3-D printing. It is the process of manufacturing a three-dimensional object by placing layer on top of layer based on a specific CAD model. AGING – Refers to the change of a material with time under defined environmental conditions, leading to either improvement, or the deterioration of certain properties. ALLOY – A composite material made by blending polymers (or copolymers) with other polymers or elastomers under predetermined conditions. ANGLE PINS – Pins that are placed at an angle and fit freely into a slide. Because the pins are at an angle, a cam action is created as the mold opens, and this moves the slide out of the way prior to part ejection. Angle pins may be called “horn pins.” ANNEALING – The process of heating a molded plastic article to a predetermined temperature and slowly cooling it to relieve stresses caused by the manufacturing process. This secondary process is occasionally required for injection molded parts. ANTISTATIC AGENT – An agent added to the molding material (or applied on the surface of the molded object) to make it less conductive, whereby hindering the fixation of dust. AUTOMATIC MOLDING – Repeatedly going through the entire injection molding cycle, including the ejection process, without human assistance. B BACK TAPER – A reverse draft used in a mold to prevent molded articles from drawing freely. BACKING PLATE – A plate used in mold construction, as a support for the cavity blocks, guide pins, bushings, etc. BLISTER – A raised area on the surface of a molded part that is caused by the pressure of gases inside it on its incompletely hardened surface. BLUSH – Is simply a clouded discoloration of plastic in areas that come under high stress. When located at the gate (a high stress location) it is called “gate blush.” 2 BOSS – A projection on a plastic part designed to add strength, facilitate alignment during assembly, or provide strength in an area where fasteners are installed. BUBBLE – An internal pocket (void) of air or other gas trapped within a space of plastic due to poor part design, poor mold design, or poor processing. BURN – When the air temperature inside the mold exceeds the flash point of the plastic, a “burn mark” is made. If something is “burned” in molding, it shows evidence of thermal decomposition through some discoloration, distortion and localized destruction of the surface of the plastic. C CARBON BLACK – Is a black pigment produced by the incomplete burning of natural gas or oil. It is widely used as filler… particularly in the rubber industry. Because it possesses useful ultraviolet protective properties, it is also used for injection molding compounds where the item is intended for outside weathering applications. CASE HARDEN – It is a term used when hardening the surface of a piece of steel to a relatively shallow depth. CAST – To form a “plastic” object by pouring a fluid monomer-polymer solution into an open mold where it finishes polymerizing. CAVITY – A depression in a mold, which usually forms the outer surface of the molded part. Depending on the number of such depressions, molds can be designated as single cavity or multi- cavity. CENTER GATED MOLD – An injection mold wherein the cavity is filled with molding material through a “sprue”, or gate, directly into the center of the part. CHALKING – This term represents a dry, chalk-like appearance or deposit on the surface of a plastic. It is sometimes known as a “haze” CHROME PLATING – An electrolytic process that deposits a hard film of chromium metal onto working surfaces of other metals in the event that resistance to corrosion, abrasion or erosion is required. CLAMPING PLATE – A plate fitted to a mold and then used to fasten the mold to a molding machine. CLAMPING FORCE – In injection molding, it is the pressure that is applied to the mold to keep it closed while molten plastic is injected at very high pressures. COLD SLUG – This is what we call the first material to enter an injection mold. It gets its name from the fact that when it passes through the sprue orifice, it is cooled below the effective molding temperature. COLD SLUG WELL – It is the space directly opposite of the sprue opening, inside an injection mold, 3 to trap the cold slug. COMPRESSIVE STRENGTH – The crushing load (at failure) divided by the original sectional area of the specimen. CONDUCTIVE PLASTICS – Materials that allow a current or charge to travel through it. Conductive plastics are hybrid polymers that are electrically conductive or static dissipative. These plastics are engineered, using additives such as copper, silver, aluminum, carbon black and carbon fibers, to have conductivity characteristics. CONTINUOUS SERVICE TEMPERATURE – The maximum temperature above which mechanical and electrical properties are degraded over the lifetime of the item. COOLING CHANNELS – Channels or passageways located within the body of a mold through which a cooling medium can be circulated to control the mold temperature and remove heat as the molten plastic cools. COOLING FIXTURE – A fixture holding the shape of a molded piece to maintain the proper shape, or dimension, of a molded part after it is removed from the mold. It is used until the part is cool enough to retain its shape without appreciable distortion. CORE – A term describing a male element within a die, which produces a hole or recess inside the part. It also refers to a part of a more complex mold, used to mold undercut parts. CORE PIN – A pin that is being used to mold a hole. CORING – The process of removing excess material from the cross section of a molded part to attain a more uniform wall thickness. CRAZING – The small “hair-like” cracks on or beneath the surface of a plastic part. It sometimes is an indicator of imminent material fracture. CREEP – The tendency of a plastic material to move slowly, at the molecular level, over a period of time under the influence of stresses. Over long periods of time these tiny movements add up, changing part dimensions. Manufacturing engineers designing parts for applications having a consistent high pressure will consider creep when choosing their materials. CRYSTALLINITY – A state of molecular structure in resins which denotes uniformity and compactness of the molecular chains that form the polymer. Normally the condition can be attributed to the formation of solid crystals with a definite geometric form. CURE – To change the physical properties of a material by chemical reaction to make it more stable & functional. The process may include condensation, polymerization, or vulcanization. CURING TEMPERATURE – The proper temperature at which a molded product is subjected to curing. CYCLE – The complete sequence of operations involved in a process, or part of a process, is a cycle. In molding, the cycle time is the period, or elapsed time, between a certain point in one cycle and the same point in the next. 4 D DAYLIGHT OPENING – Clearance between two plates of a press in the open position. DECORATION (OF PARTS) – After injection molding, a secondary operation where the part is printed (decorated) by screen printing, pad printing, heat transfer, or similar methods. DEFLASHING – Covers the range of finishing techniques used to remove the flash (excess, unwanted material) that occurs on plastic parts such as cutting, scraping, filing, sanding, milling or tumbling. DEGRADATION – A damaging change in the chemical structure of a plastic resulting from such things as heat, light exposure, and general weathering. DELAMINTATION – The splitting of a plastic material along the plane of its layers. It is the condition of physical separation, or loss of bond, between laminate plies. DENSITY – Weight per unit volume of a substance, expressed in units such as grams per cubic centimeter or pounds per cubic foot. DESSICANT – A substance that can be used for drying plastic pellets because of its affinity for water. DESTATICIZATION – Is the act of treating plastic materials to minimize their accumulation of static electricity. DETERIORATION – A permanent change in the physical properties of a plastic evidenced by impairment of these properties. DIMENSIONAL STABILITY – The ability of a plastic part to retain its precise shape over time. Different plastic materials have different dimensional stability characteristics, and the dimensional stability of some plastics are even affected by moisture. DISCOLORATION – Any change that occurs from the original color that likely has resulted from overheating, light exposure or chemical exposure. DISHED – Showing a symmetrical distortion of a flat, or curved, section of a plastic object.As normally viewed, it now appears concave, or more concave than intended. DISPERSION – Finely divided particles of a material, that is in suspension inside another substance. DOMED – A symmetrical distortion of a flat, or curved, section of a plastic object. As normally viewed, it now appears convex, or more convex than intended. DOWEL – A pin used to maintain alignment between two or more parts of a mold. DRAFT – The degree of taper of a sidewall or the angle of clearance designed to facilitate removal of parts from a mold. DRY COLORING – A method occasionally used by fabricators for coloring plastic by tumble blending 5 uncolored particles of plastic material with selected dyes and pigments. DUROMETER HARDNESS – The hardness of a plastic material, as measured by the Shore Durometer.
Recommended publications
  • Sodium Sulfate CAS N°: 7757-82-6
    OECD SIDS SODIUM SULFATE FOREWORD INTRODUCTION Sodium sulfate CAS N°: 7757-82-6 UNEP PUBLICATIONS 1 OECD SIDS SODIUM SULFATE SIDS Initial Assessment Report For SIAM 20 Paris, France, 19 – 22 April 2005 1. Chemical Name: Sodium sulfate 2. CAS Number: 7757-82-6 3. Sponsor Country: Slovak Republic Contact Point: Centre for Chemical Substances and Preparations, Bratislava Contact Person: Peter Rusnak, Ph.D. Director Co-sponsor Country: Czech Republic Contact Point: Ministry of Environment Contact Person: Karel Bláha, Ph.D. Director Department of Environmental Risks Prague 4. Shared Partnership with: Sodium Sulfate Producers Association (SSPA)∗ and TOSOH 5. Roles/Responsibilities of the Partners: • Name of industry sponsor Sodium Sulfate Producers Association (SSPA) /consortium • Process used Documents were drafted by the consortium, then peer reviewed by sponsor countries experts 6. Sponsorship History • How was the chemical or Nominated by ICCA in the framework of the ICCA HPV category brought into the program OECD HPV Chemicals Programme? 7. Review Process Prior to Two drafts were reviewed by the Slovakian/Czech authorities; third the SIAM: draft subject to review by OECD membership 8. Quality check process: Data was reviewed against the OECD criteria as described in the SIDS manual. These criteria were used to select data for extraction into the SIDS dossier. Original data was sought wherever possible. Originally reported work was deemed reliable if sufficient information was reported (according to the manual) to judge it robust. Reviews were only judged reliable if reported 2 UNEP PUBLICATIONS OECD SIDS SODIUM SULFATE by reputable organisations/authorities or if partners had been directly involved in their production 9.
    [Show full text]
  • Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® Modified PPSU
    Radel ® | Udel ® | Veradel ® | Acudel ® Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® modified PPSU Processing Guide SPECIALT Y POLYMERS 2 \ Sulfone Polymers Processing Guide Table of Contents Introduction ............................. 5 Part Ejection . 14 Draft . 14 Ejector pins and/or stripper plates . 14 Sulfone Polymers........................ 5 Udel® Polysulfone (PPSU) . 5 Injection Molding Equipment ............. 15 ® Veradel Polyethersulfone (PESU) . 5 Controls . 15 ® Radel Polyphenylsulfone (PPSU) . 5 Clamp . 15 ® Acudel modified PPSU . 5 Barrel Capacity . 15 Press Maintenance . 15 Resin Drying . .6 Screw Design . 15 Rheology................................ 8 Screw Tips and Check Valves . 15 Viscosity-Shear Rate ..................... 8 Nozzles . 16 Molding Process . 16 Resin Flow Characteristics . 9 Melt flow index . 9 Polymer Injection or Mold Filling . 16 Spiral flow . 9 Packing and Holding . 17 Injection Molding . .10 Cooling . 17 Molds and Mold Design .................. 10 Machine Settings ....................... 17 Tool Steels . 10 Barrel Temperatures . 17 Mold Dimensions . 10 Mold Temperature . 18 Mold Polishing . 10 Residence Time in the Barrel . 18 Mold Plating and Surface Treatments . 10 Injection Rate . 18 Tool Wear . 10 Back Pressure . 18 Mold Temperature Control . 10 Screw Speed . 18 Mold Types . 11 Shrinkage . 18 Two-plate molds . 11 Three-plate molds . 11 Regrind ............................... 19 Hot runner molds . 11 Cavity Layout . 12 Measuring Residual Stress ............... 19 Runner Systems . 12 Extrusion............................... 22 Gating . 12 Sprue gating . 12 Edge gates . 13 Predrying ............................. 22 Diaphragm gates . 13 Tunnel or submarine gates . 13 Extrusion Temperatures ................. 22 Pin gates . 13 Screw Design Recommendations . 22 Gate location . 13 Venting . 14 Sulfone Polymers Processing Guide / 3 Die Design ............................. 22 Extruded Product Types . 23 Wire . 23 Film . 23 Sheet . 23 Piping and tubing . 23 Start-Up, Shut-Down, and Purging .......
    [Show full text]
  • Comment Response 7-1 7 0 Propose to Add References to AMAP Report 2012 on Effects of BC in the Arctic
    Expert Review Comments on the IPCC WGI AR5 First Order Draft -- Chapter 7 Comment Chapter From From To To No Page Line Page Line Comment Response 7-1 7 0 Propose to add references to AMAP report 2012 on effects of BC in the Arctic. AMAP, 2011. The Impact of reviewer needs to be specific as to where this fits. Black Carbon on Arctic Climate (2011). Quinn et al. Arctic Monitoring and Assessment Programme (AMAP), Preference goes to peer-reviewed literature. Oslo. 72 pp. [Øyvind Christophersen, Norway] 7-2 7 0 This chapter is considerably improved from the ZOD, and I commend the authors for constructing a draft that We concur with these comments about the amounts is more balanced, better organized, covers most of the important issues, and is well written. That having been of detail in each section. We will try to address the said, there are still differences in approach and emphasis among the individual sections on clouds, aerosols, imbalances while at the same time reducing the and cloud-aerosol interactions. The chapter as a whole would benefit if these differences were reduced. The overall length as required by the TSU. clouds section, with one exception noted in a future comment, really focuses on the climatic effects of clouds and eschews detailed discussions of the cloud physics that leads to these climate effects, so much so that some of the more important science issues are ignored and others given short shrift. The aerosol section is just the opposite - it reads more like a review article in a journal than an IPCC report section, reviewing all the details of aerosol physics/chemistry, including many things that may or may not turn out to be significant in the future but which have not yet been demonstrated to be important to climate change.
    [Show full text]
  • Cast Irons from Les Forges Du Saint- Maurice, Quebec a Metallurgical Study
    Cast Irons from Les Forges du Saint- Maurice, Quebec A Metallurgical Study Henry Unglik Environment Canada Environnement Canada Parks Service Service des pares Cast Irons from Les Forges du Saint- Maurice, Quebec A Metallurgical Study Henry Unglik Studies in Archaeology Architecture and History National Historic Parks and Sites Parks Service Environment Canada ©Minister of Supply and Services Canada 1990. Available in Canada through authorized bookstore agents and other bookstores, or by mail from the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que­ bec, Canada Kl A 0S9. Published under the authority of the Minister of the Environment, Ottawa, 1990 Editing and design: Jean Brathwaite Production: Lucie Forget and Rod Won Parks publishes the results of its research in archaeology, architecture, and history. A list of publications is available from Research Publications, Parks Service, Environment Can­ ada, 1600 Liverpool Court, Ottawa, Ontario K1A 0H3. Canadian Cataloguing in Publication Data Unglik, Henry Cast irons from les Forges du Saint-Maurice, Quebec: a met­ allurgical study (Studies in archaeology, architecture and history, ISSN 0821-1027) Issued also in French under title: Fontes provenant des Forges du Saint-Maurice. Includes bibliographical references. ISBN 0-660-13598-1 DSS cat. no. R61-2/9-48E 1. Forges du Saint-Maurice (Quebec) — Antiquities. 2. Iron­ works — Quebec (Province) — Saint Maurice River Valley — History. 3. Cast-iron — Analysis. I. Canadian Parks Service. National Historic Parks and
    [Show full text]
  • Additive Tooling Simplifies the Mold Build Process – 18 Conformally Cooled Sprue Bushings Reduce Cycle Time
    ENGINEER / BUILD / MAINTAIN Additive Tooling Simplifies the Mold Build Process – 18 Conformally Cooled Sprue Bushings Reduce Cycle Time – 22 Best Practices for Improving Measurement Accuracy – 30 Revisiting Some Hot Runner Fundamentals – 36 FEBRUARY 2020 / VOL. 23 / NO. 2 A property of Gardner Business Media “Progressive’s Inserted Bar Locks provide perfect alignment for even our largest tools, which perform in harsh conditions.” Oswaldo Roman, Inland Die Casting Company align with the leader When producing tight tolerance parts for the automotive industry, Inland Die Casting Company knows that taking shortcuts today will lead to problems tomorrow. Progressive’s Inserted Bar Locks are designed to go the distance: • Largest, standard alignment lock in the industry • Designed for mold weights from 25,000 to 75,000 lbs • Utilizes exclusive Z-Series technology for longevity Don’t let inferior components bench your tools. Contact our Engineering team at 1-800-269-6653 to discuss how the Progressive advantage can generate profits for you. VISIT THE NEW PROCOMPS.COM FOR ENHANCED E-COMMERCE AND CAD GEOMETRY AVAILABILITY A CONTROL FOR EVERY GENERATION. For over 50 years, Hurco has been empowering machinists of every generation with cutting-edge control technology that’s easy to learn and easy to use. See which one of our 65+ models of CNC machines is right for you. Hurco.com/MyGeneration Double Column Boring Mills Horizontals 3-Axis Vertical 5-Axis Double Column Bridge Turning Centers Hurco Companies, Inc. | One Technology Way | Indianapolis, IN 46268 | 800.634.2416 | [email protected] | HURCO.com | Machines shown with options. Information may change without notice.
    [Show full text]
  • Ingot Cleanliness Improvements Using Sprue Extensions Beyond the Mold Outlet
    Ingot Cleanliness Improvements Using Sprue Extensions Beyond The Mold Outlet Ryan VanderMeulen ArcelorMittal Coatesville April 11, 2012 ArcelorMittal USA Locations Research Center Burns Harbor Cleveland Lackawanna Indiana Harbor Riverdale Coatesville Hennepin Conshohocken Columbus Coatings Newton Weirton Georgetown Steelton Steelmaking and processing facilities Processing facilities Research center 2 ArcelorMittal USA Plate Production Locations Indiana Harbor Cleveland Riverdale Conshohocken Burns Coatesville Harbor, Gary Steelmaking, Rolling, Heat Treating: Rolling & Heat Treating: Steelmaking: Burns Harbor, Coatesville Conshohocken, Gary Indiana Harbor, Cleveland, Riverdale 3 Plate Mills Production Focus • Burns Harbor – 160” – larger, TMCP, Q&T, precise weight – 110” – commodity to 1” – 160” @ Gary – commodity to 1.5”, Q&T • Conshohocken – 110” - commodity, thin, Q&T • Coatesville – – 140” - heavy, varied chemistries, Q&T – 206” - very wide and heavy, Q&T 4 Production Focus • East Clad, Flamecut, Conversion Most alloy and Q&T Very clean steel Very wide or heavy plate Light thickness plate Small special orders • West Control rolled Precise weight Special surface requirements Very large orders Heat Treated Commodity 5 ArcelorMittal USA Operations Coatesville Steelmaking Process Plan Electrodes Automatic Automatic Alloys Alloys Wire Feed Argon Stirring Argon Stirring Ladle Furnace Ladle Degasser Continuous Bottom Cast Slabs Poured Ingots Ladle Electric Arc Furnace 6 Ingot Casting Coatesville • Bottom pouring • Hot topping • Argon shrouding
    [Show full text]
  • Hell on Wheels
    MercantileEXCITINGSee section our NovemberNovemberNovember 2001 2001 2001 CowboyCowboyCowboy ChronicleChronicleChronicle(starting on PagepagePagePage 90) 111 The Cowboy Chronicle~ The Monthly Journal of the Single Action Shooting Society ® Vol. 21 No. 11 © Single Action Shooting Society, Inc. November 2008 . HELL ON WHEELS . THE SASS HIGH PLAINS REGIONAL By Captain George Baylor, SASS Life #24287 heyenne, Wyoming – The HIGHLIGHTS on pages 70-73 very name conjures up images of the Old West. chief surveyor for the Union Pacific C Wyoming is a very big state Railroad, surveyed a town site at with very few people in it. It has what would become Cheyenne, only 500,000 people in the entire Wyoming. He called it Cow Creek state, but about twice as many ante- Crossing. His friends, however, lope. A lady at Fort Laramie told me thought it would sound better as Cheyenne was nice “if you like big Cheyenne. Within days, speculators cities.” Cheyenne has 55,000 people. had bought lots for a $150 and sold A considerable amount of history them for $1500, and Hell on Wheels happened in Wyoming. For example, came over from Julesburg, Colorado— Fort Laramie was the resupply point the previous Hell on Wheels town. for travelers going west, settlers, and Soon, Cheyenne had a government, the army fighting the Indian wars. but not much law. A vigilance com- On the far west side of the state, mittee was formed and banishments, Buffalo Bill built his dream town in even lynchings, tamed the lawless- Cody, Wyoming. ness of the town to some extent. Cheyenne, in a way, really got its The railroad was always the cen- start when the South seceded from tral point of Cheyenne.
    [Show full text]
  • The Lost-Wax Casting Process—Down to Basics by Eddie Bell, Founder, Santa Fe Symposium
    The Lost-Wax Casting Process—Down To Basics By Eddie Bell, Founder, Santa Fe Symposium. Lost-wax casting is a ancient technique that is used today in essentially the same manner as it was first used more than 5,000 years ago. As they say, there's no messing with success. Today, of course, technology has vastly expanded the technique and produced powerful equipment that makes the process faster, easier and more productive than ever, but the basic steps remain the same. The steps below represent a simple overview and are intended to provide a beginning understanding of the casting process. Concept This is obviously where the design is initally conceived, discussed,evolved, and captured on paper—or on computer; CAD (computer aided design) software is increasingly popular among designers. You create the design you envision using the computer tool and the software creates a file that can be uploaded into a CNC mill or 3D printer. Model Build a model, either by hand-carving, guided by the paper rendering, or by uploading the CAD file into a computer controlled milling machine or a 3D printing machine. Models are made using carving wax, resin or similar material. This process can also be done in metal by a goldsmith or silversmith. Note: If a 3D printer or other rapid prototyping equipment is used, it is possible to skip the molding and wax-injection steps by using one of the resins that are specially made to go directly to the treeing process. Molding Create a mold from your master model, placing it in one of a variety of rubber or silicone materials, curing the material, then removing the model from the finished mold.
    [Show full text]
  • Preparation of Soil Nutrient Amendment Using White Mud Produced in Ammonia-Soda Process and Its Environmental Assessment
    Preparation of soil nutrient amendment using white mud produced in ammonia-soda process and its environmental assessment SHI Lin(石 林), LUO Han-jin(罗汉金) College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, China Received 15 July 2009; accepted 7 September 2009 Abstract: A novel method to prepare soil nutrient amendment by calcining a mixture of white mud and potassium feldspar and its for white mud to 30׃environmental assessment were investigated. Under the optimal conditions of a blending mass ratio of 70 potassium feldspar, a calcination temperature of 1 000 ℃, a calcination time of 1.5 h and spherulitic diameter of 2.0 cm, the calcined product, as a soil nutrient amendment, could be prepared with the following nutrient composition (mass fraction): K2O 4.16%, CaO 2− − 23.43%, MgO 5.04%, SiO2 22.92%, SO4 3.71%, and Cl 3.87% in 0.1 mol/L citric acid solution. The concentrations of heavy metals in the calcined product and the emission concentrations of harmful gases from a mixture of white mud and potassium feldspar during calcination process could qualify the National Standards without causing secondary environmental pollution. Key words: white mud; potassium feldspar; soil nutrient amendment; environmental assessment; preparation white mud, in combination with the above-mentioned 1 Introduction factors, makes it become a serious obstruction for application in the building and cement industry. So far, Distilled waste sludge containing 50%−60% water, the common treatment of white mud is still to discard it commonly known as “white mud”, is discharged from into waterway or dispose of it in landfills.
    [Show full text]
  • Designing an Adaptive Building Envelope for Warm-Humid Climate Using Bamboo Veneer As a Hygroscopically Active Material
    The Pennsylvania State University The Graduate School RESPONSIVE SKIN: DESIGNING AN ADAPTIVE BUILDING ENVELOPE FOR WARM-HUMID CLIMATE USING BAMBOO VENEER AS A HYGROSCOPICALLY ACTIVE MATERIAL A Thesis in Architecture by Manal Anis 2019 Manal Anis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2019 ii The thesis of Manal Anis was reviewed and approved* by the following: Marcus Shaffer Associate Professor of Architecture Thesis Advisor Ute Poerschke Professor of Architecture Interim Head of the Department of Architecture Benay Gursoy Toykoc Assistant Professor of Architecture Rebecca Henn Associate Professor of Architecture Director of Graduate Studies of the Department of Architecture *Signatures are on file in the Graduate School iii abstract Architectural facades that are able to adapt themselves in response to changing climatic conditions have typically been identified with having high-tech complex automated mechanisms, using electronic sensors and actuators. The low-tech and no- tech passive strategies of adaptive façade design based on material responsiveness are still in their infancy. Passive strategies minimize energy and material use while maintaining occupant comfort. This is precisely why such methods require a greater emphasis today as we investigate deeper into the realms of Responsive Architecture. Materials such as bamboo and wood undergo a natural, biological reaction to environmental changes, and, therefore, offer an opportunity for non-mechanical adaption. Bamboo, due to its hygroscopic nature, undergoes constant expansion and contraction with changing levels of atmospheric humidity. From a crafting and constructing perspective, this spontaneous dimensional change – material instability - was seen as an inherent drawback of working with bamboo, with attempts being made to control, mitigate, or counteract the change.
    [Show full text]
  • Hygroscopy-Induced Nanoparticle Reshuffling in Ionic-Gold-Residue
    Showcasing research from the Department of Chemistry As featured in: Education, Seoul National University, Seoul, South Korea. Hygroscopy-induced nanoparticle reshuffl ing in ionic-gold-residue-stabilized gold suprananoparticles Ionic precursors play a role in the generation of nanoparticles and infl uence their properties. The excess gold ions facilitate the formation of ultra-small gold nanoparticles and the further assembly of these small nanoparticles into suprananoparticles. The hygroscopic Au(III) residues in the suprananoparticles absorb moisture to form a micro-water pool and, subsequently, the nanoparticles are able to reshuffl e to larger nanoparticles, which is used to detect the water content in organic solvents. Our results indicate that nanoparticle precursors may introduce See Junhua Yu et al., additional characteristics and signifi cantly change the properties Nanoscale Adv., 2019, 1, 1331. of nanostructures. rsc.li/nanoscale-advances Registered charity number: 207890 Nanoscale Advances View Article Online PAPER View Journal | View Issue Hygroscopy-induced nanoparticle reshuffling in ionic-gold-residue-stabilized gold Cite this: Nanoscale Adv.,2019,1, 1331 suprananoparticles† Sungmoon Choi, ‡ Minyoung Lim,‡ Yanlu Zhao and Junhua Yu * Polyethyleneimine (PEI)-stabilized gold nanoparticles were used as a model to understand the roles of ionic precursors in the formation of nanoparticles and the impact of their presence on the nanoparticle properties. The low availability of elemental gold and the stabilization of the just-generated gold nanoparticles by the excess gold ions contributed to the production of ultra-small nearly neutral gold nanoparticles, resulting in properties significantly different from those prepared by conventional methods. The cross-linking between gold ions/PEI/nanoparticles further led to the assembly of these small gold nanoparticles into suprananoparticles that were stable in water.
    [Show full text]
  • Lecture Notes on Structure and Properties of Engineering Polymers
    Structure and Properties of Engineering Polymers Lecture: Microstructures in Polymers Nikolai V. Priezjev Textbook: Plastics: Materials and Processing (Third Edition), by A. Brent Young (Pearson, NJ, 2006). Microstructures in Polymers • Gas, liquid, and solid phases, crystalline vs. amorphous structure, viscosity • Thermal expansion and heat distortion temperature • Glass transition temperature, melting temperature, crystallization • Polymer degradation, aging phenomena • Molecular weight distribution, polydispersity index, degree of polymerization • Effects of molecular weight, dispersity, branching on mechanical properties • Melt index, shape (steric) effects Reading: Chapter 3 of Plastics: Materials and Processing by A. Brent Strong https://www.slideshare.net/NikolaiPriezjev Gas, Liquid and Solid Phases At room temperature Increasing density Solid or liquid? Pitch Drop Experiment Pitch (derivative of tar) at room T feels like solid and can be shattered by a hammer. But, the longest experiment shows that it flows! In 1927, Professor Parnell at UQ heated a sample of pitch and poured it into a glass funnel with a sealed stem. Three years were allowed for the pitch to settle, and in 1930 the sealed stem was cut. From that date on the pitch has slowly dripped out of the funnel, with seven drops falling between 1930 and 1988, at an average of one drop every eight years. However, the eight drop in 2000 and the ninth drop in 2014 both took about 13 years to fall. It turns out to be about 100 billion times more viscous than water! Pitch, before and after being hit with a hammer. http://smp.uq.edu.au/content/pitch-drop-experiment Liquid phases: polymer melt vs.
    [Show full text]