Molecular Analysis of the Bacterial Community in Table Eggs

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Analysis of the Bacterial Community in Table Eggs Molecular Analysis of the Bacterial Community in Table Eggs Mohammed Ali Alawi A thesis submitted for the degree of Doctor of Philosophy Engineering and Physical Sciences Heriot-Watt University Edinburgh, UK January 2018 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of the information contained in it must acknowledge this thesis as the source of the quotation or information. Chapter 1 General introduction ABSTRACT The composition of the bacterial flora on surfaces of table eggs is an important factor in influencing the incidence of egg spoilage. Previous studies have focused on a culturing approach for determining bacterial contamination of table eggs. The main problem, however, is culture-based techniques may not adequately describe the bacterial diversity of eggs, since many type of organisms are not cultivated by this method. This study describes bacterial diversity of table eggs by using both culture-based and molecular approaches. The results of culture based techniques suggested that majority of eggs tested were contaminated with Staphylococcus species. No evidence was found for the presence of Salmonella, Escherichia coli, Campylobacter or Listeria monocytogenes, but Clostridium perfringens was found to be positive from 3 eggshells out of 16 shells tested. Methods for direct extraction of bacterial DNA from eggshell and egg content were developed. Cloning of PCR amplified rRNA resulted in the isolation of 91 clones which matched existing sequences in the GenBank database. Eighty-nine % of the isolates were matched to clones of the assigned phylotypes of Psychrobacter, Acinetobacter, Staphylococcus, Clostridium, Lactobacillus, Actinobacterium, Proteobacterium, Prevotella, Olsenella and Ralstonia. In addition Psychrobacter faecalis and Psychrobacter maritimus were isolated from eggshell on TSA at 4 °C, and the characteristics of these bacteria were studied. Interestingly, these bacteria have not been isolated from table eggs in previous studies, and they could potentially be responsible for egg spoilage particularly when the egg are stored in the fridge. The results obtained in this study will provide valuable information to the egg producers and consumers that may aid improvement of the quality of table eggs and their shelf life. More importantly, it may facilitate the control of spreading these bacteria to the food chain, in order to prevent any food outbreaks that may result from consuming contaminated eggs. II Chapter 1 General introduction DEDICATION This thesis is dedicated to my son Eyad, my daughter Lamar, my beloved wife Khadijah, and my parents for their endless loves, supports and encouragements. III Chapter 1 General introduction ACKNOWLEDGEMENT This project was performed at the biology department, School of Life Science, Heriot- Watt University, Edinburgh, during the period between 2012-2015, funded by Saudi Ministry of Municipality, and this financial support was greatly appreciated. Firstly, I would like to thank my supervisors Dr. Wilfrid Mitchell, and Dr. Peter Morris for their great supervision, support and assistance during the period of this project. This project would not have been achieved without their unlimited support and guidance. I would also like to thank very much my wife Khadijah Alqahtani, my son Eyad, my daughter Lamar, and my parents for their patient and encouragement during my PhD study. I also wish to thank SLS staffs specially Dr. Daun, Margret and Paul Cyphus for their advice and supports. Also, many thanks also go to Dr. Susan Dewar, Dr. Ruth Fowler, and Dr. Derek Ball Special thanks must go to my graduated lab mates and school friends, Dr. Naif Almkaish, Dr. Mohammed Elsalem, Dr. Ash Paradh, Dr. Omar Alsaif, Dr. Amadike Ugbogu, Dr. Hassein Alnashiri, Dr. Majed Alshaeri, Dr. Majde Estoni, Dr. Salem Rajab, Dr. Ibrahim Akasha, Dr. Mohammed Alsharif, Dr. Abdullah Althubiani, Dr. Kayode and Dr. Omar Alharbi for their help and recommendations. Also, I would like to thank all my lab mates PhD, Ibrahim Alamin, Richard Freeman, Faisal Alqahtani, Sadeqh Alshaib, Vector, Mais Rajab, Mai Al-Ghanem, Tam, Chokul Kulanaree, Camilla, Charles, David, Halo, Loris, Julien and Roy Nguyen. Finally, many thanks to everyone who has given support during this project. IV Chapter 1 General introduction ACADEMIC REGISTRY Research Thesis Submission Name: Mohammed Ali Alawi School/PGI: Engineering and Physical Sciences Version: (i.e. First, Final Degree Sought PhD (Food Science) Resubmission, Final) (Award and Subject area) Declaration In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 1) the thesis embodies the results of my own work and has been composed by myself 2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons 3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions submitted*. 4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require 5) I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline. * Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted. Signature Date: of Candidate: Submission Submitted By (name in capitals): Mohammed Ali ALawi Signature of Individual Submitting: Date Submitted: For Completion in the Student Service Centre (SSC) Received in the SSC by (name in capitals): Method of Submission (Handed in to SSC; posted through internal/external mail): E-thesis Submitted (mandatory for final theses) Signature: Date: V Chapter 1 General introduction TABLE OF CONTENT ABSTRACT……………………...…….……………………………………….………………II DEDICATION……………………………………………………………………………....….III ACKNOWLEDGEMENT……………….……………………………………………….…….IV DECLARATION…………………………………………………….………………….………V TABLE OF CONTENT…………………………...……………………………………….…..VI LIST OF FIGURES……………………………………………………………………………..X LIST OF TABLES……………………………………………………………………...…….XIV CHAPTER 1: General introduction .......................................................................................... 1 1.1 General introduction .................................................................................................... 2 1.2 Food-borne diseases and routes of infections .............................................................. 5 1.3 Economic impact of egg loses. .................................................................................... 5 1.4 Consumption of eggs ................................................................................................... 7 1.5 Hen’s egg formation and composition ......................................................................... 7 1.6 Antimicrobial defences .............................................................................................. 11 1.7 Route of microbial contamination of intact eggs ....................................................... 13 1.8 Extrinsic factors affecting the egg content contamination......................................... 13 1.8.1 Temperature .......................................................................................................... 13 1.8.2 Moisture ................................................................................................................ 14 1.8.3 Presence of faeces and other contaminants on the eggshell .................................. 14 1.9 Table egg housing systems ........................................................................................ 15 1.10 The microbial community in table eggs .................................................................... 16 1.10.1 Salmonella in table eggs ................................................................................... 19 1.10.2 Escherichia coli in table eggs ........................................................................... 19 1.10.3 Staphylococcus in table eggs ............................................................................ 20 1.10.4 Other bacteria in table eggs............................................................................... 20 1.11 Source of bacterial contamination ............................................................................. 21 1.12 Viable but non-cultivable bacteria ............................................................................. 23 1.13 Bacterial cross-contamination ................................................................................... 24 1.14 Types of egg products involved in outbreaks ............................................................ 25 1.15 Interventions to improving microbial quality of eggs ............................................... 26 1.15.1 Egg traceability ................................................................................................. 27 1.16 Bacterial isolation and enumeration .......................................................................... 28 1.17 Bacterial detection and identification ........................................................................ 28 1.17.1 Conventional methods ...................................................................................... 29 1.17.2 Methods based on biochemical analysis ..........................................................
Recommended publications
  • Identification of Salt Accumulating Organisms from Winery Wastewater
    Identification of salt accumulating organisms from winery wastewater FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: UA08/01 Principal Investigator: Paul Grbin Research Organisation: University of Adelaide Date: 22/09/10 1 Identification of salt accumulating organisms from winery wastewater Dr Paul R Grbin Dr Kathryn L Eales Dr Frank Schmid Assoc. Prof. Vladimir Jiranek The University of Adelaide School of Agriculture, Food and Wine PMB 1, Glen Osmond, SA 5064 AUSTRALIA Date: 15 January 2010 Publisher: University of Adelaide Disclaimer: The advice presented in this document is intended as a source of information only. The University of Adelaide (UA) accept no responsibility for the results of any actions taken on the basis of the information contained within this publication, nor for the accuracy, currency or completeness of any material reported and therefore disclaim all liability for any error, loss or other consequence which may arise from relying on information in this publication. 2 Table of contents Abstract 3 Executive Summary 4 Background 5 Project Aims and Performance Targets 6 Methods 7 Results and Discussion 11 Outcomes and Conclusions 23 Recommendations 24 Appendix 1: Communication Appendix 2: Intellectual Property Appendix 3: References Appendix 4: Staff Appendix 5: Acknowledgements Appendix 6: Budget Reconciliation 3 Abbreviations: COD: Chemical oxygen demand Ec: Electrical conductivity FACS: Fluorescence activated cell sorting HEPES: 4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid OD: Optical density PBFI: Potassium benzofuran isophthalate PI: Propidium iodide SAR: Sodium adsorption ratio WWW: Winery wastewater Abstract: In an attempt to find microorganisms that would remove salts from biological winery wastewater (WWW) treatment plants, 8 halophiles were purchased from culture collections, with a further 40 isolated from WWW plants located in the Barossa Valley and McLaren Vale regions.
    [Show full text]
  • A Primary Assessment of the Endophytic Bacterial Community in a Xerophilous Moss (Grimmia Montana) Using Molecular Method and Cultivated Isolates
    Brazilian Journal of Microbiology 45, 1, 163-173 (2014) Copyright © 2014, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br Research Paper A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates Xiao Lei Liu, Su Lin Liu, Min Liu, Bi He Kong, Lei Liu, Yan Hong Li College of Life Science, Capital Normal University, Haidian District, Beijing, China. Submitted: December 27, 2012; Approved: April 1, 2013. Abstract Investigating the endophytic bacterial community in special moss species is fundamental to under- standing the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were esti- mated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteo- bacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G.
    [Show full text]
  • Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
    Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method.
    [Show full text]
  • The Root Microbiome of Salicornia Ramosissima As a Seedbank for Plant-Growth Promoting Halotolerant Bacteria
    applied sciences Article The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria Maria J. Ferreira 1 , Angela Cunha 1 , Sandro Figueiredo 1, Pedro Faustino 1, Carla Patinha 2 , Helena Silva 1 and Isabel N. Sierra-Garcia 1,* 1 Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; [email protected] (M.J.F.); [email protected] (A.C.); sandrofi[email protected] (S.F.); [email protected] (P.F.); [email protected] (H.S.) 2 Department of Geosciences and Geobiotec, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: [email protected] Featured Application: This research provides knowledge into the taxonomic and functional di- versity of cultivable bacteria associated with the halophyte Salicornia ramosissima in different types of soil, which need to be considered for the development of rhizosphere engineering tech- nology for the salt tolerant sustainable crops in different environments. Abstract: Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes repre- sents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia Citation: Ferreira, M.J.; Cunha, A.; ramosissima is one of the least-studied species in terms of microbiome composition and the effect Figueiredo, S.; Faustino, P.; Patinha, of sediment properties on the diversity of plant-growth promoting bacteria associated with the C.; Silva, H.; Sierra-Garcia, I.N.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • The Microbiome of North Sea Copepods
    Helgol Mar Res (2013) 67:757–773 DOI 10.1007/s10152-013-0361-4 ORIGINAL ARTICLE The microbiome of North Sea copepods G. Gerdts • P. Brandt • K. Kreisel • M. Boersma • K. L. Schoo • A. Wichels Received: 5 March 2013 / Accepted: 29 May 2013 / Published online: 29 June 2013 Ó Springer-Verlag Berlin Heidelberg and AWI 2013 Abstract Copepods can be associated with different kinds Keywords Bacterial community Á Copepod Á and different numbers of bacteria. This was already shown in Helgoland roads Á North Sea the past with culture-dependent microbial methods or microscopy and more recently by using molecular tools. In our present study, we investigated the bacterial community Introduction of four frequently occurring copepod species, Acartia sp., Temora longicornis, Centropages sp. and Calanus helgo- Marine copepods may constitute up to 80 % of the meso- landicus from Helgoland Roads (North Sea) over a period of zooplankton biomass (Verity and Smetacek 1996). They are 2 years using DGGE (denaturing gradient gel electrophore- key components of the food web as grazers of primary pro- sis) and subsequent sequencing of 16S-rDNA fragments. To duction and as food for higher trophic levels, such as fish complement the PCR-DGGE analyses, clone libraries of (Cushing 1989; Møller and Nielsen 2001). Copepods con- copepod samples from June 2007 to 208 were generated. tribute to the microbial loop (Azam et al. 1983) due to Based on the DGGE banding patterns of the two years sur- ‘‘sloppy feeding’’ (Møller and Nielsen 2001) and the release vey, we found no significant differences between the com- of nutrients and DOM from faecal pellets (Hasegawa et al.
    [Show full text]
  • Marcadores Moleculares De Tipo Inserción En Bacterias De Las Familias Moraxellaceae Y Helicobacteraceae (Phylum Proteobacteria)
    MEDISAN ISSN: 1029-3019 [email protected] Centro Provincial de Información de Ciencias Médicas de Santiago de Cuba Cuba Marcadores moleculares de tipo inserción en bacterias de las familias Moraxellaceae y Helicobacteraceae (phylum Proteobacteria) Cutiño Jiménez, Ania Margarita; Barrera Roca, Lianne; de la Puente López, Vivian; Peña Cutiño, Heidy Annia Marcadores moleculares de tipo inserción en bacterias de las familias Moraxellaceae y Helicobacteraceae (phylum Proteobacteria) MEDISAN, vol. 22, núm. 1, 2018 Centro Provincial de Información de Ciencias Médicas de Santiago de Cuba, Cuba Disponible en: https://www.redalyc.org/articulo.oa?id=368455138006 PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ARTÍCULOS ORIGINALES Marcadores moleculares de tipo inserción en bacterias de las familias Moraxellaceae y Helicobacteraceae (phylum Proteobacteria) Molecular markers of insertion type in bacterias of the Moraxellaceae and Helicobacteraceae (phylum Proteobacteria) families Ania Margarita Cutiño Jiménez [email protected] Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Cuba Lianne Barrera Roca [email protected] Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Cuba Vivian de la Puente López [email protected] Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Cuba MEDISAN, vol. 22, núm. 1, 2018 Heidy Annia Peña Cutiño [email protected] Centro Provincial de Información de Clínica
    [Show full text]
  • Evaluation of FISH for Blood Cultures Under Diagnostic Real-Life Conditions
    Original Research Paper Evaluation of FISH for Blood Cultures under Diagnostic Real-Life Conditions Annalena Reitz1, Sven Poppert2,3, Melanie Rieker4 and Hagen Frickmann5,6* 1University Hospital of the Goethe University, Frankfurt/Main, Germany 2Swiss Tropical and Public Health Institute, Basel, Switzerland 3Faculty of Medicine, University Basel, Basel, Switzerland 4MVZ Humangenetik Ulm, Ulm, Germany 5Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany 6Institute for Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany Received: 04 September 2018; accepted: 18 September 2018 Background: The study assessed a spectrum of previously published in-house fluorescence in-situ hybridization (FISH) probes in a combined approach regarding their diagnostic performance with incubated blood culture materials. Methods: Within a two-year interval, positive blood culture materials were assessed with Gram and FISH staining. Previously described and new FISH probes were combined to panels for Gram-positive cocci in grape-like clusters and in chains, as well as for Gram-negative rod-shaped bacteria. Covered pathogens comprised Staphylococcus spp., such as S. aureus, Micrococcus spp., Enterococcus spp., including E. faecium, E. faecalis, and E. gallinarum, Streptococcus spp., like S. pyogenes, S. agalactiae, and S. pneumoniae, Enterobacteriaceae, such as Escherichia coli, Klebsiella pneumoniae and Salmonella spp., Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Bacteroides spp. Results: A total of 955 blood culture materials were assessed with FISH. In 21 (2.2%) instances, FISH reaction led to non-interpretable results. With few exemptions, the tested FISH probes showed acceptable test characteristics even in the routine setting, with a sensitivity ranging from 28.6% (Bacteroides spp.) to 100% (6 probes) and a spec- ificity of >95% in all instances.
    [Show full text]
  • A Report of 31 Unrecorded Bacterial Species in South Korea Belonging to the Class Gammaproteobacteria
    Journal188 of Species Research 5(1):188-200, 2016JOURNAL OF SPECIES RESEARCH Vol. 5, No. 1 A report of 31 unrecorded bacterial species in South Korea belonging to the class Gammaproteobacteria Yong-Taek Jung1, Jin-Woo Bae2, Che Ok Jeon3, Kiseong Joh4, Chi Nam Seong5, Kwang Yeop Jahng6, Jang-Cheon Cho7, Chang-Jun Cha8, Wan-Taek Im9, Seung Bum Kim10 and Jung-Hoon Yoon1,* 1Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea 2Department of Biology, Kyung Hee University, Seoul 02447, Korea 3Department of Life Science, Chung-Ang University, Seoul 06974, Korea 4Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Korea 5Department of Biology, Sunchon National University, Suncheon 57922, Korea 6Department of Life Sciences, Chonbuk National University, Jeonju-si 54896, Korea 7Department of Biological Sciences, Inha University, Incheon 22212, Korea 8Department of Biotechnology, Chung-Ang University, Anseong 17546, Korea 9Department of Biotechnology, Hankyong National University, Anseong 17579, Korea 10Department of Microbiology, Chungnam National University, Daejeon 34134, Korea *Correspondent: [email protected] During recent screening to discover indigenous prokaryotic species in South Korea, a total of 31 bacterial strains assigned to the class Gammaproteobacteria were isolated from a variety of environmental samples including soil, tidal flat, freshwater, seawater, and plant roots. From the high 16S rRNA gene sequence similarity (>98.7%) and formation of a robust
    [Show full text]
  • Download Report
    final report Project code: G.MFS.0290 Prepared by: P. Scott Chandry CSIRO – Division of Animal, Food and Health Sciences Date published: December 2013 PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Metagenomic analysis of the microbial communities contaminating meat and carcasses Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government and contributions from the Australian Meat Processor Corporation to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. G.MFS.0290 - Metagenomics analysis of the microbial communities contaminating meat and carcasses Abstract The objective of this project was to demonstrate the applicability of metagenomic analysis to understand the ecology and sources of microbial contamination in an abattoir, specifically focusing on whether carcass contamination is derived from faeces or hides. Metagenomic techniques provide a more in depth analysis of microbial populations than traditional cultural techniques allowing analysis of many thousands of different bacterial species. Samples were taken from matched hides, carcasses, and faeces from every fifth animal for a total of 50 animals during a single processing day. Samples were processed to only yield material from live cells then analyzed to determine the type and abundance of microbes present.
    [Show full text]
  • Book 2 IJFMT Oct.2020.Indb
    1752 Indian Journal of Forensic Medicine & Toxicology, October-December 2020, Vol. 14, No. 4 Phylogenetic Tree Analysis of First Psychrobacter Sp. Strain From Blood of Iraqi Patient; A Case Report Nuha S. Jassim1, Sameer Abdul Ameer Alash2, Najwa Shihab Ahmed2 1Post graduate student/ Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq, 2Assist. Prof. Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq, 3Assist. Prof. Biotechnology Research center, Al-Nahrain University/Iraq Abstract Psychrobacter spp. are a Gram negative bacteria, aerobic, non-motile, small, with coccobacilli shape. Originally isolated from seaweed samples and marine environments. Recently considered as rare opportunistic human pathogens. Sixty –five years old women admitted to hospital with diabetic mellitus and stage 4 pressure ulcers (PU) with seizure and mild fever 37.9 °C. A gram staining of blood culture revealed gram negative bacteria have a cocobacilli shape. The VITEK2 system (bioMérieux) misidentify the isolate as Acinetobacter bumannii complex with low discrimination. The submission of the bacterial isolate to the GenBank BLAST search tool revealed that the Iraqi isolate show 100% homology with Psychrobacter sp. From china with accession number ID: MK205167.1, the next matches with Uncultured Psychrobacter sp. ( ID: KF859544.1 China) Psychrobacter pulmonis(ID: KU364058.1, India), Psychrobacter pulmonis (ID: MH550129.1, China)with 99% similarity for each one. This Psychrobacter sp. was the first isolate from bacteremia patients in Iraq. The identification based on 16S rRNA gene sequence for precisely identify this bacteria that misidentified by VITEK2 system. Key Words: Psychrobacter sp., 16S ribosomal RNA gene, Bacteremia Introduction Therefore, the spectrum of infectious diseases in human associated with thevarious species of the Psychrobacter PPsychrobacter species are gram-negative genus could rapidly change [4].
    [Show full text]
  • Diversity and Assessment of Potential Risk Factors of Gram-Negative Isolates Associated with French Cheeses
    Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses Monika Coton, Céline Delbes, Francoise Irlinger, Nathalie Desmasures, Anne Le Fleche, Marie-Christine Montel, Emmanuel Coton To cite this version: Monika Coton, Céline Delbes, Francoise Irlinger, Nathalie Desmasures, Anne Le Fleche, et al.. Diver- sity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiology, Elsevier, 2012, 29 (1), pp.88-98. 10.1016/j.fm.2011.08.020. hal-01001502 HAL Id: hal-01001502 https://hal.archives-ouvertes.fr/hal-01001502 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 1 Diversity and assessment of potential risk factors of Gram- 2 negative isolates associated with French cheeses . 3 4 Monika COTON 1, Céline DELBÈS-PAUS 2, Françoise IRLINGER 3, Nathalie 5 DESMASURES 4, Anne LE FLECHE 5, Valérie STAHL 6, Marie-Christine MONTEL 2 and 6 Emmanuel COTON 1†* 7 8 1ADRIA Normandie, Bd du 13 juin 1944, 14310 Villers-Bocage, France. 9 2INRA, URF 545, 20, côte de Reyne, Aurillac, France. 10 3INRA, UMR 782 GMPA, Thiverval-Grignon, France.
    [Show full text]