Comparison of Cam and Servomotor Solutions to a Motion Problem

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Cam and Servomotor Solutions to a Motion Problem Comparison of Cam and Servomotor Solutions to a Motion Problem A Major Qualifying Project Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By Toby Callahan Patrick Hunter Raymond Ranellone Matthew Rhodes Date: Approved: Professor Eben C. Cobb Professor Robert L. Norton 1) Cam 2) Servo This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement.WPI routinely publishes these reports on its web site without editorial or peer review. i 1 Abstract The manufacturing lines of the sponsoring company utilize cam‐follower systems where complex motion is required, as they are the traditional means of obtaining such motion. Some equipment utilizing servomechanism actuation has been introduced by the sponsoring company as a potential avenue for the improvement of manufacturing systems. Further insight into the suitability of such mechanisms as replacements for cam‐follower systems was desired. To that end, design and manufacture of a Cam‐Servo Test Machine actuated by either cam‐ follower or servomechanism was undertaken by the project’s participants. The resulting Cam‐ Servo Test Machine was intended to output 200 cycles per minute of a complex reciprocating motion in either mode of actuation. The machine design employed a timing belt speed reduction in its drive train, which had an unintended deleterious impact on system stiffness. A revised design employing a larger servomotor without a speed reduction was developed and analyzed in its stead. The project team concluded that a larger servomotor, directly mounted, can be a suitable replacement for a cam‐follower system at a cost that is several orders of magnitude greater. ii Table of Contents 1 Abstract..........................................................................................................................ii 2 Introduction .................................................................................................................. 1 3 Background ................................................................................................................... 3 3.1 Core Components .................................................................................................. 3 3.1.1 Cam Driven Linkages ....................................................................................... 3 3.1.2 Servomotor Driven Linkages ........................................................................... 4 3.1.3 Cam‐Driven Versus Servomotor‐Driven Mechanisms .................................... 5 3.2 Software Tools ....................................................................................................... 9 3.2.1 Pro/ENGINEER ................................................................................................. 9 3.2.2 Mathcad ........................................................................................................ 10 3.2.3 DYNACAM\LINKAGES .................................................................................... 12 4 Goal Statement ........................................................................................................... 14 5 Task Specifications ...................................................................................................... 15 6 Design ......................................................................................................................... 16 6.1 Linkage Solution .................................................................................................. 16 6.2 Application of Slider Linkage to Design Problem ................................................ 22 6.3 Cam Geometry .................................................................................................... 26 6.4 Linkage Geometry ............................................................................................... 27 6.5 Drive‐Train Selection ........................................................................................... 32 6.5.1 On‐Hand Motors and Speed Reduction ........................................................ 32 6.5.2 Permanent Magnet DC Motor ...................................................................... 33 6.5.4 Kollmorgen AC Servomotor ........................................................................... 36 6.5.5 Timing Belts ................................................................................................... 39 6.5.6 Potential Single‐Motor Drive Trains .............................................................. 40 6.5.7 Potential Two Motor Drive Train .................................................................. 45 6.6 Drive Train Decision ............................................................................................ 45 6.7 Servomotor Analysis ............................................................................................ 46 6.7.1 Inertial Mass Reduction ................................................................................ 51 6.7.2 Transmission Shaft Mass Reduction ............................................................. 53 6.7.3 Theoretical Servomotor Accuracy ................................................................. 53 6.8 Packaging ............................................................................................................. 56 6.8.1 Driving Subassembly ..................................................................................... 57 6.8.1.1 Transmission Shaft ................................................................................. 57 6.8.1.2 Linkage Members ................................................................................... 58 6.8.1.3 Cam and Crank Shafts ............................................................................ 59 6.8.1.4 Slider ....................................................................................................... 60 6.9 Method of Changing Drive Mode ........................................................................ 61 7 Stress Analysis ............................................................................................................ 62 7.1 Tension of Belt on Camshaft Pulley: ................................................................... 64 7.2 Shaft Loading and Stress and Moment Analysis ................................................. 68 7.3 Reaction Forces Exerted by Bearing onto Camshaft ........................................... 71 iii 7.3.1 Shear and Moment Diagrams: ...................................................................... 72 7.3.2 Points of Interest and Stress Cubes: ............................................................. 73 7.4 Shaft Failure Modes and Safety Factors: ............................................................ 77 8 Vibration Analysis (Single‐Motor CSTM) .................................................................... 78 8.1 Vibration Model .................................................................................................. 78 8.2 Mass Model ......................................................................................................... 79 8.3 Spring Model ....................................................................................................... 80 8.4 Damper Model .................................................................................................... 89 8.5 Cam Mode ........................................................................................................... 89 8.6 Results ................................................................................................................. 91 8.6.1 Implications of the Servomotor Driven System on Position Error of the Slider 94 9 Conclusion .................................................................................................................. 96 10 Recommendations .................................................................................................. 97 10.1 Anti‐Backlash Gearbox .................................................................................... 97 10.2 Motor Re‐Selection ........................................................................................ 100 10.3 CSTM Design Changes ................................................................................... 102 10.4 Shaft Coupling and Phase Preservation......................................................... 104 10.5 Additional Considerations ............................................................................. 106 10.6 Vibration Analysis .......................................................................................... 106 10.7 Re‐Design Overview ....................................................................................... 109 11 References ............................................................................................................ 112 12 Bibliography .......................................................................................................... 113 13 Appendix A: Vector Loop Analysis for Fourbar Linkage with zero offset ............. 115 13.1 Position Analysis ............................................................................................ 115 13.2 Velocity Analysis ............................................................................................ 117 13.3 Acceleration Analysis ....................................................................................
Recommended publications
  • Harrop Camshaft Grind Specifications
    Harrop Engineering Australia Pty Ltd www.harrop.com.au ABN: 87 134 196 080 Phone: +61 3 9474 - 0900 96 Bell Street, Preston, Fax: +61 3 9474 – 0999 Melbourne, VIC, 3072, Australia Email: [email protected] Harrop Camshaft Grind Specifications Harrop HO1 Camshaft 226/232 .607”/.602” @ 112 LSA Great NA camshaft Lumpy idle but acceptable driveability, Great power and torque Manual or auto standard gear ratios are ok but 3.7 or 3.9 would be preferred. Automatic may require stall converter. Could be used in boosted application but due to low LSA Would require smaller pulley to be increase boost. Harrop HO2 camshaft 224/232 .610” / .610” @ 114 LSA Great blower camshaft offering acceptably lumpy idle and great drivability, this camshaft will give great power through the mid to high RPM range. As this camshaft is more aggressive then the H05. Normally this would require a stall converter, it can be run on a standard converter but it may push on it slightly. Sound clip: https://www.youtube.com/watch?v=NvOGohRd7-k Harrop H03 Camshaft 232/233 .610” / .602” @ 112 LSA Will give great lumpy cammed affect, Low LSA would take boost out of a forced induction motor. Largest recommend camshaft for a 5.7 N/A , Acceptable in 6.0L and 6.2L square port engines, Must have 3.7 (square port) or 3.9 (LS1) for the best results in a manual car. Auto would require stall converter. 1 / 2 File: Harrop Letter Head “Commercial in Confidence” Issue:12th January 2018 designdevelop deliver Print: Friday, 25 September 2020 ` Harrop HO4 camshaft 234/238 .593” / .595” @ 114 LSA The H04 is designed with Forced induction in mind but can be used as a naturally aspirated camshaft as well.
    [Show full text]
  • MACHINES OR ENGINES, in GENERAL OR of POSITIVE-DISPLACEMENT TYPE, Eg STEAM ENGINES
    F01B MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES (of rotary-piston or oscillating-piston type F01C; of non-positive-displacement type F01D; internal-combustion aspects of reciprocating-piston engines F02B57/00, F02B59/00; crankshafts, crossheads, connecting-rods F16C; flywheels F16F; gearings for interconverting rotary motion and reciprocating motion in general F16H; pistons, piston rods, cylinders, for engines in general F16J) Definition statement This subclass/group covers: Machines or engines, in general or of positive-displacement type References relevant to classification in this subclass This subclass/group does not cover: Rotary-piston or oscillating-piston F01C type Non-positive-displacement type F01D Informative references Attention is drawn to the following places, which may be of interest for search: Internal combustion engines F02B Internal combustion aspects of F02B 57/00; F02B 59/00 reciprocating piston engines Crankshafts, crossheads, F16C connecting-rods Flywheels F16F Gearings for interconverting rotary F16H motion and reciprocating motion in general Pistons, piston rods, cylinders for F16J engines in general 1 Cyclically operating valves for F01L machines or engines Lubrication of machines or engines in F01M general Steam engine plants F01K Glossary of terms In this subclass/group, the following terms (or expressions) are used with the meaning indicated: In patent documents the following abbreviations are often used: Engine a device for continuously converting fluid energy into mechanical power, Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. Machine a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump.
    [Show full text]
  • Control of DC Servomotor
    Control of DC Servomotor Report submitted in partial fulfilment of the requirement to the degree of B.SC In Electrical and Electronic Engineering Under the supervision of Dr. Abdarahman Ali Karrar By Mohammed Sami Hassan Elhakim To Department of Electrical and Electronic Engineering University of Khartoum July 2008 Dedication I would like to take this opportunity to write these humble words that are unworthy of expressing my deepest gratitude for all those who made this possible. First of all I would like to thank god for my general existence and everything else around and within me. Second I would like to thank my beloved parents(Sami & Sawsan), my brothers (Tarig & Hassan), and my sister (Latifa), thank you so much for your support, guidance and care, you were always there to make me feel better and encourage me. I would like also to thanks all my friends inside and out Khartoum university, thank you for your patients tolerance and understanding, for your endless love that has stretched so far, for easing my pain and pulling me through. A special thanks to my partner Muzaab Hashiem without his help and advice i won’t be able to do what i did, thank you for being an ideal partner, friend and bother. Last but not the least i would like to thank my supervisor Dr. Karar and all those who helped me throughout this project, thank you for filling my mind with this rich knowledge. Mohammed Sami Hassan Elhakim. I Acknowledgement The first word goes to God the Almighty for bringing me to this world and guiding me as i reached this stage in my life and for making me live and see this work.
    [Show full text]
  • The Trilobe Engine Project Greensteam
    The Trilobe Engine Project Greensteam Michael DeLessio 4/19/2020 – 8/31/2020 Table of Contents Introduction ................................................................................................................................................... 2 The Trilobe Engine ................................................................................................................................... 2 Computer Design Model ............................................................................................................................... 3 Research Topics and Design Challenges ...................................................................................................... 4 Two Stroke Engines .................................................................................................................................. 4 The Trilobe Cam ....................................................................................................................................... 5 The Flywheel ............................................................................................................................................ 6 Other “Tri” Cams ...................................................................................................................................... 7 The Tristar ............................................................................................................................................. 8 The Asymmetrical Trilobe ...................................................................................................................
    [Show full text]
  • Understanding Overhead-Valve Engines Once Unheard of These Engines Now Supply the Power for Nearly All of Your Equipment
    Understanding Overhead-Valve Engines Once unheard of these engines now supply the power for nearly all of your equipment. By ROBERT SOKOL Intertec Publishing Corp., Technical Manuals Division You've all heard about overhead valves when shopping Valve-Design Characteristics for power equipment, but what do they mean to you? Do The valves consist of a round head, a stem and a groove you need overhead valves? Do they cost more? What will at the top of the valve. The head of the valve is the larger they do for you? Twenty years ago, overhead valves were end that opens and closes the passageway to and from the unheard of in any type of power equipment. Nowadays, it combustion chamber. The stem guides the valve up and is difficult to find a small engine without them. down and supports the valve spring. The groove at the top In an engine with overhead valves, the intake and of the valve stem holds the valve spring in place with a exhaust valve(s) is located in the cylinder head, as opposed retainer lock. The valves must open and close for the air- to being mounted in the engine block. Many of the larger and-fuel mix to enter, then exit, the combustion chamber. engine manufacturers still offer "standard" engines that Proper timing of the opening and closing of the valves is have the valves in the block. Their "deluxe" engines have required for the engine to run smoothly. The camshaft con- overhead valves and stronger construction. Overhead trols valve sequence and timing.
    [Show full text]
  • Poppet Valve
    POPPET VALVE A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide. In most applications a pressure differential helps to seal the valve and in some applications also open it. Other types Presta and Schrader valves used on tires are examples of poppet valves. The Presta valve has no spring and relies on a pressure differential for opening and closing while being inflated. Uses Poppet valves are used in most piston engines to open and close the intake and exhaust ports. Poppet valves are also used in many industrial process from controlling the flow of rocket fuel to controlling the flow of milk[[1]]. The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear[[2]], the British Caprotti valve gear[[3]] (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption. In internal combustion engine poppet valve The valve is usually a flat disk of metal with a long rod known as the valve stem out one end.
    [Show full text]
  • Positive Displacement Reciprocating Pump Fundamentals— Power and Direct Acting Types
    POSITIVE DISPLACEMENT RECIPROCATING PUMP FUNDAMENTALS— POWER AND DIRECT ACTING TYPES by Herbert H. Tackett, Jr. Reciprocating Product Manager James A. Cripe Senior Reciprocating Product Engineer Union Pump Company; A Textron Company Battle Creek, Michigan and Gary Dyson Director of Product Development - Aftermarket Union Pump, A Textron Company A Trading Division of David Brown Engineering, Limited Penistone, Sheffield ABSTRACT Herbert H. Tackett, Jr., is Reciprocating Product Manager for Union Pump Company, This tutorial is intended to provide an understanding of the in Battle Creek, Michigan. He has 39 years fundamental principles of positive displacement reciprocating of experience in the design, application, and pumps of both power and direct acting types. Topics include: maintenance of reciprocating power and • A definition and overview of the pump types—Including the direct acting pumps. Prior to Mr. Tackett’s differences between single acting and double acting pumps, how current position in Aftermarket Product both types work, where they are used, and how they are applied. Development, he served as R&D Engineer, Field Service Engineer, and new equipment • Component options—Covers aspects of valve designs and when order Engineer, in addition to several they should be used; describes the various stuffing box designs positions in Reciprocating Pump Sales and Marketing. He has been available with specific reference to their function and application, a member of ASME since 1991. and points out the differences between plungers and pistons and their selection criteria. • Specification criteria and methodology—What application James A. Cripe currently is a Senior information is needed by pump suppliers to correctly size and Reciprocating Product Engineer assigned supply appropriate equipment? to the New Product Development Team for Union Pump Company, in Battle Creek, • Additional topics—Volumetric and mechanical efficiency, net Michigan.
    [Show full text]
  • Reciprocating Pump
    Mechanical Engineering Fundamentals Vipan Bansal Department of Mechanical Engineering ([email protected]) Mechanical Engineering Fundamentals (MEC103) L T P Cr 4 0 0 4 Content 1) Fundamental Concepts of Thermodynamics 2) Laws of Thermodynamics 3) Pressure and its Measurement 4) Heat Transfer 5) Power Absorbing Devices 6) Power Producing Devices 7) Principles of Design 8) Power Transmission Devices and Machine Elements Lecture No. - 2 • Positive displacement Pumps Power Absorbing Devices The equipment's or devices that consume power for the working are called power absorbing devices. Examples: Pumps, Compressor, Refrigerators etc. Classification of Pumps Type of Pumps Positive Dynamic Displacement Reciprocating Rotary Centrifugal Axial Positive Displacement vs Dynamic Pumps S. No. Parameter Positive Displacement Pumps Dynamic Pumps 1 Flow Rate Low flow rate High flow rate 2 Pressure High Moderate 3 Priming Very Rarely Always 4 Viscosity Virtually No effect Strong effect 5 Energy added to In positive displacement pumps, In dynamic pumps, energy is added to fluid the energy is added periodically to the fluid continuously through the the fluid. rotary motion of the blades. Reciprocating Pump • Reciprocating pumps are positive displacement pumps thus for the functioning of these pumps no priming (No need to fill the cylinder with liquid before starting) is required in their starting. • High pressure is the main characters of this pump. Reciprocating Pump • In reciprocating pumps, the chamber in which the liquid is trapped or entered, is a stationary cylinder that contains piston or plunger or diaphragm. • Reciprocating pumps are used in limited applications because they require lots of maintenance. • Piston pump, plunger pumps, and diaphragm pumps are examples of reciprocating pump.
    [Show full text]
  • Glossary Defns of Terms 1998-10 TWG INCOSE .Doc
    INCOSE SE Terms Glossary Version 0 October 1998 INCOSE SE Terms Glossary Document No.: TBD Version/Revision: 0 Date: October, 1998 File: Glossary Defns of Terms 1998-10 TWG INCOSE .doc Prepared by: INCOSE Concepts and Terms WG International Council on Systems Engineering (INCOSE) 2150 N. 107th Street, Suite 205 Seattle, WA 98133-9009 NOTICE This data was prepared by the Terminology Working Group of the International Council on Systems Engineering (INCOSE) for review and comment only. It is has been released by that agency as INCOSE Technical Data. It is subject to change without notice and may not be referred to as an INCOSE Technical Product. Copyright (c) 1998 by INCOSE, subject to the following restrictions: Author Use. Authors have full rights to use their contributions in a totally unfettered way. Abstraction is permitted with credit to the source. INCOSE Use. Permission to reproduce and use this document and to prepare derivative works from this document for INCOSE use is granted, provided this copyright notice is included with all reproductions and derivative works. External Use. This document may not be shared or distributed to any non-INCOSE third party. Requests for permission to reproduce this document in whole or part, or to prepare derivative works of this document for external and/or commercial use are prohibited. Copying, scanning, retyping, or any other form of reproduction of the content of whole pages or source documents is prohibited and shall not be approved by INCOSE. Electronic Version Use. Any electronic version of this document is to be used for personal use only and is not to be placed on a non-INCOSE sponsored server for general use.
    [Show full text]
  • Wo 2009/086051 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 9 July 2009 (09.07.2009) PCT WO 2009/086051 A2 (51) International Patent Classification: (74) Agent: MCGUIRE, Katherine, H.; Woods Oviatt F25B 1/04 (2006.01) Gilman LLP, 700 Crossroads Building, 2 State Street, Rochester, NY 14614 (US). (21) International Application Number: PCT/US2008/087591 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, 19 December 2008 (19.12.2008) CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (25) Filing Language: English IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (26) Publication Language: English LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, MX, MY,MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, (30) Priority Data: RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, 61/016,131 21 December 2007 (21.12.2007) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): CAR- LETON LIFE SUPPORT SYSTEMS INC. [US/US]; (84) Designated States (unless otherwise indicated, for every 2734 Hickory Grove Road, Davenport, IA 52808 (US). kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (72) Inventors; and ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (75) Inventors/Applicants (for US only): RALEIGH, Tim¬ European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, othy [US/US]; 26810 172nd Ave, Long Grove, IA FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, 52756 (US).
    [Show full text]
  • The Jansen Linkage Kyra Rudy, Lydia Fawzy, Santino Bianco, Taylor Santelle Dr
    The Jansen Linkage Kyra Rudy, Lydia Fawzy, Santino Bianco, Taylor Santelle Dr. Antonie J. (Ton) van den Bogert Applications and Abstract Advancements The Jansen linkage is an eleven-bar mechanism Currently, the primary application of the Jansen designed by Dutch artist Theo Jansen in his linkage is walking motion used in legged robotics. In collection “Strandbeest.” The mechanism is crank order to create a robot that can move independently, driven and mimics the motion of a leg. Its scalable a minimum of three linkage attached to a motor are design, energy efficiency, and deterministic foot required. An agile and fluid motion is created by the trajectory show promise of applicability in legged linkage.With the linkage’s mobility, robots are robotics. Theo Jansen himself has demonstrated capable of moving both forwards and backwards and pivoting left to right without compromising equal the usefulness of the mechanism through his traction. The unique gait pattern of the mechanism "standbeest” sculptures that utilize duplicates of the allows digitigrade movement, step climbing, and linkage whose cranks are turned by wind sails to obstacle evasion. However, the gait pattern is produce a walking motion. The motion yielded is maladaptive which limits its jam avoidance. smooth flowing and relatively agile. Because the linkage has been recently invented within the last few decades, walking movement is currently the primary application. Further investigation and optimization could bring about more useful applications that require a similar output path when simplicity in design is necessary. The Kinematics The Jansen linkage is a one degree of freedom, Objective planar, 11 mobile link leg mechanism that turns the The Jansen linkage is an important building The objective of this poster is to show the rotational movement of a crank into a stepping motion.
    [Show full text]
  • DC Servo Motor Modeling
    MODELING DC SERVOMOTORS CONTROL SYSTEMS TECH NOTE © Dr. Russ Meier, MSOE INTRODUCTION A DC motor is an actuator that converts electrical energy to mechanical rotation using the principles of electromagnetism. The circuit symbol for a DC motor is shown in Figure 1. + Va M - Figure 1: Circuit symbol for a DC servomotor The learning objectives of this technical note are: 1. Draw the equivalent DC servomotor circuit theory model. 2. State the equations of motion used to derive the electromechanical transfer function in the time domain and the s-domain. 3. Draw the DC servomotor signal block diagram. 4. Derive the DC servomotor electromechanical transfer function. CIRCUIT THEORY MODEL The circuit shown in Figure 2 models the DC servomotor. Note that an armature control current is created when the armature control voltage, Va, energizes the motor. The current flow through a series-connected Ra La + + Tm Va Vb R θ m - - Figure 2: DC servomotor circuit theory model armature resistance, an armature inductance, and the rotational component (the rotor) of the motor. The rotor shaft is typically drawn to the right with the torque (Tm) and angular displacement (θm) variables shown. The motor transfer function is the ratio of angular displacement to armature voltage. Figure 3: The DC servomotor transfer function EQUATIONS OF MOTION Three equations of motion are fundamental to the derivation of the transfer function. Relationships between torque and current, voltage and angular displacement, and torque and system inertias are used. Torque is proportional to the armature current. The constant of proportionality is called the torque constant and is given the symbol Kt.
    [Show full text]