WHY a DEDEKIND CUT DOES NOT PRODUCE IRRATIONAL NUMBERS And, Open Intervals Are Not Sets

Total Page:16

File Type:pdf, Size:1020Kb

WHY a DEDEKIND CUT DOES NOT PRODUCE IRRATIONAL NUMBERS And, Open Intervals Are Not Sets WHY A DEDEKIND CUT DOES NOT PRODUCE IRRATIONAL NUMBERS And, Open Intervals are not Sets Pravin K. Johri The theory of mathematics claims that the set of real numbers is uncountable while the set of rational numbers is countable. Almost all real numbers are supposed to be irrational but there are few examples of irrational numbers relative to the rational numbers. The reality does not match the theory. Real numbers satisfy the field axioms but the simple arithmetic in these axioms can only result in rational numbers. The Dedekind cut is one of the ways mathematics rationalizes the existence of irrational numbers. Excerpts from the Wikipedia page “Dedekind cut” A Dedekind cut is а method of construction of the real numbers. It is a partition of the rational numbers into two non-empty sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. If B has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. The countable partitions of the rational numbers cannot result in uncountable irrational numbers. Moreover, a known irrational number, or any real number for that matter, defines a Dedekind cut but it is not possible to go in the other direction and create a Dedekind cut which then produces an unknown irrational number. 1 Irrational Numbers There is an endless sequence of finite natural numbers 1, 2, 3 … based on the Peano axiom that if n is a natural number then so is n+1. The real numbers are points on the real line and satisfy the Field axioms. Field Axioms 0, 1 are real numbers and the following exist: A unique additive inverse -x for any real number x 0 -1 A unique multiplicative inverse x , for any real number x 0 Real numbers x + y and x * y, for every two real numbers x, y. Along with associative, commutative, and distributive properties. Real numbers can be rational or irrational. The sets N, Q and R are the infinite sets of natural, rational and real numbers, respectively. The theory says that N and Q are countable while R is uncountable, a higher order of infinity, and almost all real numbers are irrational. Further, real numbers can be represented in the infinite decimal notation and irrational numbers are written to infinite non-repetitive decimal digits. This is self-contradictory because The decimal formula applies only to fixed finite decimal digits. Otherwise, the arithmetic in the formula is no longer valid. The Cantor Diagonal Argument (CDA) does not examine numbers to infinite digits even though there is an explicit requirement in the CDA that all numbers are written to infinite digits (see Appendix D). This requirement in the CDA is unnecessary and does nothing! The number 1/3 = 0.333… with repeating digits is considered to be written to infinite digits. Repetition results in an unending potential infinite (see Appendix C). Even if it is assumed it can be carried out to “completion”, whatever that means as it is not defined precisely, and one actually ends up with infinite decimal digits, it so turns out that such numbers are also rational. 2 All numbers written to finite digits are rational. The irrational numbers do not fit the repetitive “infinite” representation. The only option left is that irrational numbers have actual infinite digits but the actual infinite has a nonfinite or transfinite magnitude. Arithmetic cannot be carried out with non-numbers. Even under the assumption there can be infinite decimal digits, no number can be written to non-repetitive infinite digits and, out of necessity, irrational numbers are denoted with symbols like e, π and 2 leading to the biggest absurdity in mathematics: Almost all real numbers cannot be written as numbers! There are very few examples of the irrational numbers and yet they combine to produce a higher-order, uncountable infinity. According to the theory, the CDA establishes that the unit interval is uncountable (although this is not right - see Appendix D). There is a second infinity, boundlessly larger than the first. The uncountability of R would be a profound observation were it not contradicted by another result - the rational numbers are dense in the real numbers! Theorem 1: (Density of the Rationals): Given any two real numbers a, b with a < b, there exists a rational number q such that a < q < b. Archimedean property: Given any real number x > 0 there is a natural number n such that n > x-1 Proof: The proof is based on the Archimedean property. Since b – a > 0, there is a n such that n > (b – a)-1 and n a + 1 < n b Let k be the largest natural number such that k n a and k + 1 > n a Combining the inequalities n a < k + 1 n a + 1 < n b And q = (k + 1) / n is a rational number in (a, b) This is a constructive proof in that q is derived from a and b. 3 The countable rational numbers are densely distributed in the uncountable real numbers. There is a rational number between every two real numbers, which themselves could be rational or irrational leading to the commonsense inference that At least half of the real numbers must be rational. There is a theorem that the irrational numbers are also dense in the real numbers but this is to be expected as the irrational numbers are supposed to be vastly more numerous. Theorem 2: (Density of the Irrationals): Given any two real numbers a, b with a < b, there exists an irrational number p such that a < p < b. Proof: When a and b are both positive: From theorem 1, there exists a rational number q in the interval (a/2, b/2). 2q must be irrational because, if 2q is rational, then 2 is also rational. Hence, p = 2q (a, b) This proof relies on a pre-existing irrational number such as 2. Mathematics does not explain how the irrational and rational numbers lie on the real line in accordance with these two theorems. What is abundantly clear is that on the real line, There cannot be an interval with just rational numbers in it, and There cannot be an interval with just irrational numbers in it. Which, taken together, yields the commonsense inferences The rational numbers must be interspersed with the irrational numbers as points on the real line, each one following the other. There cannot be more irrational numbers than the rational numbers! 4 Where are all the Irrational Numbers? Almost all real numbers are supposed to be irrational. They should be pervasive but, after listing a handful like e, π, 2, and perhaps other square roots, it is hard to come up with more. Very few irrational numbers have been identified relative to the rational numbers, which begs the question: where are all the remaining irrational numbers? The integers are discrete points on the real line. Lots and lots and lots of rational numbers lie in the (relatively large) gaps between every two successive integers. There are many, many, many more rational numbers than integers but they have the same cardinality. Irrational numbers are hard to find vis-à-vis the rational numbers and, yet, they have higher cardinality. This is the exact opposite of what should be true. It is like the “upside down” parallel universe in the TV series “Stranger Things”. Irrational numbers may not exist (see Appendix E). Real numbers satisfy the Field axioms. Starting with the “initial” real numbers 0 and 1, the simple arithmetic in the Field axioms can only lead to rational numbers! How does the first irrational number get “created”? And how do the remaining come about in a way that they completely dominate all other types of numbers? Construction Models? Mathematics claims the following construction models yield the irrational numbers: ▪ Construction from Cauchy sequences ▪ Construction from Dedekind cuts ▪ Stevin’s construction This is just a theoretical claim of “construction” without a single example. There is no method outlined to calculate the irrational limit of a Cauchy sequence of rational numbers. There is no technique specified to compute a new Dedekind cut and, thereby, discover a previously unknown irrational number. There is no procedure prescribed to generate irrational numbers from Stevin’s infinite decimal representation. The logic seems to be - since irrational numbers exist, these methods yield irrational numbers - in theory even if they don’t in practice. 5 Dedekind Cuts Excerpts from the Wikipedia page “Dedekind cut” A Dedekind cut is а method of construction of the real numbers. It is a partition of the rational numbers into two non-empty sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. If B has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. Every real number, rational or not, is equated to one and only one cut of rationals. Mathematics is founded on the core principle of precise definitions (see Appendix A). Why is there only a “loose” characterization of the “gap”? The sequence {1/n} converges to the limit 0. Given any rational number x, the rational sequence {x - 1/n} converges to the rational limit x outside the sequence as all elements of the sequence are strictly less than x. Similar logic applies to the sequence {x + 1/n} from the other side of x.
Recommended publications
  • Irrational Numbers Unit 4 Lesson 6 IRRATIONAL NUMBERS
    Irrational Numbers Unit 4 Lesson 6 IRRATIONAL NUMBERS Students will be able to: Understand the meanings of Irrational Numbers Key Vocabulary: • Irrational Numbers • Examples of Rational Numbers and Irrational Numbers • Decimal expansion of Irrational Numbers • Steps for representing Irrational Numbers on number line IRRATIONAL NUMBERS A rational number is a number that can be expressed as a ratio or we can say that written as a fraction. Every whole number is a rational number, because any whole number can be written as a fraction. Numbers that are not rational are called irrational numbers. An Irrational Number is a real number that cannot be written as a simple fraction or we can say cannot be written as a ratio of two integers. The set of real numbers consists of the union of the rational and irrational numbers. If a whole number is not a perfect square, then its square root is irrational. For example, 2 is not a perfect square, and √2 is irrational. EXAMPLES OF RATIONAL NUMBERS AND IRRATIONAL NUMBERS Examples of Rational Number The number 7 is a rational number because it can be written as the 7 fraction . 1 The number 0.1111111….(1 is repeating) is also rational number 1 because it can be written as fraction . 9 EXAMPLES OF RATIONAL NUMBERS AND IRRATIONAL NUMBERS Examples of Irrational Numbers The square root of 2 is an irrational number because it cannot be written as a fraction √2 = 1.4142135…… Pi(휋) is also an irrational number. π = 3.1415926535897932384626433832795 (and more...) 22 The approx. value of = 3.1428571428571..
    [Show full text]
  • MATH 162, SHEET 8: the REAL NUMBERS 8A. Construction of The
    MATH 162, SHEET 8: THE REAL NUMBERS This sheet is concerned with proving that the continuum R is an ordered field. Addition and multiplication on R are defined in terms of addition and multiplication on Q, so we will use ⊕ and ⊗ for addition and multiplication of real numbers, to make sure that there is no confusion with + and · on Q: 8A. Construction of the real numbers via cuts, Addition and Order Definition 8.1. A subset A of Q is said to be a cut (or Dedekind cut) if it satisfies the following: (a) A 6= Ø and A 6= Q (b) If r 2 A and s 2 Q satisfies s < r; then s 2 A (c) If r 2 A then there is some s 2 Q with s > r; s 2 A: We denote the collection of all cuts by R. Definition 8.2. We define ⊕ on R as follows. Let A; B 2 R be Dedekind cuts. Define A ⊕ B = fa + b j a 2 A and b 2 Bg 0 = fx 2 Q j x < 0g 1 = fx 2 Q j x < 1g: Exercise 8.3. (a) Prove that A ⊕ B; 0; and 1 are all Dedekind cuts. (b) Prove that fx 2 Q j x ≤ 0g is not a Dedekind cut. (c) Prove that fx 2 Q j x < 0g [ fx 2 Q j x2 < 2g is a Dedekind cut. Hint: In Exercise 4.20 last quarter we showed that if x 2 Q; x ≥ 0; and x2 < 2; then there is some δ 2 Q; δ > 0 such that (x + δ)2 < 2: Exercise 8.4.
    [Show full text]
  • Math 104: Introduction to Analysis
    Math 104: Introduction to Analysis Contents 1 Lecture 1 3 1.1 The natural numbers . 3 1.2 Equivalence relations . 4 1.3 The integers . 5 1.4 The rational numbers . 6 2 Lecture 2 6 2.1 The real numbers by axioms . 6 2.2 The real numbers by Dedekind cuts . 7 2.3 Properties of R ................................................ 8 3 Lecture 3 9 3.1 Metric spaces . 9 3.2 Topological definitions . 10 3.3 Some topological fundamentals . 10 4 Lecture 4 11 4.1 Sequences and convergence . 11 4.2 Sequences in R ................................................ 12 4.3 Extended real numbers . 12 5 Lecture 5 13 5.1 Compactness . 13 6 Lecture 6 14 6.1 Compactness in Rk .............................................. 14 7 Lecture 7 15 7.1 Subsequences . 15 7.2 Cauchy sequences, complete metric spaces . 16 7.3 Aside: Construction of the real numbers by completion . 17 8 Lecture 8 18 8.1 Taking powers in the real numbers . 18 8.2 \Toolbox" sequences . 18 9 Lecture 9 19 9.1 Series . 19 9.2 Adding, regrouping series . 20 9.3 \Toolbox" series . 21 1 10 Lecture 10 22 10.1 Root and ratio tests . 22 10.2 Summation by parts, alternating series . 23 10.3 Absolute convergence, multiplying and rearranging series . 24 11 Lecture 11 26 11.1 Limits of functions . 26 11.2 Continuity . 26 12 Lecture 12 27 12.1 Properties of continuity . 27 13 Lecture 13 28 13.1 Uniform continuity . 28 13.2 The derivative . 29 14 Lecture 14 31 14.1 Mean value theorem . 31 15 Lecture 15 32 15.1 L'Hospital's Rule .
    [Show full text]
  • Metrical Diophantine Approximation for Quaternions
    This is a repository copy of Metrical Diophantine approximation for quaternions. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/90637/ Version: Accepted Version Article: Dodson, Maurice and Everitt, Brent orcid.org/0000-0002-0395-338X (2014) Metrical Diophantine approximation for quaternions. Mathematical Proceedings of the Cambridge Philosophical Society. pp. 513-542. ISSN 1469-8064 https://doi.org/10.1017/S0305004114000462 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1 Metrical Diophantine approximation for quaternions By MAURICE DODSON† and BRENT EVERITT‡ Department of Mathematics, University of York, York, YO 10 5DD, UK (Received ; revised) Dedicated to J. W. S. Cassels. Abstract Analogues of the classical theorems of Khintchine, Jarn´ık and Jarn´ık-Besicovitch in the metrical theory of Diophantine approximation are established for quaternions by applying results on the measure of general ‘lim sup’ sets.
    [Show full text]
  • Cantor Groups
    Integre Technical Publishing Co., Inc. College Mathematics Journal 42:1 November 11, 2010 10:58 a.m. classroom.tex page 60 Cantor Groups Ben Mathes ([email protected]), Colby College, Waterville ME 04901; Chris Dow ([email protected]), University of Chicago, Chicago IL 60637; and Leo Livshits ([email protected]), Colby College, Waterville ME 04901 The Cantor set C is simultaneously small and large. Its cardinality is the same as the cardinality of all real numbers, and every element of C is a limit of other elements of C (it is perfect), but C is nowhere dense and it is a nullset. Being nowhere dense is a kind of topological smallness, meaning that there is no interval in which the set is dense, or equivalently, that its complement is a dense open subset of [0, 1]. Being a nullset is a measure theoretic concept of smallness, meaning that, for every >0, it is possible to cover the set with a sequence of intervals In whose lengths add to a sum less than . It is possible to tweak the construction of C that results in a set H that remains per- fect (and consequently has the cardinality of the continuum), is still nowhere dense, but the measure can be made to attain any number α in the interval [0, 1). The con- struction is a special case of Hewitt and Stromberg’s Cantor-like set [1,p.70],which goes like this: let E0 denote [0, 1],letE1 denote what is left after deleting an open interval from the center of E0.IfEn−1 has been constructed, obtain En by deleting open intervals of the same length from the center of each of the disjoint closed inter- vals that comprise En−1.
    [Show full text]
  • HONOURS B.Sc., M.A. and M.MATH. EXAMINATION MATHEMATICS and STATISTICS Paper MT3600 Fundamentals of Pure Mathematics September 2007 Time Allowed : Two Hours
    HONOURS B.Sc., M.A. AND M.MATH. EXAMINATION MATHEMATICS AND STATISTICS Paper MT3600 Fundamentals of Pure Mathematics September 2007 Time allowed : Two hours Attempt all FOUR questions [See over 2 1. Let X be a set, and let ≤ be a total order on X. We say that X is dense if for any two x; y 2 X with x < y there exists z 2 X such that x < z < y. In what follows ≤ always denotes the usual ordering on rational numbers. (i) For each of the following sets determine whether it is dense or not: (a) Q+ (positive rationals); (b) N (positive integers); (c) fx 2 Q : 3 ≤ x ≤ 4g; (d) fx 2 Q : 1 ≤ x ≤ 2g [ fx 2 Q : 3 ≤ x ≤ 4g. Justify your assertions. [4] (ii) Let a and b be rational numbers satisfying a < b. To which of the following a + 4b three sets does the number belong: A = fx 2 : x < ag, B = fx 2 : 5 Q Q a < x < bg or C = fx 2 Q : b < xg? Justify your answer. [1] (iii) Consider the set a A = f : a; n 2 ; n ≥ 0g: 5n Z Is A dense? Justify your answer. [2] 1 (iv) Prove that r = 1 is the only positive rational number such that r + is an r integer. [2] 1 (v) How many positive real numbers x are there such that x + is an integer? x Your answer should be one of: 0, 1, 2, 3, . , countably infinite, or uncountably infinite, and you should justify it. [3] 2. (i) Define what it means for a set A ⊆ Q to be a Dedekind cut.
    [Show full text]
  • 1. Definition. Let I Be the Unit Interval. If I, G Are Maps on I Then 1 and G Are Conjugate Iff There Is a Homeomorphism H of I Such That 1 = H -I Gh
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 319. Number I. May 1990 A COMPLETE CLASSIFICATION OF THE PIECEWISE MONOTONE FUNCTIONS ON THE INTERVAL STEWART BALDWIN ABSTRACT. We define two functions f and g on the unit interval [0, I] to be strongly conjugate iff there is an order-preserving homeomorphism h of [0, I] such that g = h-1 fh (a minor variation of the more common term "conjugate", in which h need not be order-preserving). We provide a complete set of invariants for each continuous (strictly) piecewise monotone function such that two such functions have the same invariants if and only if they are strongly conjugate, thus providing a complete classification of all such strong conjugacy classes. In addition, we provide a criterion which decides whether or not a potential invariant is actually realized by some 'piecewise monotone continuous function. INTRODUCTION 1. Definition. Let I be the unit interval. If I, g are maps on I then 1 and g are conjugate iff there is a homeomorphism h of I such that 1 = h -I gh. A more convenient term for our purposes will be: I, g are strongly conjugate (written 1 ~ g) iff there is an order preserving homeomorphism h as above. Given a map 1 on I, define the map j by I*(x) = 1 - 1(1 - x) (essentially a 1800 rotation of the graph). The main result of this paper will be to give a complete set of invariants for the strong conjugacy classes of the piecewise monotone continuous functions on the unit interval I = [0, I].
    [Show full text]
  • 11 Construction of R
    Math 361 Construction of R 11 Construction of R Theorem 11.1. There does not exist q Q such that q2 = 2. 2 Proof. Suppose that q Q satis¯es q2 = 2. Then we can suppose that q > 0 and express 2 q = a=b, where a; b ! are relatively prime. Since 2 a2 = 2 b2 we have that a2 = 2b2: It follows that 2 a; say a = 2c. Hence j 4c2 = 2b2 2c2 = 2b2 This means that 2 b, which contradicts the assumption that a and b are relatively prime. j Theorem 11.2. There exists r R such that r2 = 2. 2 Proof. Consider the continuous function f : [1; 2] R, de¯ned by f(x) = x2. Then f(1) = 1 and f(2) = 4. By the Intermediate Value !Theorem, there exists r [1; 2] such that r2 = 2. 2 Why is the Intermediate Value Theorem true? Intuitively because R \has no holes"... More precisely... De¯nition 11.3. Suppose that A R. r R is an upper bound of A i® a r for all a A. ² 2 · 2 A is bounded above i® there exists an upper bound for A. ² r R is a least upper bound of A i® the following conditions hold: ² 2 { r is an upper bound of A. { If s is an upper bound of A, then r s. · Axiom 11.4 (Completeness). If A R is nonempty and bounded above, then there exists a least upper bound of A. Deepish Fact Completeness Axiom Intermediate Value Theorem. ) 2006/10/25 1 Math 361 Construction of R Remark 11.5.
    [Show full text]
  • Proofs, Sets, Functions, and More: Fundamentals of Mathematical Reasoning, with Engaging Examples from Algebra, Number Theory, and Analysis
    Proofs, Sets, Functions, and More: Fundamentals of Mathematical Reasoning, with Engaging Examples from Algebra, Number Theory, and Analysis Mike Krebs James Pommersheim Anthony Shaheen FOR THE INSTRUCTOR TO READ i For the instructor to read We should put a section in the front of the book that organizes the organization of the book. It would be the instructor section that would have: { flow chart that shows which sections are prereqs for what sections. We can start making this now so we don't have to remember the flow later. { main organization and objects in each chapter { What a Cfu is and how to use it { Why we have the proofcomment formatting and what it is. { Applications sections and what they are { Other things that need to be pointed out. IDEA: Seperate each of the above into subsections that are labeled for ease of reading but not shown in the table of contents in the front of the book. ||||||||| main organization examples: ||||||| || In a course such as this, the student comes in contact with many abstract concepts, such as that of a set, a function, and an equivalence class of an equivalence relation. What is the best way to learn this material. We have come up with several rules that we want to follow in this book. Themes of the book: 1. The book has a few central mathematical objects that are used throughout the book. 2. Each central mathematical object from theme #1 must be a fundamental object in mathematics that appears in many areas of mathematics and its applications.
    [Show full text]
  • Rational Numbers Vs. Irrational Numbers Handout
    Rational numbers vs. Irrational numbers by Nabil Nassif, PhD in cooperation with Sophie Moufawad, MS and the assistance of Ghina El Jannoun, MS and Dania Sheaib, MS American University of Beirut, Lebanon An MIT BLOSSOMS Module August, 2012 Rational numbers vs. Irrational numbers “The ultimate Nature of Reality is Numbers” A quote from Pythagoras (570-495 BC) Rational numbers vs. Irrational numbers “Wherever there is number, there is beauty” A quote from Proclus (412-485 AD) Rational numbers vs. Irrational numbers Traditional Clock plus Circumference 1 1 min = of 1 hour 60 Rational numbers vs. Irrational numbers An Electronic Clock plus a Calendar Hour : Minutes : Seconds dd/mm/yyyy 1 1 month = of 1year 12 1 1 day = of 1 year (normally) 365 1 1 hour = of 1 day 24 1 1 min = of 1 hour 60 1 1 sec = of 1 min 60 Rational numbers vs. Irrational numbers TSquares: Use of Pythagoras Theorem Rational numbers vs. Irrational numbers Golden number ϕ and Golden rectangle 1+√5 1 1 √5 Roots of x2 x 1=0are ϕ = and = − − − 2 − ϕ 2 Rational numbers vs. Irrational numbers Golden number ϕ and Inner Golden spiral Drawn with up to 10 golden rectangles Rational numbers vs. Irrational numbers Outer Golden spiral and L. Fibonacci (1175-1250) sequence = 1 , 1 , 2, 3, 5, 8, 13..., fn, ... : fn = fn 1+fn 2,n 3 F { } − − ≥ f1 f2 1 n n 1 1 !"#$ !"#$ fn = (ϕ +( 1) − ) √5 − ϕn Rational numbers vs. Irrational numbers Euler’s Number e 1 1 1 s = 1 + + + =2.6666....66.... 3 1! 2 3! 1 1 1 s = 1 + + + =2.70833333...333...
    [Show full text]
  • Eudoxos and Dedekind: on the Ancient Greek Theory of Ratios and Its Relation to Modern Mathematics*
    HOWARD STEIN EUDOXOS AND DEDEKIND: ON THE ANCIENT GREEK THEORY OF RATIOS AND ITS RELATION TO MODERN MATHEMATICS* 1. THE PHILOSOPHICAL GRAMMAR OF THE CATEGORY OF QUANTITY According to Aristotle, the objects studied by mathematics have no independent existence, but are separated in thought from the substrate in which they exist, and treated as separable - i.e., are "abstracted" by the mathematician. I In particular, numerical attributives or predicates (which answer the question 'how many?') have for "substrate" multi- tudes with a designated unit. 'How many pairs of socks?' has a different answer from 'how many socks?'. (Cf. Metaph. XIV i 1088a5ff.: "One la signifies that it is a measure of a multitude, and number lb that it is a measured multitude and a multitude of measures".) It is reasonable to see in this notion of a "measured multitude" or a "multitude of mea- sures" just that of a (finite) set: the measures or units are what we should call the elements of the set; the requirement that such units be distinguished is precisely what differentiates a set from a mere accumulation or mass. There is perhaps some ambiguity in the quoted passage: the statement, "Number signifies that it is a measured multi- tude", might be taken either to identify numbers with finite sets, or to imply that the subjects numbers are predicated of are finite sets. Euclid's definition - "a number is a multitude composed of units" - points to the former reading (which implies, for example, that there are many two's - a particular knife and fork being one of them).
    [Show full text]
  • The Evolution of Numbers
    The Evolution of Numbers Counting Numbers Counting Numbers: {1, 2, 3, …} We use numbers to count: 1, 2, 3, 4, etc You can have "3 friends" A field can have "6 cows" Whole Numbers Whole numbers are the counting numbers plus zero. Whole Numbers: {0, 1, 2, 3, …} Negative Numbers We can count forward: 1, 2, 3, 4, ...... but what if we count backward: 3, 2, 1, 0, ... what happens next? The answer is: negative numbers: {…, -3, -2, -1} A negative number is any number less than zero. Integers If we include the negative numbers with the whole numbers, we have a new set of numbers that are called integers: {…, -3, -2, -1, 0, 1, 2, 3, …} The Integers include zero, the counting numbers, and the negative counting numbers, to make a list of numbers that stretch in either direction indefinitely. Rational Numbers A rational number is a number that can be written as a simple fraction (i.e. as a ratio). 2.5 is rational, because it can be written as the ratio 5/2 7 is rational, because it can be written as the ratio 7/1 0.333... (3 repeating) is also rational, because it can be written as the ratio 1/3 More formally we say: A rational number is a number that can be written in the form p/q where p and q are integers and q is not equal to zero. Example: If p is 3 and q is 2, then: p/q = 3/2 = 1.5 is a rational number Rational Numbers include: all integers all fractions Irrational Numbers An irrational number is a number that cannot be written as a simple fraction.
    [Show full text]