Studies of the Fast and Exotic Ions in Superfluid Helium-4

Total Page:16

File Type:pdf, Size:1020Kb

Studies of the Fast and Exotic Ions in Superfluid Helium-4 Studies of the Fast and Exotic Ions in Superfluid Helium-4 by Wanchun Wei M.Sc., Brown University, 2009 B.Sc., University of Science and Technology of China, 2005 A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the Department of Physics at Brown University PROVIDENCE, RHODE ISLAND MAY 2012 © Copyright 2012 by Wanchun Wei Vita Wanchun Wei was born on February 3, 1983 in Dalian, China. He received his B.Sc. in Applied Physics from University of Science and Technology of China in 2005. In the fall of that same year, he started his graduate studies in the Physics Department of Brown University. He earned his M.Sc. in Physics in 2009, and a second M.Sc. in Applied Mathematics in 2011. The work for this thesis began in the summer of 2007. During this work, he received the Forest Award for excellent work related to experimental apparatus in 2010. iv Acknowledgements In the seven years of my graduate studies at Brown University, it was a great pleasure to work with my advisor, Professor Humphrey Maris. I have learned a lot from his profound insight in physics and brilliant attitude to life. I deeply appreciate all of his invaluable guidance, inspiration, patience and consideration during the course of my studies. Without these, I couldn’t accomplish this work as a student who started from knowing nothing about cryogenics. I would like to express my gratitude to Professor George Seidel for his valuable advice and deep discussions during this entire work and to Professor Robert Lanou for his kindly help. I am also very thankful to both of them for spending time reading this thesis. In addition, my gratitude must be extended to Professor Arnold Dahm, Professor Gary Ihas and Professor Jan Northby for their helpful discussions on the experiment, and to Professor Leon Cooper for his genius ideas on the theory. I greatly thank Mr. Charles Vickers, Mr. Michael Packer, Mr. Raymond Pagliarini and Mr. Brian Corkum for their excellent work in the construction of the cryostat and the experimental structure, and thank Mr. Bruce Chick for his generous help in the design and making of the control circuit. It was great experiences to work with these brilliant engineers, from whom I have learned so many of the arts of engineering. I also thank Mr. Dean Hudek and Mr. William Patterson III for the electronics and assistance in all aspects. I give my thanks to all my fellows from our research group, the picosecond ultrasonics group, the quasi-2D electronic systems group and the NMR spectroscopy group for all their helps. In particular, I give my greatest appreciation to Dr. Yunhu Huang for v numerous discussions and helps in this work; to Matthew Hirsch for training me with cryogenic skills and offering suggestions on the design of the cryostat; to Dr. Dafei Jin for being my close friend and solid lab supporter all the time; and also, to Zhuolin Xie for her efforts and assistance in the experiments. Moreover, I am very thankful to Mrs. Barbara Dailey, who is always keen to help and support in all situations. It meant a lot to me. I want to express my gratitude to Professor Jin Li for being my great mentor and friend these years, especially for her generous support in the hard times. Inspired by many talks with her, I have gained a deeper understanding of the beauty and values of the traditional Chinese culture. This is something other than physics I have acquired at Brown that would benefit me for a lifetime. I also want to express my gratitude to my undergraduate advisor, Professor DING Zejun, for his continuous encouragement and support over years. It was him who taught me that to become a scientist, one must first be a diligent engineer and a meticulous researcher. I bear this advice in mind while I am pursuing my best throughout my graduate studies. My gratitude is as well given to Mrs. SUN Ying and Mr. TAO Yong, the greatest teachers who have impacted my life path so much since my teens. I thank all my dear friends at Brown and around the world for the funs together and all their warm supports. They make my life at Brown so memorable. I share with them my pleasure of this great moment. Finally, I am extremely grateful for my parents. This moment of honor also belongs to them for all their love, sacrifice and guidance in my growth. I am so glad to fulfill their dreams. vi To my beloved Mother and Father vii Table of Contents List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xiii Chapter 1 Introduction ........................................................................................................ 1 Chapter 2 Design and Construction of the Cryostat ........................................................... 7 2.0 Fundamentals of Cryogenics ..................................................................................... 8 2.0.1 Cooling Powers................................................................................................... 9 2.0.2 Heat Loads ........................................................................................................ 11 2.1 1 K Pot ― the Cryogenic Engine ............................................................................ 12 2.1.1 Cooling Power of the 1 K Pot ........................................................................... 12 2.1.2 Inlet Filter and Fill Line of the 1 K Pot ............................................................ 15 2.1.3 Thermal Connection between the 1 K Pot and the Cell ................................... 18 2.1.4 Construction of the 1 K Pot .............................................................................. 19 2.1.5 Analysis on the Performance of the 1 K Pot .................................................... 21 2.2 Auxiliary Thermal Components .............................................................................. 24 2.2.1 Cryogenic Coolant Baths and Precision Cryogenics Dewar ............................ 24 viii 2.2.2 Structures inside the Space of the Helium Bath ............................................... 27 2.2.3 Heat Exchangers and Thermal Anchors ........................................................... 33 2.2.4 Thermometry .................................................................................................... 38 2.3 Experimental Cell .................................................................................................... 43 2.3.1 Cell Body and View Window Ports ................................................................. 44 2.3.2 Cell Fill Lines ................................................................................................... 46 2.3.3 Cell Electrical Feed-throughs ........................................................................... 48 2.4 Electrical System ..................................................................................................... 50 2.4.1 Static High Voltage Lines ................................................................................. 50 2.4.2 Signal Drive & Acquisition Coaxial Lines ....................................................... 52 2.4.3 Thermometer Leads .......................................................................................... 54 2.5 Gas Handling System .............................................................................................. 59 2.6 Cool-Down Process ................................................................................................. 64 Chapter 3 Time of Flight Method ..................................................................................... 70 3.1 Introduction to the Time of Flight Method ............................................................. 70 3.1.1 A Brief Introduction to the Time of Flight Apparatus...................................... 71 3.1.2 Interpretation of the Signal Profile and the Transit Time ................................. 73 3.2 Experimental TOF Structure and Control Circuit ................................................... 77 3.2.1 Summary of Previous Experiments .................................................................. 78 ix 3.2.2 Summary of a Failed Short TOF Structure ....................................................... 80 3.2.3 Detailed Geometry of the Long TOF Structure ................................................ 82 3.2.4 Control Circuit and Electronics ........................................................................ 86 3.3 Experimental Signal Acquisition and Processing ................................................... 89 3.3.1 Analog Signal Amplification and Noise Management ..................................... 89 3.3.2 Control Program of the National Instruments DAQ Card ................................ 93 3.3.3 Numerical Data Processing .............................................................................. 95 3.4 Procedure for Searching for Ion Signals ................................................................. 95 3.5 A Preliminary Experimental Result ........................................................................ 96 3.5.1 Analysis of the Peak Shape of Ions .................................................................. 98 3.5.2 Error Analysis in the TOF Measurement ....................................................... 102 Chapter 4 Experimental Result and Analysis ................................................................
Recommended publications
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Design and construction of the DEAP-3600 dark matter detector Permalink https://escholarship.org/uc/item/7wv4t38s Authors Amaudruz, PA Baldwin, M Batygov, M et al. Publication Date 2019-03-01 DOI 10.1016/j.astropartphys.2018.09.006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Design and Construction of the DEAP-3600 Dark Matter Detector P.-A. Amaudruzl, M. Baldwinj, M. Batygovd, B. Beltrana, C. E. Binaa, D. Bishopl, J. Bonattf, G. Boormani, M. G. Boulayf,c, B. Broermanf, T. Bromwichh, J. F. Buenoa, P. M. Burghardtk, A. Butcheri, B. Caif, S. Chanl, M. Chenf, R. Chouinarda, S. Churchwellh, B. T. Clevelandg,d, D. Cranshawf, K. Deringf, J. DiGioseffof, S. Dittmeierl, F. A. Duncany,g,d, M. Dunfordc, A. Erlandsonb,c, N. Fatemighomii, S. Florianf, A. Flowerf, R. J. Fordg,d, R. Gagnonf, P. Giampaf, V. V. Golovkob, P. Gorela,g,d, R. Gorneac, E. Gracei, K. Grahamc, D. R. Granta, E. Gulyevl, A. Halli, A. L. Hallina, M. Hamstraf,c, P. J. Harveyf, C. Hearnsf, C. J. Jillingsg,d, O. Kamaevb, A. Kempi, M. Ku´zniakf,c, S. Langrockd, F. La Ziai, B. Lehnertc, O. Lig, J. J. Lidgardf, P. Liimataineng, C. Liml, T. Lindnerl, Y. Linnl, S. Liua, P. Majewskij, R. Mathewf, A. B. McDonaldf, T. McElroya, K. McFarlaneg, T. McGinny,f, J. B. McLaughlinf, S. Meadl, R. Mehdiyevc, C. Mielnichuka, J. Monroei, A. Muirl, P. Nadeauf, C. Nantaisf, C. Nga, A. J. Noblef, E. O'Dwyerf, C. Ohlmannl, K. Olchanskil, K. S. Olsena, C.
    [Show full text]
  • 1. Vacuum Requirements ______1 2
    INTRODUCTION TO LABORATORY CRYOGENICS By M. N. Jirmanus, Ph.D. Janis Research Company, Inc. 2 Jewel Drive Wilmington, MA 01887 USA Tel: +1 978 657-8750 Fax: +1 978 658-0349 E-mail: [email protected] www.janis.com PREFACE This work is meant for scientists, students and laboratory personnel who have had little or no experience in cryogenics. It concentrates primarily on cryogenic systems that are commercially available for operation between 1.5 K and 300 K (room temperature). For those users who want to design and build their own equipment, or who are interested in a more detailed analysis of cryogenic systems, a number of excellent references are listed at the end of this booklet. The first section discusses the vacuum requirements of laboratory dewars and variable temperature cryostats. This is followed by a section on liquid helium and liquid nitrogen dewars, and another section on variable temperature cryostats. The next section concentrates on superconducting magnets that are combined with variable temperature cryostats for laboratory experiments, requiring relatively large magnetic fields. Section five describes closed cycle refrigerator cryostats that require no liquid cryogens, and the last section concentrates on experimental techniques, thermometry, and automatic temperature control. This last section also includes a few tables that are helpful in estimating heat loads on the cold stage and attached sample. More detailed information and experimental data are available from the references listed at the end of this booklet. The figures (drawings) spread throughout sections 2 through 6, show a variety of dewar and cryostat designs, based primarily on our experience at Janis.
    [Show full text]
  • Iii 1I W T Tia
    o..ch BriefsSP-5021(21) idex 1979 do iiI 1I W t Tia dk- .T ____ 1-4) 1979 P-5O21 (21)' This document is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161, at price code A06 ($6.50. domestic; $13.00 foreign). Order NASA SP:5021(21). INTRODUCTION Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This Index to NASA Tech Briefs contains abstracts and four indexes -- subject, personal author, originating Center, and Tech Brief number -- for 1979 Tech Briefs. Abstract Section The abstract section is divided into nine categories: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Within each category, abstracts are arranged sequentially by Tech Brief number. A typical abstract entry has these elements: TECH BRIEF NUMBER TITLE e B79-10298 LOW-COMMON-MODE DIFFERENTIAL AMPLIFIER INNOVATOR S. MORRISON (Westinghouse Electric Corp.) r—w Apr. 1980 DATE MSC-18201 Vol. 4. No. 3. p. 323 ABSTRACT Outputs of differential amplifier are excellently matched in phase and amplitude over wide range of frequencies. Common ORIGINATING mode feedback loop offsets differences between two signal paths. CENTER NUMBER Possible applications of circuit are in oscilloscopes, integrated circuit logic tester, and other self contained instruments. The originating Center number in each entry includes an alphabetical prefix that identifies the NASA Center where the Tech Brief originated.
    [Show full text]
  • Earthstorablepropellan
    " 22539-600|-RO-00 t SPACESHUTTLESEALMATERIAL AND DESIGN DEVELOPMENT FOR __ EARTHSTORABLEPROPELLANTSYSTEMS ] 97400508] -002 ; "'""'" D .,_-_., ReportNo. 22539-6001-R0-00 :..v.,.- ContractNo. NAS 9-12729 "'-'- DRL No. 8 :_:_C" DRD No. SE-411T ; ,X,. F I N A L R E P 0 R T e i4 SPACE SHUTTLESEAL MATERIALAND DESIGN -. _.,_,. DEVELOPMENTFOR EARTHSTORABLEPROPELLANTSYSTEMS _ Preparedfor ._ _. , NASA JOHNSONHouston,SPACECRAFTTexas CENTER }_ OCTOBER1973 IIN; H. MACKLIS,AssistanMtanager ChemicalPropulsionDepartment i TRW ONI I_A(:I _AIIIK • NIOONOO IIACH • CALIFORNIA _ IiIm 1974005081-003 :_ ' _- FOREWORD _ This programwas conductedby TRW SystemsGroup,RedondoBeach, _'_ California,undercontractto the NASA JohnsonSpacecraftCenter,Houston, •_- Texas The contractnumberwas NAS 9-12729 ..,_:. The NASA programmanagerwas Mr. J. W. Griffin. _:_ Numerousgovernmentand industrysourcesprovidedsupportthrough- ;_.':_ out the program,but particularlyduringthe state-of-the-artinvesti- -._ gation. Acknowledgmentof thesemany sourcesis providedin the _ Appendices. _i" The Air F_rceMaterialsLaboratory,WrightPattersonAir ForceBase, Dayton,Chio, providedapprovaland supporti_tthe use of the AF-E-411 _. and AF-E-124DmaterialsthroughMr. J. K. Sieron. " _ Personnelat TRW Systemsresponsiblefor the conductof the program _ include: Mr. J. W. M_rtinand Mr. J. R. Denson,AppliedChemistry _ Department;of the ChemicalMr. R.PropN.ulPosionrter,Depar_Mr. .F._nt.L. AdministrativeMerrittand Mr.andH. M.technicalElmendorf I._ Desuppartment;portwas Mr.providedH. Macklis,by Dr. AssistantE.
    [Show full text]
  • Report of Contributions
    ICEC/ICMC 2014 Conference Report of Contributions https://indico.cern.ch/e/ICEC25-ICMC2014 ICEC/ICMC 2014 … / Report of Contributions Course 1: Cryo-Coolers Contribution ID: 0 Type: not specified Course 1: Cryo-Coolers Monday, 7 July 2014 11:00 (6 hours) Presenter: DE WAELE, Fons (Eindhoven University of Technology) Session Classification: Monday Courses September 30, 2021 Page 1 ICEC/ICMC 2014 … / Report of Contributions Course 2: Cryostat Design Contribution ID: 1 Type: not specified Course 2: Cryostat Design Monday, 7 July 2014 11:01 (5h 59m) Presenter: WEISAND, John (European Spallation Source) Session Classification: Monday Courses September 30, 2021 Page 2 ICEC/ICMC 2014 … / Report of Contributions Course 3: Superconducting Materi … Contribution ID: 2 Type: not specified Course 3: Superconducting Materials for Power Applications Monday, 7 July 2014 11:02 (5h 55m) Presenter: TIXADOR, Pascal (CNRS - Grenoble) Session Classification: Monday Courses September 30, 2021 Page 3 ICEC/ICMC 2014 … / Report of Contributions Excursion 1 to AmpaCity in Essen … Contribution ID: 3 Type: not specified Excursion 1 to AmpaCity in Essen/Germany (cable project) and High Magnetic Field Laboratory, HMFL - Nijmegen Friday, 11 July 2014 08:00 (10 hours) Session Classification: Technical Visits September 30, 2021 Page 4 ICEC/ICMC 2014 … / Report of Contributions Excursion 2 to Philips Healthcare, … Contribution ID: 4 Type: not specified Excursion 2 to Philips Healthcare, Stirling and Thales - Eindhoven Friday, 11 July 2014 08:00 (10h 45m) Session Classification:
    [Show full text]
  • INTRODUCTION to LABORATORY CRYOGENICS M.N. Jirmanus, Ph.D
    INTRODUCTION TO LABORATORY CRYOGENICS By M.N. Jirmanus, Ph.D. Janis Research Company, Inc. 2 Jewel Drive Wilmington, MA 01887 Tel: (978) 657·8750 Fax: (978) 658·0349 .' Preface This work is meant for scientists, students, and laboratory personnel who have had little or no experience in cryogenics. It concentrates primarily on cryogenic systems that are commercially available for operation between 1.5 K and 300 K (room temperature). For those users who want to design and build their own equipment, or who are interested in a more detailed analysis of cryogenic systems, a number of excellent references are listed at the end of this booklet. The first section discusses the vacuum requirements for laboratory dewars and variable temperature cryostats. This is followed by a section on liquid helium and liquid nitrogen dewars, and another section on variable temperature cryostats. The next section concentrates on superconducting magnets that are combined with variable temperature cryostats for laboratory experiments, requiring relatively large magnetic fields. section five describes closed cycle refrigerator cryostats that require no liquid cryogens, and the last section concentrates on experimental techniques, thermometry, and automatic temperature control. This last section also includes a few tables that are helpful in estimating heat loads on the cold stage and attached sample. More detailed information and experimental data are available from the referencea.listed.at.the end of this section. The figures (drawings) spread throughout sections 2 through 5, show a variety of dewar and cryostat designs, based primarily on our experience at Janis. These designs have evolved over a 30 year period, and represent a typical cross section of laboratory units that can be used for a wide variety of experiments.
    [Show full text]
  • 2020-03-23T11:01:47+00:00Z -L
    https://ntrs.nasa.gov/search.jsp?R=19720013830 2020-03-23T11:01:47+00:00Z -l FOREWORD It is possible that your company's economic growth can be increased through the use of new and improved materials, equipment, and techniques developed by the aerospace industry. The results of the research and development efforts can assist you in ach ieving lower unit costs, an improved competitive position, developing new products, and increasing the profits of your business. By assisting you in realizing these goals, ASA's and SBA's Technology Util ization Programs are helping to apply the results of the aero­ space industry's research and development activities . Thus, the public earns an in creased return on their invest men t in the space effort. Additional technical information on the material presented can be requested by circling the appropriate number on the Reader Service Card which is included in this compilation. Unless otherwise stated, neither ASA nor SBA contemplates any patent action on the technology described. NOTICE This document was prepared under the ponsorship of the ational Aeronau tics and Space Admini tration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any li abi ljty resulting from the use of the information con tajned in this document, or warrants that such use will be free from privately owned rights. For sale by the National Technical Information Service, Springfield, Virginia 22151. $1.00 CONTENTS SECTION 1. SEALING TECHNIQUES Rubber and Alumin a Gasket~ Retain FOR CRYOGENIC FLUIDS Vacuum Seal in Hi gh -Temperature EMF Cell .
    [Show full text]
  • A Hydrogen Leak-Tight, Transparent Cryogenic Sample Container for Ultracold-Neutron Transmission Measurements Stefan Döge, and Jürgen Hingerl
    A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements Stefan Döge, and Jürgen Hingerl Citation: Review of Scientific Instruments 89, 033903 (2018); doi: 10.1063/1.4996296 View online: https://doi.org/10.1063/1.4996296 View Table of Contents: http://aip.scitation.org/toc/rsi/89/3 Published by the American Institute of Physics REVIEW OF SCIENTIFIC INSTRUMENTS 89, 033903 (2018) A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements Stefan Doge¨ 1,2,3,a) and Jurgen¨ Hingerl1,2 1Institut Laue–Langevin, 71 Avenue des Martyrs, F-38042 Grenoble Cedex 9, France 2Physik-Department, Technische Universitat¨ Munchen,¨ D-85748 Garching, Germany 3Ecole´ Doctorale de Physique, Universite´ Grenoble Alpes, F-38402 Saint-Martin-d’Heres,` France (Received 15 July 2017; accepted 11 February 2018; published online 6 March 2018) The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal’s morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal.
    [Show full text]
  • 19720013830.Pdf
    -l FOREWORD It is possible that your company's economic growth can be increased through the use of new and improved materials, equipment, and techniques developed by the aerospace industry. The results of the research and development efforts can assist you in ach ieving lower unit costs, an improved competitive position, developing new products, and increasing the profits of your business. By assisting you in realizing these goals, ASA's and SBA's Technology Util ization Programs are helping to apply the results of the aero­ space industry's research and development activities . Thus, the public earns an in creased return on their invest men t in the space effort. Additional technical information on the material presented can be requested by circling the appropriate number on the Reader Service Card which is included in this compilation. Unless otherwise stated, neither ASA nor SBA contemplates any patent action on the technology described. NOTICE This document was prepared under the ponsorship of the ational Aeronau tics and Space Admini tration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any li abi ljty resulting from the use of the information con tajned in this document, or warrants that such use will be free from privately owned rights. For sale by the National Technical Information Service, Springfield, Virginia 22151. $1.00 CONTENTS SECTION 1. SEALING TECHNIQUES Rubber and Alumin a Gasket~ Retain FOR CRYOGENIC FLUIDS Vacuum Seal in Hi gh -Temperature EMF Cell . .... .. ...... 14 Hi gh -Pressure, Low-Temperature Combination Spacer andGasket Electrical Connector Makes Provides Effective Static Seal.
    [Show full text]
  • Electrical Properties of Quench-Condensed Thin Film
    ELECTRICAL PROPERTIES OF QUENCH-CONDENSED THIN FILM A Thesis by KYOUNGJIN LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2007 Major Subject: Physics ELECTRICAL PROPERTIES OF QUENCH-CONDENSED THIN FILM A Thesis by KYOUNGJIN LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Winfried Teizer Committee Members, Joseph Ross Hong Liang Head of Department, Edward S. Fry August 2007 Major Subject: Physics iii ABSTRACT Electrical Properties of Quench-Condensed Thin Film. (August 2007) Kyoungjin Lee, B.S., Korea Military Academy Chair of Advisory Committee: Dr. Winfried Teizer Electrical properties of thin film have been an issue of interest for a long time and there are many applications in contemporary industry. Interesting characteristics, such as a metal-insulator transition and superconductivity, were investigated and applied to manufacturing of various electrical devices. In this line of study, many experimental techniques have been introduced for precise measurement of the properties of thin film. Quench-condensation is one of the important techniques in the research of thin films. To facilitate this research, we built a quench-condensation apparatus which can be used for a variety of experiments. The apparatus was designed for the fabrication of ultra- thin film and the in-situ measurement at low temperature. The apparatus was shown to operate well for the fabrication of thin films while monitoring the growth in-situ.
    [Show full text]
  • A Hydrogen Leak-Tight, Transparent Cryogenic Sample Container for Ultracold-Neutron Transmission Measurements
    A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements Stefan Döge1, 2, 3, ∗ and Jürgen Hingerl1, 2 1Institut Laue–Langevin, 71 avenue des Martyrs, F-38042 Grenoble Cedex 9, France 2Physik-Department, Technische Universität München, D-85748 Garching, Germany 3École Doctorale de Physique, Université Grenoble Alpes, F-38402 Saint-Martin-d’Hères, France The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of UCN transport and how the crystal’s morphology influences its transparency to UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against a high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10−5 to 10−7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed. Published as: Review of Scientific Instruments 89, 033903 on 6 March 2018 https://doi.org/10.1063/1.4996296. I. INTRODUCTION II. THE NEED FOR AN IMPROVED SAMPLE CONTAINER If one wants to measure the transmission of ultracold The scattering of thermal and cold neutrons from cryo- neutrons through a cryogenic liquid or solid, the windows genic liquids and solids is a well established experimental of the sample container need to be as highly polished as technique.
    [Show full text]
  • Arxiv:1712.01982V2 [Astro-Ph.IM] 10 Apr 2018
    Design and Construction of the DEAP-3600 Dark Matter Detector P.-A. Amaudruzl, M. Baldwinj, M. Batygovd, B. Beltrana, C. E. Binaa, D. Bishopl, J. Bonattf, G. Boormani, M. G. Boulayf,c, B. Broermanf, T. Bromwichh, J. F. Buenoa, P. M. Burghardtk, A. Butcheri, B. Caif, S. Chanl, M. Chenf, R. Chouinarda, S. Churchwellh, B. T. Clevelandg,d, D. Cranshawf, K. Deringf, J. DiGioseffof, S. Dittmeierl, F. A. Duncany,g,d, M. Dunfordc, A. Erlandsonb,c, N. Fatemighomii, S. Florianf, A. Flowerf, R. J. Fordg,d, R. Gagnonf, P. Giampaf, V. V. Golovkob, P. Gorela,g,d, R. Gorneac, E. Gracei, K. Grahamc, D. R. Granta, E. Gulyevl, A. Halli, A. L. Hallina, M. Hamstraf,c, P. J. Harveyf, C. Hearnsf, C. J. Jillingsg,d, O. Kamaevb, A. Kempi, M. Ku´zniakf,c, S. Langrockd, F. La Ziai, B. Lehnertc, O. Lig, J. J. Lidgardf, P. Liimataineng, C. Liml, T. Lindnerl, Y. Linnl, S. Liua, P. Majewskij, R. Mathewf, A. B. McDonaldf, T. McElroya, K. McFarlaneg, T. McGinny,f, J. B. McLaughlinf, S. Meadl, R. Mehdiyevc, C. Mielnichuka, J. Monroei, A. Muirl, P. Nadeauf, C. Nantaisf, C. Nga, A. J. Noblef, E. O'Dwyerf, C. Ohlmannl, K. Olchanskil, K. S. Olsena, C. Ouelletc, P. Pasuthipf, S. J. M. Peetersh, T. R. Pollmannd,f,k, E. T. Randb, W. Rauf, C. Rethmeierc, F. Reti`erel, N. Seeburni, B. Shawl, K. Singhraol,a, P. Skensvedf, B. Smithl, N. J. T. Smithg,d, T. Sonleyf, J. Soukupa, R. Stainforthc, C. Stonef, V. Stricklandl,c, B. Surb, J. Tanga, J. Taylori, L. Velocef, E.
    [Show full text]