Diagonalization and Logical Paradoxes
DIAGONALIZATION AND LOGICAL PARADOXES DIAGONALIZATION AND LOGICAL PARADOXES By HAIXIA ZHONG, B.B.A., M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy McMaster University © Copyright by Haixia Zhong, August 2013 DOCTOR OF PHILOSOPHY (2013) (Philosophy) McMaster University Hamilton, Ontario TITLE: Diagonalization and Logical Paradoxes AUTHOR: Haixia Zhong, B.B.A. (Nanjing University), M.A. (Peking University) SUPERVISOR: Professor Richard T. W. Arthur NUMBER OF PAGES: vi, 229 ii ABSTRACT The purpose of this dissertation is to provide a proper treatment for two groups of logical paradoxes: semantic paradoxes and set-theoretic paradoxes. My main thesis is that the two different groups of paradoxes need different kinds of solution. Based on the analysis of the diagonal method and truth-gap theory, I propose a functional-deflationary interpretation for semantic notions such as ‘heterological’, ‘true’, ‘denote’, and ‘define’, and argue that the contradictions in semantic paradoxes are due to a misunderstanding of the non-representational nature of these semantic notions. Thus, they all can be solved by clarifying the relevant confusion: the liar sentence and the heterological sentence do not have truth values, and phrases generating paradoxes of definability (such as that in Berry’s paradox) do not denote an object. I also argue against three other leading approaches to the semantic paradoxes: the Tarskian hierarchy, contextualism, and the paraconsistent approach. I show that they fail to meet one or more criteria for a satisfactory solution to the semantic paradoxes. For the set-theoretic paradoxes, I argue that the criterion for a successful solution in the realm of set theory is mathematical usefulness.
[Show full text]