Metbulletin92 Corrected.Fm

Total Page:16

File Type:pdf, Size:1020Kb

Metbulletin92 Corrected.Fm Meteoritics & Planetary Science 42, Nr 9, 1647–1694 (2007) Abstract available online at http://meteoritics.org The Meteoritical Bulletin, No. 92, 2007 September Harold C. CONNOLLY, JR.1, 2, 3*, Caroline SMITH4, Gretchen BENEDIX4, Luigi FOLCO5, Kevin RIGHTER6, Jutta ZIPFEL7, Akira YAMAGUCHI8, and Hasnaa CHENNAOUI AOUDJEHANE9 1Department of Physical Science, Kingsborough Community College and the Graduate School of the City University of New York, 2001 Oriental Boulevard, Brooklyn, New York 11235, USA 2Department of Earth and Planetary Science, American Museum of Natural History, Central Park West, New York, New York 10024, USA 3Lunar and Planetary Laboratory, Department of Planetary Sciences, The University of Arizona, Tucson, Arizona 85721, USA 4Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 5Museo Nazionale Antartide, Via Laterina 8, I-53100 Siena, Italy 6Code ST, NASA Johnson Space Center, Houston, Texas 77058, USA 7Sektion Meteoritenforschung, Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany 8Antarctic Meteorite Research Center, National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan 9Université Hassan II Casablanca, Faculté des sciences, Département de Géologie, BP 5366, Mâarif, Casablanca, Morocco * Corresponding author. E-mail: [email protected] (Received 04 September 2007) Abstract–In this edition of The Meteoritical Bulletin, 1394 recognized meteorites are reported, 27 from specific locations within Africa, 133 from Northwest Africa, 1227 from Antarctica (from ANSMET, PNRA, and PRIC expeditions), and 7 from Asia. The Meteoritical Bulletin announces the approval of four new names series by the Nomenclature Committee of the Meteoritical Society, two from Africa and one from Asia, including Al Haggounia, from Al Haggounia, Morocco, which is projected to be on the order of 3 metric tons of material related to enstatite chondrites and aubrites. Approved are two falls from Africa, Bassikounou (Mauritania) and Gashua (Nigeria). Approved from areas other than Antarctica are one lunar, two Martian, 32 other achondrites, three mesosiderites, two pallasites, one CM, two CK, one CR2, two CV3, one CR2, and four R chondrites. The Nomenclature Committee of the Meteoritical Society announces 48 newly approved relict meteorites from two new name series, Österplana and Gullhögen (both from Sweden). AFRICA larger lithic clasts (up to 0.3 mm) and vesicular glassy matrix and veins. Minerals identified include pyroxene, Libya plagioclase, olivine, ilmenite, kamacite, and troilite. Lithic clasts include gabbro (composed of plagioclase and Dar al Gani 1048 27°12.10′N, 16°18.67′E pigeonite) and very fine grained, ophitic-textured basalt Libya (composed of plagioclase and olivine with accessory Find: June 28, 2001 orthopyroxene, troilite, metal, and rutile). Several glassy Achondrite (lunar, feldspathic breccia) spheres were found. History: A tiny complete individual stone was recovered by Geochemistry: Olivine (Fa19.6–49.6, FeO/MnO = 93–98), an anonymous finder in June 2001 and purchased by pigeonite (Fs20.2–61.9Wo5.3–7.2, FeO/MnO = 54.8–66.5), and N. Classen in 2003 in Vienna, Austria. plagioclase (An97–98Or0). Physical characteristics: A single 0.801 g medium gray Classification: Achondrite (lunar, feldspathic breccia). This stone with some diffuse whitish clasts. About 70% of the stone is likely paired with Dar al Gani 262 and Dar al Gani stone is covered by fusion crust. 996. Petrography: (A. Irving and S. Kuehner, UWS) Type specimens: A total of 0.33 g of sample is on deposit at Predominantly very fine-grained mineral debris with some UWS. Classen holds the main mass. 1647 © The Meteoritical Society, 2007. Printed in USA. 1648 H. C. Connolly, Jr., et al. Mauritania samples potentially from this area varies, ranging from EL3 chondrite to aubrite. Bassikounou 15°47′N, 5°54′W Bassikounou, Hodh Ech Chargui, Mauritania Al Haggounia 001 27°30′N, 12°30′W Fall: 16 October 2006, 04:00 UTC Al Haggounia, Morocco Ordinary chondrite (H5) Find: 2006 History: A fireball was witnessed in the area, but no records Achondrite (aubrite) of the direction of movement were recorded. A single stone of History: Several tons of this material have been found on 3165 g was found by A. Salem El Moichine, a local resident, the ground or by digging near Al Haggounia, Morocco on the same day at 13:00 h local time, 11 km SE of (see Chennaoui et al. 2007 for description of the strewn Bassikounou. The sample for classification was provided to field), and sold to several dealers. The coordinates are NMBE by M. Ould Mounir, Nouakchott, who obtained it given for the center of the strewn field, which extends from his cousin who recovered the meteorite. According to ~40 km. S. Buhl (Hamburg, Germany), more than 20 specimens were Physical characteristics: It is impossible to precisely later recovered by locals and meteorite finders. These finds assess the amount of material already (and to be) define an 8 km long strewn field. The total recovered mass is recovered, but according to dealers, collectors, and Jambon, 46.00 kg. it is about 3 metric tons composing many samples of varied Physical characteristics: The 3165 g specimen is largely sizes (from a few g to 50 kg). The largest stones were covered by black fusion crust. The interior is light gray. On recovered after excavating them from the ground. The outer the surface of the fusion crust there is some adherent soil surface is rusty brown due to severe alteration and looks material, some of which is bright red. Shortly after recovery, like a sedimentary breccia cemented by iron oxide and the stone was cut into two pieces of 1200 and 1950 g. The carbonate. Color changes from bluish gray to rusty brown larger piece has a rectangular shape and shows indications of closest to the fractures are observed. Yellow patches of flow lines in the fusion crust. sulfur (alteration) are widespread. The rocks are Petrography: (E. Gnos, MHNGE; B. Hofmann, NMBE, significantly porous, with pore sizes from several M. Eggimann, Bern/NMBE): Mean chondrule size centimeters to hundreds of microns. 0.35 mm (n = 53). Metal abundance is 8 vol%, troilite Petrography: (A. Jambon, O. Boudouma, and D. Badia. 6.6 vol%. Mean plagioclase grain size is ~20 μm. Troilite UPVI) Dominated by enstatite and plagioclase. Troilite, is polycrystalline, rich in silicate inclusions, and shows graphite daubreelite, oldhamite, kamacite rich in Si, and diffuse boundaries to metal. Metal is partly rich in schreibersite are present. μ silicate and troilite inclusions. Rare metallic Cu (10 m) Mineral compositions: Enstatite (En98Fs1Wo1) and occurs at kamacite-taenite boundaries and in troilite. plagioclase (Ab78An16Or5). Some shock veins and no weathering products were Classification: Achondrite (aubrite); extensive weathering. observed. Similar to and likely paired with NWA 002, 1067, 2736, 2828, Mineral compositions: Olivine (Fa18.6), pyroxene (Fs16.3 2965. Wo1.1), and plagioclase (An13.7). Type specimens: A total of 50 g of sample and three polished Cosmogenic radionuclides: (P. Weber, PPGUN) Gamma- sections are on deposit at UPVI. spectroscopy performed in December 2006 and January 2007 Main masses: Beroud, 3886 g (26 pieces from 1185 g to showed the presence of the following radionuclides: 48V, 46Sc, 5.8 g); P. Thomas, 4497 g (33 pieces from 11 to 1507 g); 56Co, 54Mn, 58Co, 7Be, 51Cr, 57Co, 22Na, 26Al, and 60Co. Hmani, about 500 kg; Ouzrou, about 500 kg. Recalculated to 12 October 2006 22Na was 38.0 ± 2.2 and 26Al 31.5 ± 2.1 (both dpm/kg), the activity ratio of 1.21 is The Meteoritical Bulletin announces a new name series fully consistent with a fall on that date. approved by the Nomenclature Committee of the Classification: Ordinary chondrite (H5); S2, W0. Meteoritical Society, Istifane, located in the Istifane region of Type specimens: A total of 115 g are on deposit at NMBE. Morocco. Boudreaux holds the main mass. Istifane 001 31°29.911′N, 5°43.045′W Morocco Morocco Find: 24 July 2005 The Meteoritical Bulletin announces a new name series Ordinary chondrite (H4) approved by the Nomenclature Committee of the Meteoritical Physical characteristics: It consists of three separate pieces Society from a dense collection area near Al Haggounia, of 68.0, 51.8, and 11.8 g, with a total mass of 131.6 g. The Morocco (Chennaoui et al. 2007), comprising approximately three pieces fit together documenting that they are fragments 3 tons of material. It should be noted that the classification of of a single stone. The Meteoritical Bulletin, No. 92 1649 Petrography: (A. Ibhi and H. Nachit IZU, H. Chennaoui Nigeria Aoudjehane UHAC) It is severely weathered with a dark orange-brown color. Metallic Fe-Ni and/or troilite grains are Gashua 12°51′N, 11°02′E frequently replaced by iron oxide. Plagioclase grains are up to Dapchi, Nigeria 100 μm in size. Fall: April 1984 Mineral compositions: Olivine (Fa18.4–19.2), orthopyroxene Ordinary chondrite (L6) (Fs16.2–17.5). History: The meteorite fall was reported by anonymous Classification: Ordinary chondrite (H4); S3, W4. eyewitnesses to have occurred around April 1984 (about the Type specimens: Three polished thin sections and three time of the nearby Gujba fall) near the tiny desert settlement fragments totalling 104 g are on deposit at IZU. Kolomari close to the town of Gashua, Dapchi district, Nigeria. Istifane 002 31°29.909′N, 5°43.044′W Physical characteristics: A single stone of 4162 g was Morocco recovered and broken by villagers into many pieces at the Find: 17 August 2005 place of the fall. The pieces were stored by villagers until they Ordinary chondrite (H5) were collected in 2005 and sent to E. Twelker. Physical characteristics: One 40 g stone, brownish in color. Petrography: (A. Greshake, NHB) The meteorite is a weakly Mineral compositions: (A.
Recommended publications
  • Formation Mechanisms of Ringwoodite: Clues from the Martian Meteorite
    Zhang et al. Earth, Planets and Space (2021) 73:165 https://doi.org/10.1186/s40623-021-01494-1 FULL PAPER Open Access Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705 Ting Zhang1,2, Sen Hu1, Nian Wang1,2, Yangting Lin1* , Lixin Gu1,3, Xu Tang1,3, Xinyu Zou4 and Mingming Zhang1 Abstract Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The frst two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor- phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post- shock pressure of 14–16 GPa and a temperature of 1650–1750 °C.
    [Show full text]
  • 50 Years of Petrology
    spe500-01 1st pgs page 1 The Geological Society of America 18888 201320 Special Paper 500 2013 CELEBRATING ADVANCES IN GEOSCIENCE Plates, planets, and phase changes: 50 years of petrology David Walker* Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA ABSTRACT Three advances of the previous half-century fundamentally altered petrology, along with the rest of the Earth sciences. Planetary exploration, plate tectonics, and a plethora of new tools all changed the way we understand, and the way we explore, our natural world. And yet the same large questions in petrology remain the same large questions. We now have more information and understanding, but we still wish to know the following. How do we account for the variety of rock types that are found? What does the variety and distribution of these materials in time and space tell us? Have there been secular changes to these patterns, and are there future implications? This review examines these bigger questions in the context of our new understand- ings and suggests the extent to which these questions have been answered. We now do know how the early evolution of planets can proceed from examples other than Earth, how the broad rock cycle of the present plate tectonic regime of Earth works, how the lithosphere atmosphere hydrosphere and biosphere have some connections to each other, and how our resources depend on all these things. We have learned that small planets, whose early histories have not been erased, go through a wholesale igneous processing essentially coeval with their formation.
    [Show full text]
  • Impact Shock Origin of Diamonds in Ureilite Meteorites
    Impact shock origin of diamonds in ureilite meteorites Fabrizio Nestolaa,b,1, Cyrena A. Goodrichc,1, Marta Moranad, Anna Barbarod, Ryan S. Jakubeke, Oliver Christa, Frank E. Brenkerb, M. Chiara Domeneghettid, M. Chiara Dalconia, Matteo Alvarod, Anna M. Fiorettif, Konstantin D. Litasovg, Marc D. Friesh, Matteo Leonii,j, Nicola P. M. Casatik, Peter Jenniskensl, and Muawia H. Shaddadm aDepartment of Geosciences, University of Padova, I-35131 Padova, Italy; bGeoscience Institute, Goethe University Frankfurt, 60323 Frankfurt, Germany; cLunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058; dDepartment of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; eAstromaterials Research and Exploration Science Division, Jacobs Johnson Space Center Engineering, Technology and Science, NASA, Houston, TX 77058; fInstitute of Geosciences and Earth Resources, National Research Council, I-35131 Padova, Italy; gVereshchagin Institute for High Pressure Physics RAS, Troitsk, 108840 Moscow, Russia; hNASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, TX 77058; iDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy; jSaudi Aramco R&D Center, 31311 Dhahran, Saudi Arabia; kSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland; lCarl Sagan Center, SETI Institute, Mountain View, CA 94043; and mDepartment of Physics and Astronomy, University of Khartoum, 11111 Khartoum, Sudan Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved August 12, 2020 (received for review October 31, 2019) The origin of diamonds in ureilite meteorites is a timely topic in to various degrees and in these samples the graphite areas, though planetary geology as recent studies have proposed their formation still having external blade-shaped morphologies, are internally at static pressures >20 GPa in a large planetary body, like diamonds polycrystalline (18).
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Ultrafast Growth of Wadsleyite in Shock-Produced Melts and Its Implications for Early Solar System Impact Processes
    Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes Oliver Tschaunera,b, Paul D. Asimowb, Natalya Kostandovab, Thomas J. Ahrensb,c,1, Chi Mab, Stanislas Sinogeikind, Zhenxian Liue, Sirine Fakraf, and Nobumichi Tamuraf aHigh Pressure Science and Engineering Center, Department of Physics, University of Nevada, Las Vegas, NV 89154; bDivision of Geological and Planetary Sciences, and cLindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125; dHigh Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439; eGeophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015; and fAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Thomas J. Ahrens, June 17, 2009 (sent for review June 20, 2008) We observed micrometer-sized grains of wadsleyite, a high-pres- induced melt veins of meteorites. Seconds- to minutes-long sure phase of (Mg,Fe)2SiO4, in the recovery products of a shock high-pressure durations are not achievable in laboratory-scale experiment. We infer these grains crystallized from shock-gener- shock experiments, which is generally considered one of the ated melt over a time interval of <1 ␮s, the maximum time over principal reasons for the failure to recover these phases in which our experiment reached and sustained pressure sufficient to experiments (12, 20, 25). If long shock durations are in
    [Show full text]
  • Aluminium-Mg Systematics of Winonaites and Differentiation of the Iab-Winonaite Parent Body
    77th Annual Meteoritical Society Meeting (2014) 5155.pdf ALUMINIUM-MG SYSTEMATICS OF WINONAITES AND DIFFERENTIATION OF THE IAB-WINONAITE PARENT BODY. Y. Hidaka1, V. Debaille1 and G. Hublet1. 1Laboratoire G-Time, Université Libre de Bruxelles, Brussels, Belgium. Introduction: Primitive achondrites such as winonaites are important materials to investigate the early differentiation processes of asteroids. Winonaites are considered to originate from the same parent body than IAB non-magmatic iron meteorites [1]. Short-lived radionuclide chronometers are useful to understand the first few million years of the solar system history. The Al-Mg system is one of the most established short- lived systematics that provides a very good time resolution. Previous Hf-W isotopic studies have revealed that IAB- winonaite parent body had accreted ~1 Ma after CAI formation [2] and its magmatic activity ceased ~4 Ma later [3]. However, there is no other chronological data of winonaites from other short-lived radionuclide systems, in particular from fully lithophile systematics, as W is siderophile. Therefore, we consider here additional Al-Mg chronological data of winonaites to investigate the early evolutionary history of the silicate portion of their parent body. Results and Discussion: We have investigated two winonaite meteorites NWA 725 and Y-8005, with a present focus on the first one. NWA 725 is officially classified as an acapulcoite, but oxygen isotopic data of this meteorite indicated that NWA 725 and paired meteorites are actually winonaites [4, 5]. NWA 725 has been reported as chondrule-bearing, the least metamorphosed primitive achondrite [6]. The evolutionary models of IAB-winonaite parent body [1, 2] indicated that this parent body should preserve intact, chondritic areas during partial melting and silicate-metal segregation processes.
    [Show full text]
  • 'San Juan', a New Mass of the Campo Del Cielo Meteorite Shower
    ‘San Juan’, a new mass of the Campo del Cielo meteorite shower Marcela Eliana SAAVEDRA1, María Eugenia VARELA1, Andrew J. CAMPBELL 2 and Dan TOPA 3 1Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE)-CONICET, San Juan, Argentina. 2Deptartment of the Geophysical Sciences, University of Chicago, , Chicago, USA. 3Central Research Laboratories, Natural History Museum, , Vienna, Austria. Email: [email protected] Editor: Diego A. Kietzmann Recibido: 19 de marzo de 2021 Aceptado: 15 de junio de 2021 Disponible online: 15 de junio de 2021 ABSTRACT Petrographic and chemical (major, minor and trace element) studies of silicate inclusions and metal from the San Juan A and B samples revealed that they are new masses belonging to the Campo del Cielo IAB iron meteorite shower. These masses must have being transported from the large strewn field in the Chaco and Santiago del Estero Provinces to the surroundings of San Juan city, where they have being recover in the year 2000. The sizes of the two masses of San Juan, collected 770 km SW from Santiago del Estero, is in agreement with the previously suggested anthropic hypothesis for the transport of Campo del Cielo. Keywords: IAB iron meteorites, Campo del Cielo meteorite, San Juan meteorite. RESUMEN San Juan, una nueva masa de la lluvia de meteoritos de Campo del Cielo Estudios petrográficos y químicos (elementos mayores, menores y trazas) de inclusiones de silicatos y de metal de las muestras A y B de San Juan, reveló que son nuevas masas que pertenecen a la lluvia de meteoritos de Campo del Cielo.
    [Show full text]
  • A New Primitive Achondrite from Northwest Africa
    A New Primitive Achondrite from Northwest Africa Kseniya K. Androsova* University of Calgary, Calgary, AB, Canada [email protected] and Alan R. Hildebrand University of Calgary, Calgary, AB, Canada Summary The winonaite and acapulcoite/lodranite meteorites constitute small groups of primitive achondrites that have experienced thermal metamorphism sometimes accompanied by varying degrees of partial melting. Petrographic and elemental abundance studies [optical microscope observations and electron microprobe analysis] have been conducted on several meteorites recovered in Northwest Africa (NWA). One meteorite has fine-grained, granulitic texture, abundant, evenly distributed metal and troilite grains, and highly reduced mineral compositions [Olivine (Fa6.0±0.4), low-Ca pyroxene (Fs7.5±0.4, Wo1.3±0.2), high-Ca pyroxene (Fs3.2±0.2, Wo45.8±0.7)]. Based on these criteria it appears that the data are consistent with the sample being a winonaite. The overall textural resemblance of this meteorite to NWA 1463 and /or NWA 725 (somewhat anomalous) winonaites (both having multiple relict chondrules) may suggest that this meteorite is paired with one or both. Although, until its oxygen isotope composition is obtained the classification of this meteorite as a winonaite (vs. as an acapulcoite) remains uncertain, its primitive achondritic nature is quite evident. Introduction The winonaite meteorites represent a class of rare primitive achondrites (together with the acapulcoite/lodranite association) that have sometimes undergone partial melting but generally have chondritic mineralogy and composition. Winonaites can be characterized by fine- to medium-grained, mostly granulitic textures, highly reduced mineral compositions, and unique oxygen isotope signatures (Benedix et al., 1998). Although most of the winonaites lack chondrules, several have been reported to have regions containing relict chondrules.
    [Show full text]
  • Insights Into the Origin of Carbonaceous Chondrite Organics from Their Triple Oxygen Isotope Composition
    The University of Manchester Research Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition DOI: 10.1073/pnas.1808101115 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Tartese, R., Chaussidon, M., Gurenko, A., Delarue, F., & Robert, F. (2018). Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1808101115 Published in: Proceedings of the National Academy of Sciences of the United States of America Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:04. Oct. 2021 1 Insights into the origin of carbonaceous chondrite organics from their triple 2 oxygen isotope composition 3 4 Romain Tartèsea,*, Marc Chaussidonb, Andrey Gurenkoc, Frédéric Delarued, François Roberte 5 6 7 aSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 8 9PL, UK.
    [Show full text]
  • Siderophile Elements and Molybdenum, Tungsten, And
    ABSTRACT Title of Dissertation: SIDEROPHILE ELEMENTS AND MOLYBDENUM, TUNGSTEN, AND OSMIUM ISOTOPES AS TRACERS OF PLANETARY GENETICS AND DIFFERENTIATION: IMPLICATIONS FOR THE IAB IRON METEORITE COMPLEX Emily Anne Worsham, Doctor of Philosophy, 2016 Dissertation directed by: Professor Richard Walker, Department of Geology Isotopic and trace element abundance data for iron meteorites and chondrites are presented in order to investigate the nature of genetic relations between and among meteorite groups. Nebular and planetary diversity and processes, such as differentiation, can be better understood through study of IAB complex iron meteorites. This is a large group of chemically and texturally similar meteorites that likely represent metals with a thermal history unlike most other iron meteorite groups, which sample the cores of differentiated planetesimals. The IAB complex contains a number of chemical subgroups. Trace element determination and modeling, Re/Os isotopic systematics, nucleosynthetic Mo isotopic data, and 182Hf-182W geochronology are used to determine the crystallization history, genetics, and relative metal-silicate segregation ages of the IAB iron meteorite complex. Highly siderophile element abundances in IAB complex meteorites demonstrate that diverse crystallization mechanisms are represented in the IAB complex. Relative abundances of volatile siderophile elements also suggest late condensation of some IAB precursor materials. Improvements in the procedures for the separation, purification, and high- precision analysis of Mo have led to a ~2 fold increase in the precision of 97Mo/96Mo isotope ratio measurements, compared to previously published methods. Cosmic ray exposure-corrected Mo isotopic compositions of IAB complex irons indicate that at least three parent bodies are represented in the complex. The Hf-W metal-silicate segregation model ages of IAB complex subgroups suggests that at least four metal segregation events occurred among the various IAB parent bodies.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Primitive and Differentiated
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Primitive and differentiated achondrite meteorites and partial melting in the early Solar System A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Earth Sciences By Christopher Andrew Corder Committee in charge: Professor James M. D. Day, Chair Professor Geoffrey W. Cook Professor David R. Stegman 2015 © Christopher Andrew Corder, 2015 All rights reserved. The Thesis of Christopher Corder is approved and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2015 iii Dedication This manuscript would be far from complete without thanking those who helped set the stage for the many hours of work it documents, and those thank-yous would be far from complete without recognizing my parents and their unwavering support throughout years of study. I know I was the one in the lab, but I never would have made it there, or to my defense, or through any of the long days and nights if it weren’t for you both. Thank you, so much. I’d love to thank my entire family, especially Stephen. You’re a brother Stephen, and you encourage me more than you know. Whenever it seemed like research was going nowhere, you were there to remind me why science is always a worthwhile endeavor. Even more importantly you remind me, by example, that there are exceptional people in this world. Many thanks are due to the lab group I worked with and other smart folks at SIO. First of all, thank you James for trusting this intriguing suite of meteorites to my care.
    [Show full text]
  • Revision 1 Characterization of Carbon Phases in Yamato 74123 Ureilite To
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7856. http://www.minsocam.org/ 1 Revision 1 2 3 Characterization of carbon phases in Yamato 74123 ureilite to constrain 4 the meteorite shock history 5 word count: 6142 6 7 ANNA BARBARO1, FABRIZIO NESTOLA2,3, LIDIA PITTARELLO4, 8 LUDOVIC FERRIÈRE4, MARA MURRI5, KONSTANTIN D. LITASOV6, OLIVER CHRIST2, 9 MATTEO ALVARO1, AND M. CHIARA DOMENEGHETTI1 10 1 Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata 1, I-27100, Pavia, Italy 11 2 Department of Geosciences, University of Padova, Via Gradenigo 6, 35131, Padova, Italy 12 3 Geoscience Institute, Goethe-University Frankfurt, Altenhöferallee 1, 60323, Frankfurt, Germany 13 4 Natural History Museum, Department of Mineralogy and Petrography, Burgring 7, 1010, Vienna, Austria 14 5 Department of Earth and Environmental Sciences, University of Milano-Bicocca, I-20126, Milano, Italy 15 6 Vereshchagin Institute for High Pressure Physics RAS, Troitsk, Moscow, 108840, Russia 16 17 ABSTRACT 18 The formation and shock history of ureilite meteorites, a relatively abundant type of 19 primitive achondrites, has been debated since decades. For this purpose, the characterization 20 of carbon phases can provide further information on diamond and graphite formation in 21 ureilites, shedding light on the origin and history of this meteorite group. In this work, we 22 present X-ray diffraction and micro-Raman spectroscopy analyses performed on diamond and 23 graphite occurring in the ureilite Yamato 74123 (Y-74123).
    [Show full text]