2015 Kalmbach Publishing Co. This Material May Not Be Reproduced in Any Form Without Permission from the Publisher
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HST Data Handbook for NICMOS
Version 7.0 April, 2007 HST Data Handbook for NICMOS Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the Web site: • URL: http://www.stsci.edu. Revision History Version Date Editors 7.0 April 2007 Helene McLaughlin & Tommy Wiklind 6.0 July 2004 Bahram Mobasher & Erin Roye, Editors, NICMOS Data Handbook, Diane Karakla, Chief Editor and Susan Rose, Technical Editor, HST Data Handbook 5.0 January 2002 Mark Dickinson 4.0 December 1999 Mark Dickinson 3.0 October 1997 Daniela Calzetti Contributors STScI NICMOS Group (past & present members), including: Santiago Arribas, Eddie Bergeron, Torsten Boeker, Howard Bushouse, Daniela Calzetti, Luis Colina, Mark Dickinson, Sherie Holfeltz, Lisa Mazzuca, Bahram Mobasher, Keith Noll, Antonella Nota, Erin Roye, Chris Skinner, Al Schultz, Anand Sivaramakrishnan, Megan Sosey, Alex Storrs, Anatoly Suchkov, Chun Xu. ST-ECF: Wolfram Freudling. Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface .....................................................................................xi Part I: Introduction to Reducing the HST Data Chapter 1: Getting HST Data............................. 1-1 1.1 Archive Overview ....................................................... 1-2 1.1.1 Archive Registration................................................. 1-3 1.1.2 Archive Documentation and Help ............................ 1-4 1.2 Getting Data with StarView..................................... -
Neutron-Star Merger Yields New Puzzle for Astrophysicists 18 January 2018
Neutron-star merger yields new puzzle for astrophysicists 18 January 2018 group led the new study. "This one is different; it's definitely not a simple, plain-Jane narrow jet." Cocoon theory The new data could be explained using more complicated models for the remnants of the neutron star merger. One possibility: the merger launched a jet that shock-heated the surrounding gaseous debris, creating a hot 'cocoon' around the jet that has glowed in X-rays and radio light for many This graphic shows the X-ray counterpart to the months. gravitational wave source GW170817, produced by the merger of two neutron stars. The left image is the sum of The X-ray observations jibe with radio-wave data observations with NASA's Chandra X-ray Observatory reported last month by another team of scientists, taken in late August and early Sept. 2017, and the right which found that those emissions from the collision image is the sum of Chandra observations taken in early also continued to brighten over time. Dec. 2017. The X-ray counterpart to GW170817 is shown to the upper left of its host galaxy, NGC 4993, located about 130 million light years from Earth. The While radio telescopes were able to monitor the counterpart has become about four times brighter over afterglow throughout the fall, X-ray and optical three months. GW170817 was first observed on Aug. 17, observatories were unable to watch it for around 2017. Credit: NASA/CXC/McGill/J.Ruan et al. three months, because that point in the sky was too close to the Sun during that period. -
MAST: Archive News November 1998
MAST STScI Tools Mission Search Search Website Follow Us Register Forum About MAST Getting Started FAQ High-Level Science Products The Multimission Archive at STScI Software Newsletter FITS November 18, 1998 Space Telescope Science Institute Volume 5 Related Sites NASA Datacenters The Multimission Archive at STScI (MAST) Newsletter disseminates information to users of the HST, IUE, Copernicus, EUVE, HUT, UIT, WUPPE and VLA-FIRST data archives MAST Services supported by the MAST. Inquiries should be sent to [email protected]. MAST and the VO Newsletters & Reports Index of Contents: Marc Postman Hubble Deep Field South Data Available Nov. 23 Data Use Policy Harry Ferguson Paolo Padovani New Cross-Correlation Catalogs Dataset Identifiers Tim Kimball Karen Levay Acknowledgments MAST Support of the ASTRO Missions (HUT,UIT,WUPPE) Catherine Imhoff Digitized Sky Survey New Jukebox Tim Kimball Guest Account Terminated Tim Kimball New MAST page Karen Levay IUEDAC modifications for Y2000 Randy Thompson Tips for Using the HST Archive Herb Kennedy Hubble Deep Field South Data Available November 23 A second Hubble Deep Field campaign was carried out with HST in October 1998. The observations are similar to those obtained during the original HDF but with several important differences: 1. The field is located in the southern Continuous Viewing Zone (J2000 coordinates 22:32:56.2 -60:33:02.7) 2. A moderate redshift quasar of z(em) = 2.24, identified by Boyle, Hewett, Weymann and colleagues, was placed in the STIS field for both imaging and spectroscopy so that correlations between quasar absorption redshifts and the redshifts of galaxies in the fields could be determined. -
Curriculum Vitae Vicky (Vassiliki) Kalogera
Curriculum Vitae Vicky (Vassiliki) Kalogera Northwestern University E-mail : [email protected] Phone : (847) 491-5669 Dept of Physics & Astronomy Fax : (847) 467-0679 Address : Technological Institute F234, CIERA - Center for Interdisciplinary 2145 Sheridan Rd., Exploration and Research in Astrophysics Evanston, IL 60208 EDUCATION 1992 { 1997 Ph.D. in Astronomy, University of Illinois at Urbana-Champaign Ph.D. Thesis: \Formation of Low-Mass X-Ray Binaries" Advisor: Prof. Ronald F. Webbink (Univ. of Illinois) 1988 { 1992 Ptihio (B.S.) in Physics, University of Thessaloniki, Greece Diploma Thesis: \Investigations of the Intrinsic Properties of Cataclysmic Binaries" Advisors: Profs. Jan van Paradijs (Univ. of Amsterdam) and John H. Seiradakis (Univ. of Thessaloniki) RESEARCH INTERESTS Astrophysics of Compact Objects (White Dwarfs, Neutron Stars, and Black Holes) Populations of Compact Objects in Binaries and Massive Stars, as Gravitational-Wave Sources, X-ray Binaries, Binary Pulsars, Gamma-Ray Bursts, Supernovae and Supernova Progenitors Formation and Evolution of Binary Systems with Compact Objects in the Milky Way and other galaxies, in Fields and Dense Stellar Environments Time-Domain, Gravitational-Wave, and Transient Astrophysics Advanced Data Analysis and Inference Methods EMPLOYMENT 2017 { Daniel I. Linzer Distinguished University Professor and Professor of Physics and Astronomy 2012 { Director, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern Univ. 2009 { 2017 E. O. Haven Professor -
Université De Montréal Nouvelles Observations Et Techniques D
Université de Montréal Nouvelles observations et techniques d’apprentissage automatique appliquées aux galaxies et aux amas de galaxies par Carter Rhea Département de Physique Faculté des arts et des sciences Mémoire présenté en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en Astrophysique et Astronomie October 21, 2020 c Carter Rhea, 2020 Université de Montréal Faculté des arts et des sciences Ce mémoire intitulé Nouvelles observations et techniques d’apprentissage automatique appliquées aux galaxies et aux amas de galaxies présenté par Carter Rhea a été évalué par un jury composé des personnes suivantes : Pierre Bergeron (président-rapporteur) Julie Hlavacek-Larrondo (directeur de recherche) Daryl Haggard (membre du jury) Résumé Les amas de galaxies sont l’une des plus grandes structures dans l’univers et jouent le rôle d’hôte de plusieurs phénomènes complexes. Bien qu’il existe beaucoup d’études portant sur leur formation et leur évolution, l’avènement récent de l’apprentissage automatique en as- tronomie nous permet d’investiguer des questions qui, jusqu’à maintenant, demeuraient sans réponse. Même si ce mémoire se concentre sur l’application de techniques d’apprentissage automatique aux observations en rayons X des amas de galaxies, nous explorons l’usage de ces techniques à son homologue à une échelle réduite : les galaxies elles-mêmes. Malgré le fait que les trois articles présentés dans ce mémoire se concentrent sur différents aspects de la physique, sur de différentes échelles et sur de différentes techniques, ils forment une base d’études que je continuerai pendant mon doctorat : l’usage des nouvelles techniques pour investiguer la physique des régions galactiques et extragalactiques. -
NICMOS Data Handbook
Version 5.0 January, 2002 NICMOS Data Handbook Hubble Division 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the Web site: • URL: http://hst.stsci.edu/nicmos. NICMOS Revision History Version Date Editors 3.0 October 1997 Daniela Calzetti 4.0 December 1999 Mark Dickinson 5.0 January 2002 Mark Dickinson, NICMOS Editor Bahram Mobasher, Chief Editor Contributors STScI NICMOS Group (past & present members), including: Santiago Arribas, Eddie Bergeron, Torsten Boeker, Howard Bushouse, Daniela Calzetti, Luis Colina, Mark Dickinson, Sherie Holfeltz, Lisa Mazzuca, Bahram Mobasher, Keith Noll, Antonella Nota, Erin Roye, Chris Skinner, Al Schultz, Anand Sivaramakrishnan, Megan Sosey, Alex Storrs, Anatoly Suchkov, Chun Xu ST-ECF: Wolfram Freudling. Citation In publications, refer to this document as: Dickinson, M. E. et al. 2002, in HST NICMOS Data Handbook v. 5.0, ed. B. Mobasher, Baltimore, STScI Send comments or corrections to: Hubble Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface .................................................................................... vii Chapter 1: Instrument Overview .................. 1-1 1.1 Instrument Overview ................................................. 1-1 1.2 Detector Readout Modes ......................................... 1-4 1.2.1 MULTIACCUM......................................................... 1-5 1.2.2 ACCUM.................................................................... 1-5 1.2.3 BRIGHTOBJ ............................................................ 1-6 1.2.4 RAMP ..................................................................... -
Near-UV Sources in the Hubble Ultra Deep Field: the Catalog
Near-UV Sources in the Hubble Ultra Deep Field: The Catalog Elysse N. Voyer1,2, Duilia F. de Mello1,3 Catholic University of America Washington, DC 20064 Brian Siana California Institute of Technology, MS 105-24, Pasadena, CA 91125 Jonathan P. Gardner Observational Cosmology Laboratory, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 Cori Quirk Catholic University of America Washington, DC 20064 and Harry I. Teplitz Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 Received ; accepted 1Observational Cosmology Laboratory, Goddard Space Flight Center, Code 665, Green- belt, MD 20771 2NASA Graduate Student Research Program Fellow 3Visiting Scientist in the Department of Physics and Astronomy, Johns Hopkins Univer- sity, Baltimore, MD 21218 – 2 – ABSTRACT The catalog from the first high resolution U-band image of the Hubble Ul- tra Deep Field, taken with Hubble’s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 A)˚ data with Hubble’s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented. Subject headings: galaxies:evolution-galaxies:formation-galaxies:starburst – 3 – 1. Introduction The Hubble Ultra Deep Field (UDF) campaign (Beckwith et al. -
Galaxy Classification and Evolution
name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally must satisfy two criteria to be successful: It should act as a shorthand means of identification of the object, and it should provide some insight to understanding the object. We most generally used classification scheme of galaxies is one proposed by Edwin Hubble in 1926. His classification is based entirely on the visual appearance of a galaxy on a photographic plate. Hubble's system lists three basic categories: elliptical galaxies, spiral galaxies, and irregular galaxies. The spirals are divided into two groups, normal and barred. The elliptical galaxies, and both normal and barred spiral galaxies, are subdivided further, as illustrated in the figure, and discussed below. This figure is called the “Hubble Tuning Fork”. The Hubble tuning fork is a classification based on the visual appearance of the galaxies. Originally, when Hubble proposed this classification, he had hoped that it might yield deep insights, just as in the case for classifying stars a century ago. This classification scheme was thought to represent en evolutionary scheme, where galaxies start off as elliptical galaxies, then rotate, flatten and spread out as they age. Unfortunately galaxies turned out to be more complex than stars, and while this classification scheme is still used today, it does not provide us with deeper insights into the nature of galaxies. Image obtained from Wikipedia at http://en.wikipedia.org/wiki/Galaxy_morphological_classification Galaxy Classification & Evolution Laboratory Lab 12 1 Part I — Classification The photocopies of the galaxies are not good enough to be classified You will need to access the images on the computer and look at some of the fine detail. -
A Guide to Hubble Space Telescope Objects
James L. Chen A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance Graphics by Adam Chen The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance James L. Chen Graphics by Adam Chen Author Graphics Designer James L. Chen Adam Chen Gore , VA , USA Baltimore , MD , USA ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-18871-3 ISBN 978-3-319-18872-0 (eBook) DOI 10.1007/978-3-319-18872-0 Library of Congress Control Number: 2015940538 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Rino Giordano
Chandra News Issue 26, Summer 2019 20 Years of Chandra The X-Rays Also Rise Raffaella Margutti, Wen-fai Fong, Daryl Haggard Article on Page 1 Celebrating 20 Years of Chandra The year 2019 marks 20 years of superb performance by the Chandra X-ray Observatory. The CXC is planning a number of events and products for the science community and the general public. We give you an overview of plans on page 12. Complete up-to-date calendar of events http://cxc.cfa.harvard.edu/cdo/chandra20/ 20 Years of Chandra Science Symposium, Dec. 3–6 http://cxc.harvard.edu/symposium_2019/ Table of Contents The X-rays Also Rise: Chandra Observations of GW170817 Mark the Dawn of X-ray Studies of Gravitational Wave Sources � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 Director’s Log, Chandra Date: 670723206 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8 Project Scientist’s Report� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Project Manager’s Report � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 11 Twenty Years of Chandra Celebrations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 12 Remembering Riccardo Giacconi: The Father of X-ray Astronomy � � � � � � � � � � � � � � � � � 12 ACIS Update � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 17 HRC Update � � � � � � � � � � � � � � � � � � � � � � � � � � -
Not Yet Imagined: a Study of Hubble Space Telescope Operations
NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe. -
South Deep Field 22H 32M 56S, Credit: CJ Sven -90° -60° 33′ 02″ See Slide 11
North Deep Field 12h 36m 49s , +62°12′58″ +90° Center of the Universe Located by X TriangulationEarth of NASAGreen Sphere – 0° source of CMB radiation 12 Data hr 0hr Cold spot 03h 15m 05s, -19° 35′ 02″ by Charles Sven 9/25/10 South Deep Field 22h 32m 56s, Credit: CJ Sven -90° -60° 33′ 02″ See Slide 11 NASA Data Used: Both Deep Fields, the Cold Spot, and the CMB NASA’s Deep Field Studies 1/15/96: “The [north deep field from the] Hubble telescope has provided mankind's deepest, most detailed visible view of the universe.” The second Hubble Deep Field South data was released on 11/ 23/98. The physics of light - restricts the parameters of one’s view. Recognizing such restrictions limits one’s inference. Prior to the Deep Field South Results, one had less restrictions then now. With both results in hand, the position of the viewer is limited to the line of sight. Preliminary depiction of the North and South Deep Fields - on next slide Galaxies in Gly = billion NASA’s Hubble Ultra deep North field light years field north HUDF09 & HUDF09 south HDF-S studies 13 Gly Very slow moving Earth 600 k/s Distance from HUDF09 HUDF09 to HDF-S is or 0.2% speed of light 12/8/09 approximately 25+ Gly This area within this CMB circle is Center of our Universe - EBB a representation of our visible The only possible explanation for our universe filled with unique view of Hubble’s deep fields galaxies and galaxy filled space requires that this is seen from a very slow moving earth located right next to the 12 Gly HDF-S 11/23/98 epicenter [EBB] of the Big Bang Explosion IN SPACE that was Green circle powered by Dark Energy.