Mixed Pair of South Polar Skua Male (Left) and Brown Skua Female

Total Page:16

File Type:pdf, Size:1020Kb

Mixed Pair of South Polar Skua Male (Left) and Brown Skua Female Mixed pair of South Polar Skua male (left) and Brown Skua female Speciation and hybridisation in skuas (Catharacta spp.) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller- Universität Jena am 4.12.2008 und am 16.3.2009 verteidigt von Diplom-Biologe Markus Ritz geboren am 17.08.1976 in Dresden Gutachter: Prof. Stefan Halle, Jena Prof. Gerald Heckel, Bern, Schweiz Prof. Peter de Knijff, Leiden, Niederlande Markus Ritz: Speciation and hybridisation in skuas CONTENT INTRODUCTION ............................................................................................................................ 1 Speciation and hybridisation .................................................................................................. 1 Phylogeography and glaciation .............................................................................................. 3 Skua diversity ......................................................................................................................... 4 Hybridisation between southern skua taxa ............................................................................. 7 AIMS OF THE STUDY .................................................................................................................... 8 MANUSCRIPT 1 .......................................................................................................................... 10 Ritz, M.S., Millar, C., Miller, G.D., Phillips, R.A., Ryan, P., Sternkopf, V., Liebers- Helbig, D. & Peter, H-U. (2008) Phylogeography of the southern skua complex – rapid colonization of the southern hemisphere during a glacial period and reticulate evolution. Molecular Phylogenetics and Evolution 49(1): 292-303 MANUSCRIPT 2 .......................................................................................................................... 23 Votier S.C., Kennedy M., Bearhop S., Newell R.G., Griffiths K., Whitaker H., Ritz M.S. & Furness R.W. (2007) Supplementary DNA evidence fails to confirm presence of Brown Skuas Stercorarius antarctica in Europe: a retraction of Votier et al. (2004). Ibis 149(3): 619-621 MANUSCRIPT 3 .......................................................................................................................... 27 Ritz M.S., Hahn S., Janicke T. & Peter H.-U. (2006) Hybridisation between South polar skua (Catharacta maccormicki) and Brown skua (C. antarctica lonnbergi) in the Antarctic Peninsula region. Polar Biology 29(3): 153-159 MANUSCRIPT 4 .......................................................................................................................... 35 Ritz M.S. & Peter H.-U. (re-submitted to Molecular Ecology on 30.11.2008) Hybrid identification using AFLP markers in a hybrid zone between two recently diverged seabird species – strong admixture and biased gene flow DISCUSSION ............................................................................................................................... 61 Methods ................................................................................................................................ 61 Phylogeographic study (manuscript 1) ............................................................................ 61 SNP between South Polar Skua and all other southern skuas (manuscript 2) ................ 62 Hybrid zone description (manuscript 3) ........................................................................... 63 AFLP hybrid assignment (manuscript 4) ......................................................................... 63 Phylogeography of southern hemisphere skuas ................................................................... 65 Mitochondrial mutation rate ............................................................................................ 65 Colonisation of the southern hemisphere ......................................................................... 66 Diversification of the southern skua complex .................................................................. 66 Glaciation and skua diversification ................................................................................. 68 Speciation mode ............................................................................................................... 68 Educated guesses concerning the skua enigma ................................................................ 68 Hybridisation between South Polar Skua and Brown Skua ................................................. 69 Hybrid zone characterisation ........................................................................................... 69 Preliminary fitness aspects ............................................................................................... 70 Degree of admixture and direction of introgression ........................................................ 71 Mate choice in skuas ........................................................................................................ 72 Taxonomic status of southern skuas ................................................................................. 73 OPEN QUESTIONS, ONGOING PROJECTS ...................................................................................... 75 SUMMARY ................................................................................................................................. 77 ZUSAMMENFASSUNG ................................................................................................................. 79 REFERENCES ............................................................................................................................. 81 Markus Ritz: Speciation and hybridisation in skuas Introduction INTRODUCTION Speciation and hybridisation Speciation, the process of species formation, is a central topic in evolutionary biology. Whilst the foundations of evolution, variability and selection, were quickly accepted amongst scientists after the publication of “On the origin of species” (Darwin 1859), it proved much harder to find how species actually diverge and evolve into distinct groups. One reason is that the emergence of a new species can usually not be observed during time scales comparable to a researcher’s career. Studies on speciation will thus have to try to reconstruct the past or to confine to a specific stage in speciation. This raises the question at which stage two taxa can be called separate species. So, Darwin went too far in his conclusions in the “Origin” that by studying evolution “… we shall at least be freed from the vain search for the undiscovered and undiscoverable essence of the term species.” Whilst it is now widely accepted that taxa are variable and it is worthwhile to study biodiversity irrespective of the level of variation (e.g. genera, species, subspecies, ecotypes,…), there are still reasons to adopt a definition for “species” (Coyne and Orr 2004). Most scientists agree that species are real entities in nature and not human constructs to classify organisms. However, in compliance with the saying that “ in a room with ten evolutionary biologists you will hear at least eleven different species concepts” I will not discuss any of the numerous species concepts but only describe the “comprehensive biologic species concept” (CBSC, Johnson et al. 1999) which was introduced with special emphasis on birds. It is a broader version of the biological species concept (Dobzhansky 1937, Mayr 1942) and accounts for the observed stability of species in spite of hybridisation. According to the CBSC an avian species “…is a system of populations representing an essentially monophyletic, genetically cohesive, and genealogically concordant lineage of individuals that share a common fertilisation system through time and space, represent an independent evolutionary trajectory, and demonstrate essential but not necessarily complete reproductive isolation from other such systems.” Three main routes to speciation have been described based on the geographic circumstances during divergence. Sympatric speciation assumes that divergence takes place within a population due to for example disruptive selection. Numerous models have been developed to explore the conditions under which sympatric speciation may occur (e.g. Higashi et al. 1999, 1 Markus Ritz: Speciation and hybridisation in skuas Introduction Via 2001, Kirkpatrick and Ravigne 2002, Gavrilets 2003). The very restrictive conditions allowing for evolution of reproductive isolation in the presence of gene flow argue against sympatric speciation being a common mode of speciation in animals. Some scientists even deny the possibility of sympatric speciation but a few model groups are discussed as candidates for divergence in the presence of gene flow (Coyne and Orr 2004, Bolnick and Fitzpatrick 2007). Parapatric speciation describes the process, where upon a taxon evolves into two taxa with adjacent ranges. This is a likely scenario if the species has a wide range with ecological breaks. Taxa may then diverge along an ecotone or perhaps a migratory divide. The resulting area of contact would be a primary hybrid zone. However, it is hard, or even impossible, to prove that the two groups were not geographically isolated from each other for at least some time during the past. The probably most common process in birds, allopatric speciation, is based on a geographic separation of groups of organisms. The independent evolution of these
Recommended publications
  • A Possible Brown Skua (<I>Stercorarius Antarcticus</I>) On
    lan McLaren mer (June-August)specimens in Canadi- in both publishedarticles and material an museumscollected prior to 1980 in At- postedon the WorldWideWeb,has indicat- BiologyDepartment lantic Canada have been critically identi- edto us thatthe Sable Island bird strongly fied as South Polar Skuas (Michel resembledBrown Skua, although deficien- DalhousieUniversity Gossefin, National Museum of Canada, cies in this information lead us to leave it pers. comm.;University of WesternOn- formallyunidentified. Halifax,Nova Scotia B3H 4J1 tario [seebelow]). All GreatSkua speci- mens have come from the Grand Banks: an ([email protected]) BACKGROUND ON CONFIRMED AND immature in late August 1961 (D. POSSIBLE BROWN SKUAS IN THE McAlpine,New Brunswick Museum, pers. NORTH ATLANTIC Zoe Lucas comm.)and severaladults in September Even after Chilean (S. chilensis)and South (M. Gossefin,pers. comm.). The Great Polar Skuaswere recognizedas distinct P.O.Box 64, Halifax CRO Skuaslisted for SableIsland by McLaren species,the three other skua taxa in the (1980)were not criticallyidentified. Nova Southern Hemisphere continued to be Halifax,Nova Scotia B3J 2L4 Scotianobservers have attemptedto dis- classifiedas formsof GreatSkua (e.g., tinguishthe two speciessince at leastthe Devillers1977). BrownSkna, however, has early 1980s.Since 1992, Lucas has studied becomegenerally recognized as a distinct six live Great Skuas on Sable Island at fair- specieswith threesubspecies (e.g., Olsen ABSTRRCT ly closerange and has found five tideline and Larsson 1997): Falkland Skua,
    [Show full text]
  • BROWN SKUAS Stercorarius Antarcticus INCUBATE a MACARONI PENGUIN EUDYPTES CHRYSOLOPHUS EGG at MARION ISLAND
    Clokie & Cooper: Skuas incubate a Macaroni Penquin egg 59 BROWN SKUAS STERCORARIUS antarcticus INCUBATE A MACARONI PENGUIN EUDYPTES CHRYSOLOPHUS EGG AT MARION ISLAND LINDA CLOKIE1 & JOHN COOPER2,3 1Marine & Coastal Management Branch, Department of Environmental Affairs, Private Bag X2, Rogge Bay 8012, South Africa 2Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch 7701, South Africa 3DST/NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa ([email protected]) Received 3 October 2009, accepted 5 February 2010 Brown/Sub-antarctic Skua Stercorarius antarcticus are widely -sized for skua eggs, thus deemed to be the birds’ own clutch, but distributed at cool-temperate and sub-Antarctic islands in the the third was an all-white egg (Fig. 1). This egg was noticeably Southern Ocean, where their diet includes burrowing petrels caught larger than the two skua eggs, and was more rounded in shape. at night and eggs stolen from incubating birds, especially penguins, On 19 December when the nest was revisited one of the two skua during the day (Furness 1987, Higgins & Davies 1996, Shirihai eggs was no longer present. During visits on 21 December 2008 2007). At Marion Island, Prince Edward Islands in the southern and on 4 and 15 January 2009 only the white egg was present, and Indian Ocean, Brown Skua prey on eggs of crested penguins the displaced incubating bird was quick to defend its nest. On 9 Eudyptes sp. during summer months which they remove in their February 2009 the skua pair was still present at the nest, with one bills from the colonies by flying to nearby middens where the eggs’ bird in an incubating position, but the nest was empty of contents.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Chinstrap Penguins Gather Here to Breed
    t is one of the most desolate to this chinstrap stronghold to survey places on Earth. The ice-capped the breeding population. The chinstrap mountain of Elephant Island is may be the most abundant of Antarctica’s an inhospitable crag whose sheer penguins, with an estimated 7.5 million cliffs feel the full force of the breeding pairs, but their populations Southern Ocean on all sides. Yet, have plummeted in the past 40 years. each December, this tiny Antarctic Signy, Deception and Penguin Islands, Penguin Ioutpost transforms into a riot of sound for instance, have experienced declines and colour as tens of thousands of of 50–70 per cent. By carrying out counts chinstrap penguins gather here to breed. on Elephant Island, last surveyed in Nesting in rookeries almost 200m 1971, plus a string of other, little-studied above the sea, these charismatic birds – islands, the team wanted to find out if the named for the thin black line that gives pattern was true elsewhere. them a helmeted appearance – stain huge swathes of the island pink with guano. Bird’s-eye view The stench is matched in intensity only Day one involves scaling a 70m cliff to Puzzle by the noise. “It’s like being in a football count one of the island’s largest colonies. Antarctica’s chinstrap stadium – it’s an assault on your senses,” Thousands of penguins gather in the penguins are in decline, says Noah Strycker, one of four penguin amphitheatre-like space below, watching biologists that I accompanied to this over their fluffball chicks, while others their demise a sign of remote outpost in early January.
    [Show full text]
  • Antarctica 14Th February – 3Rd March 2019
    An Ultimate Invitation: Antarctica 14th February – 3rd March 2019 Hosted by Nick and Iris Van Gruisen With Guest Lecturers Dr Huw Lewis Jones, Kari Herbert and Nigel and Shane Winser. The Ultimate Travel Company Escorted Tours Map count Introduction There is nothing on this earth that can quite compare with the awesome beauty of Antarctica, and few of us have not dreamed of following Scott, Shackleton and Amundsen to these frozen wastelands at the bottom of the world. So why not turn those dreams into reality and join us on a very special journey to the Great White Continent? Here, in this world of perpetual snow and ice below the 60th parallel, some of the world’s most enchanting creatures survive to bring colour and sound to an otherwise harsh and silent environment. Beaches resound to the raucous bellows of elephant, fur and leopard seals, Humpback and Minke whales glide effortlessly through the still, near-frozen waters, and colonies of Adelie, Chinstrap, Gentoo and King Penguin congregate in huge numbers on the vast snow plains. The RCGS Resolute is the ideal vessel for such an expedition with her unsurpassed ice classification, her excellent manoeuvrability and large indoor and outdoor viewing platforms. She is also extremely comfortable with all cabins with en suite facilities and excellent public areas. She has 146 berths, but we will be limiting numbers to around 90 to ensure even more personal service and space. Lastly, we have been fortunate enough to negotiate an excellent rate so the expedition offers excellent value, especially the Single Supplement. Zodiacs are used for the daily on-shore excursions and for the more adventurous the Kayak is also available (limited numbers) and maybe even a chance to spend a night on the ice-shelf.
    [Show full text]
  • Appendix, French Names, Supplement
    685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U.
    [Show full text]
  • Pirates of the Oceans 12 13 13 14 Skuas Are the Pirates of the Bird World
    1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 SKUAS 9 10 10 11 11 12 Pirates of the oceans 12 13 13 14 Skuas are the pirates of the bird world. Like gulls with a killer 14 15 15 16 instinct,instinct, skuasskuas shareshare manymany characterscharacters withwith terrestrialterrestrial birdsbirds ofof prey,prey, allow-allow- 16 17 17 18 inging interestinginteresting insightsinsights intointo thethe biologybiology ofof birdbird predators.predators. 18 19 19 20 InIn thisthis feature,feature, thethe FitzPatrickFitzPatrick Institute’sInstitute’s PeterPeter RyanRyan exploresexplores thethe 20 21 21 22 varied and often contradictory world of skuas. 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 A pair of Sub-Antarctic 39 40 Skuas giving the 40 41 characteristic long- 41 42 call display with 42 43 raisedraised wings.wings. 43 44 ONNO HUYSER 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 ONNO HUYSER WARWICK TARBOTON 18 18 19 Above A pair of Sub-Antarctic Skuas sitting peacefully next to a dozing Chinstrap Penguin Pygoscelis antarctica, but other birds 19 20 have to watch out when skuas are around, or they may find themselves losing a meal, their eggs and chicks, or even their lives.
    [Show full text]
  • Feeding Territories of Brown Skuas (Catharacta
    FEEDING TERRITORIES OF BROWN SKUAS (CATHARA CTA LONNBERGI) WAYNE TRIVELPIECE,1 RONALD G. BUTLER,1 AND NICHOLASJ. VOLKMAN2 Collegeof Environmental Scienceand Forestry, State University of New York, Syracuse, New York 13210 USA ABSTRACT.--Themaintenance of feedingterritories by Brown Skuas (Catharactalonnbergi) a was observedin a pygoscelidpenguin rookery on King GeorgeIsland during the 1977-1978 austral summer. Brown Skuas fed exclusivelyon penguin eggsand chicks oncethey becameavailable in late October, and skua pairs holding feeding territories in the penguin rookery defended these areas against intruders that attempted to obtain food items from these territories. These intruders included conspecifics,Southern Black-backed Gulls (Larus dominicanus), and American Sheath- bills (Chionis alba). Although territorial Brown Skuas attacked and chased overflying intruder conspecificsand gulls indiscriminately,only intruding skuaselicited the long call display from the territorial pair. Male skua energy investment in hunting and territorial defensewas significantly greater than that of the female. Brown Skua territories were defined as optimal or suboptimal based on their available food resources.Analysis of skua breeding data suggeststhat an adaptive advantage in maintaining an optimal feeding territory appears to be increasedreproductive success. Although there were no statistical differences in egg production, Brown Skuas defending optimal territories fledged sig- nificantly more chicks per pair than all other skuas [i.e. suboptimal territorial Brown Skua, nonterritorial Brown Skua, mixed Brown Skua-South Polar Skua (C. maccormicki), and South Polar Skua pairs]. This increasedreproductive success of optimal territorial pairs may be linked to the proximity of an abundant food source.Received 27 September1979, accepted6 March 1980. THE Brown Skua (Catharacta lonnbergi) is an opportunistic feeder that obtains its food through scavenging, kleptoparasitism, and predation (Burton 1968a, b; Johnston 1973).
    [Show full text]
  • Harvard Alumni Travels Discover • Learn • Connect • Explore
    2020 HARVARD ALUMNI TRAVELS DISCOVER • LEARN • CONNECT • EXPLORE Expedition to Antarctica on MS LE BORÉAL January 15-28, 2020 with James Salzman, Visiting Professor of Law Expert-led Zodiac excursions offer up-close viewing of craggy crescent peaks, intricate ice floes and wildlife that characterize the remote Antarctic landscape. Study Leader Join us for this spectacular 14-day journey Jim Salzman is featuring a nine‑night, exclusively chartered cruise to the Donald Bren Antarctica, Earth’s last frontier. With private balconies Distinguished in 95 percent of its ocean‑view accommodations, Professor of and encompassing state‑of‑the‑art ship design and Environmental Law with joint appointments technology, LE BORÉAL sets the very highest standards in at UCLA Law School and the University elegance and comfort. Experience the natural beauty of the of California, Santa Barbara, School White Continent—fantastically shaped icebergs, turquoise of Environment. He teaches every year glaciers, bustling penguin rookeries and breaching whales. at the Harvard Law School during its Accompanied by the ship’s expert team of naturalists, board Winter Term – most recently as the Zodiac watercraft for excursions ashore to observe Antarctica’s Jeremiah Smith, Jr., Visiting Professor abundant wildlife, especially penguins and seals that exhibit of Law. The first Harvard graduate little or no fear of humans. A comprehensive schedule of to earn joint degrees in law and exclusive and specially arranged lectures will complete your in engineering, he was awarded a optimal Antarctic expedition. Spend two nights in Buenos Sheldon Fellowship upon graduation. Aires, including a tour of Argentina’s vibrant capital city. One of the world’s leading experts on drinking water, he regularly comments in the media on environmental issues.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • Flexibility of Foraging Strategies of the Great Skua Stercorarius Skua Breeding in the Largest Colony in the Barents Sea Region Dariusz Jakubas1* , Lech M
    Jakubas et al. Frontiers in Zoology (2018) 15:9 https://doi.org/10.1186/s12983-018-0257-x RESEARCH Open Access Flexibility of foraging strategies of the great skua Stercorarius skua breeding in the largest colony in the Barents Sea region Dariusz Jakubas1* , Lech M. Iliszko1, Hallvard Strøm2, Halfdan H. Helgason2 and Lech Stempniewicz1 Abstract Background: Foraging strategies of seabird species often vary considerably between and within individuals. This variability is influenced by a multitude of factors including age, sex, stage of annual life cycle, reproductive status, individual specialization and environmental conditions. Results: Using GPS-loggers, we investigated factors affecting foraging flight characteristics (total duration, maximal range, total distance covered) of great skuas Stercorarius skua of known sex breeding on Bjørnøya, Svalbard, the largest colony in the Barents Sea region. We examined influence of sex (females are larger than males), phase of breeding (incubation, chick-rearing), reproductive status (breeders, failed breeders) and bird ID (they are known for individual foraging specialization). Our analyses revealed that only bird ID affected foraging flight characteristics significantly, indicating a high degree of plasticity regardless of sex, reproductive status or phase of breeding. We recognized three main groups of individuals: 1) those preying mainly on other seabirds in the breeding colonies (6%), 2) those foraging at sea (76%) and kleptoparasiting other seabirds and/or foraging on fish and/or offal discarded by fishing vessels, and 3) those alternating between preying on other seabirds in breeding colonies and foraging at sea (18%). Despite marked size sexual dimorphism, we found no apparent sex differences in flight characteristics.
    [Show full text]
  • Cape Washington and Silverfish Bay Are Located in Northern Terra Nova Bay, Victoria Land, Ross Sea
    Measure 17 (2013) Annex Management Plan for Antarctic Specially Protected Area (ASPA) No. 173 Cape Washington & Silverfish Bay Northern Terra Nova Bay Ross Sea Introduction Cape Washington and Silverfish Bay are located in northern Terra Nova Bay, Victoria Land, Ross Sea. Approximate area and coordinates: 286 km2 (centered at 164° 57.6' E, 74° 37.1' S), of which 279.5 km2 is marine (98 %) and 6.5 km2 is terrestrial (2 %). The primary reasons for designation of the Area are the outstanding ecological and scientific values. One of the largest emperor penguin (Aptenodytes forsteri) colonies in Antarctica breeds on sea ice adjacent to Cape Washington, with around 20,000 breeding pairs comprising approximately eight percent of the global emperor population and ~21% of the population in the Ross Sea. Several factors, such as location, ice conditions, weather and accessibility provide relatively consistent and stable opportunities to observe emperor chick fledging reliably and the presence of a variety of other species make it an ideal place to study ecosystem interactions. The extended record of observations of the emperor colony at Cape Washington is of important scientific value. Approximately 20 km west of Cape Washington, the first documented ‘nursery’ and hatching area for Antarctic silverfish (Pleuragramma antarcticum) is located at Silverfish Bay. Recent research has shown that the concentration of spawning on occasions extends all the way across the embayment to Cape Washington. The first ground-breaking studies on the life-history of this species have been made at the site, and its relative accessibility to nearby research stations make the Area important for biological research.
    [Show full text]