(2007) from Jets to GEMSS*: Pan-Spectral Detection, Observation and Characterization of the M-Dwarf Exoplanet System Gliese 876 - and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

(2007) from Jets to GEMSS*: Pan-Spectral Detection, Observation and Characterization of the M-Dwarf Exoplanet System Gliese 876 - and Beyond This file is part of the following reference: Shankland, Paul (2007) From Jets to GEMSS*: pan-spectral detection, observation and characterization of the M-Dwarf Exoplanet System Gliese 876 - and beyond. Transit photometry, radial velocity, and millimeter interferometry to constrain and characterize the nearest multiple planet system. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/10347 152 References Aigrain, S., & Pont, F. 2007, MNRAS, 378, 741 Basalla, G. 2006, Civilized Life in the Universe: Scientists on Intelligent Extraterrestrials (Oxford: Oxford University Press) Bastian, T. S., Dulk, G. A., & Leblanc, Y. 2000, Astrophys. J., 545, 1058 Bean, J., Benedict, G., Sneden, C., Endl, M., Johns-Krull, C., & Henry, T. 2003, BAAS, 35, 1358 Bean, J., McArthur, B., Benedict, G., & Armstrong, A. 2008, ApJ, 672, 1202 Beauge´, C., Michtchenko, T., & Ferraz-Mello, S. 2006, MNRAS, 365, 1160 Beaulieu, J.-P., Bennett, D. P., Fouqué, P., Williams, A., Dominik, M., Jørgensen, U. G., Kubas, D., Cassan, A., Coutures, C., Greenhill, J., Hill, K., Menzies, J., Sackett, P. D., Albrow, M., Brillant, S., Caldwell, J. A. R., Calitz, J. J., Cook, K. H., Corrales, E., Desort, M., Dieters, S., Dominis, D., Donatowicz, J., Hoffman, M., Kane, S., Marquette, J.-B., Martin, R., Meintjes, P., Pollard, K., Sahu, K., Vinter, C., Wambsganss, J., Woller, K., Horne, K., Steele, I., Bramich, D. M., Burgdorf, M., Snodgrass, C., Bode, M., Udalski, A., Szymański, M. K., Kubiak, M., Wiȩckowski, T., Pietrzyński, G., Soszyński, I., Szewczyk, O., Wyrzykowski, Ł., Paczyński, B., Abe, F., Bond, I. A., Britton, T. R., Gilmore, A. C., Hearnshaw, J. B., Itow, Y., Kamiya, K., Kilmartin, P. M., Korpela, A. V., Masuda, K., Matsubara, Y., Motomura, M., Muraki, Y., Nakamura, S., Okada, C., Ohnishi, K., Rattenbury, N. J., Sako, T., Sato, S., Sasaki, M., Sekiguchi, T., Sullivan, D. J., Tristram, P. J., Yock, P. C. M., Yoshioka, T. 2006, Nature, 439, 437 Beckwith, S., Sargent, A., Shini, R., & G¨usten, R. 1990, AJ, 99, 924 Benedict, G. F., McArthur, B. E., Forveille, T., Delfosse, X., Nelan, E., Butler, R. P., Spiesman, W., Marcy, G., Goldman, B., Perrier, C., Jefferys, W. H., Mayor, M. 2002. ApJ, 581, L115 Benson, James A., Hutter, Donald J., Johnston, Kenneth J., Zavala, Robert T., White, Nathaniel M., Pauls, Thomas A., Gilbreath, G. C., Armstrong, J. T., Hindsley, Robert B. 2004, Proc. SPIE, 5491, 464 Benz, W., Alibert, Y., Mordasini, C., Naef, D. Benz, W., Alibert, Y., Mordasini, C., & Naef, D. 2006, IAU Colloq. 200: Direct Imaging of Exoplanets: Science & Techniques, 1 Berry R. & Burnell, J. 2000, The Handbook of Astronomical Image Processing, (Richmond: Willmann- Bell) Berry, R. 1976, JRASC, 70, 540 Blank, D., Jayawardene, B., Shankland, P., Monard, B., White, G., Verveer, A. & Biggs, J. 2007, in Observing Planetary Systems, ESO Workshop, Santiago, Chile, March 5-8, eds. C. Dumas et al. (Santiago: European), S4-05. http://www.sc.eso.org/santiago/science/OPSWorkshop/Contributions/Posters/Blank_S4- 05_slide.pdf Blank, D.L., Jayawardene, B. Monard, B., Shankland, P. D., & White, G. L., 2008, The Search for Transiting Earth-Like Exoplanets: GEMSS Results for Proxima Centauri , MNRAS, in preparation Bodenheimer, P., Laughlin, G., & Lin, D. N. C. 2003, ApJ, 592, 555 Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466 Bonfils, X., Delfosse, X., Udry, S., Santos, N., Forveille, T., & Segransan, D. 2005, A&A, 442, 635 153 Bonfils, X., Forveille, T., Delfosse, X., Udry, S., Mayor, M., Perrier, C., Bouchy, F., Pepe, F., Queloz, D., Bertaux, J.-L. A&A, 443, L15 Bonfils, X., Forveille, T., Delfosse, X., Udry, S., Mayor, M., Perrier, C., Bouchy, F., Pepe, F., Queloz, D., Bertaux, J.-L. 2005, A&A, 443, L15 Borucki, W. J., Koch, D. G., Basri, G. B., Caldwell, D. A., Caldwell, J. F., Cochran, W. D., Devore, E., Dunham, E. W., Geary, J. C., Gilliland, R. L., Gould, A., Jenkins, J. M., Kondo, Y., Latham, D. W., Lissauer, J. J. 2003, in ASP Conf. Ser. 294, Scientific Frontiers in Research on Extrasolar Planets, ed. D. Deming, & S. Seager (San Francisco: ASP), 427 Boss, A. P. 2006, ApJ, 643, 501 Bossy, J. 2002, Giordano Bruno and the Embassy Affair, 2nd Ed. (New Haven, CT: Yale University Press) Bouchy, F., Udry, S., Mayor, M., Moutou, C., Pont, F., Iribarne, N., da Silva, R., Ilovaisky, S., Queloz, D., Santos, N. C., Ségransan, D., Zucker, S. 2005, A&A, 444, L15 Bouchy, F.; Pont, F.; Santos, N. C.; Melo, C.; Mayor, M.; Queloz, D.; Udry, S. 2004 A&A, 421, L13 Brown, R., Cruikshank, D., Pendleton, Y., & Veeder, G. 1997, Science, 276, 937 Brown, T., Charbonneau, D., Gilliland, R., Noyes, R., & Burrows, A. 2001, ApJ, 552, 699 Bruno, G. 1574, On the Infinite Universe and Worlds, trans. D. Singer, 1950 (New York: Schuman) Bryan, J. 2001, Journal of the British Astron. Assn, 111, 29 Bundy, K., Marcy, G.. 2000, PASP, 112, 1421 Burke, B. & Graham-Smith, F. 2001, An Introduction To Radio Astronomy, 2nd Ed. (Cambridge : Cambridge University Press) Burrows, A., Sudarsky, D., & Hubbard, W. B. 2003, ApJ, 594, 545 Butler, R. P., Johnson, J., Marcy, G., Wright, J., Vogt, S., & Fischer, D. A. 2006, PASP, 118, 1685 Butler, R. P., Marcy, G. W., Williams, E., McCarthy, C., & Vogt, S. S. 1996, PASP, 108, 500 Butler, R. P., Tinney, C. G., Marcy, G. W., Jones, H. R. A., Penny, A., & Apps, K. 2001, ApJ, 555, 410 Butler, R. P., Wright, J. T., Marcy, G. W., Fischer, D. A., Vogt, S. S., Tinney, C. G., Jones, H. R. A., Carter, B. D., Johnson, J. A., McCarthy, C., Penny, A. J. 2006, ApJ, 646, 505 Butler, R. Paul, Marcy, Geoffrey W., Fischer, Debra A., Brown, Timothy M., Contos, Adam R., Korzennik, Sylvain G., Nisenson, Peter, Noyes, Robert W. 1999, ApJ, 526, 916 Butler, R. Paul, Vogt, Steven S., Marcy, Geoffrey W., Fischer, Debra A., Wright, Jason T., Henry, Gregory W., Laughlin, Greg, Lissauer, Jack J. 2004, ApJ, 617, 580 Campbell, B., Walker, G., & Yang, S. 1988, ApJ, 331, 902 Caporaloni, M.& Ambrosini, R. 1999, Eur. J. Phys., 20, 243 154 Carroll, B. & Ostlie, D. 1996, Modern Astrophysics (New York: Addison-Wesley) Castellano, T. P., Laughlin, G., Terry. R. S., Kaufman, M., Hubbert, S., Schelbert, G., Bohler, D. & Rhodes, R. 2004, JAAVSO 33, 1 Catala, C., Donati, J., Shkolnik, E., Bohlender, D. & Alecian, E. 2007, MNRAS, 374, L42 Chabrier, G., Baraffe, I., Selsis, F., Barman, T., Hennebelle, P., & Alibert, Y. 2007, in Protostars and Planets V, eds. B. Reipurth, D. Jewitt, and K. Keil, (Tucson: University of Arizona Press), 623 Chambers, J. E. 2001, Icarus, 152, 205 Chapman, A. 1998, Endeavor, 22, 148 Charbonneau, D. 2004, in ASP Conf. IAU Sym 219, Stars as Suns: Activity, Evolution and Planets, ed. A. Dupree & A. Benz (San Francisco: ASP), 367 Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L. 2002, Astrophys. J., 568, 377 Charbonneau, D., Brown, T., Burrows, A. & Laughlin, G.2007, in Protostars and Planets V, eds. B. Reipurth, D. Jewitt, and K. Keil (Tuscon: Univ. of Arizona Press), 701 Charbonneau, D., Brown, T., Latham, D., & Mayor, M. 2000, ApJ, 529, L45 Charbonneau, David, Allen, Lori E., Megeath, S. Thomas, Torres, Guillermo, Alonso, Roi, Brown, Timothy M., Gilliland, Ronald L., Latham, David W., Mandushev, Georgi, O'Donovan, Francis T., Sozzetti, Alessandro. 2005, ApJ, 626, 523 Charbonneau, David, Winn, Joshua N., Latham, David W., Bakos, Gáspár, Falco, Emilio E., Holman, Matthew J., Noyes, Robert W., Csák, Balázs, Esquerdo, Gilbert A., Everett, Mark E., O'Donovan, Francis T. 2006, ApJ, 636, 445 Chauvin, G., Lagrange, A., Dumas, C., Zuckerman, B., Mouillet, D., Song, I., Beuzit, J., & Lowrance, P. 2004, A&A, 425, L29 Christian, C. A., Adams, M., Barnes, J. V., Hayes, D. S., Siegel, M., Butcher, H., Mould, J. R. 1985, PASP 97, 363 Claret, A. 2000, A&A, 363, 1081 Clarke, B. 1980, A&A, 89, 377 Cochran, W., Hatzes, A., Endl, M., Paulson, D., Walker, G., Campbell, B., & Yang, S. 2002, BAAS, 34, 916 Colavita, M., & Shao, M. 1994,in Conference on Planetary Systems: Formation, Evolution, and Detection, JASS, 212, 385 Cook, J. 1893, Captain Cook's Journal During His First Voyage Round the World Made in H. M. Bark Endeavour, 1768-71 (London; Elliot Stock), ed. W. Wharton Correia, A., Udry, S., Mayor, M., Laskar, J., Naef, D., Pepe, F., Queloz, D., & Santos, N. 2004, A&A, 440, 751 Crawford, D. & Craine, E., Eds. 1994, Proc. SPIE, 2198, 362 155 Dahn, C. 1994, Galactic and Solar System Optical Astrometry, 55 Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Naef, D., & Queloz, D. 1998, A&A, 338, L67 Deller, A., Maddison, S. 2005, ApJ, 625, 398 Deming, D., Seager, S., Richardson, L. J., & Harrington, J. 2005, Nature, 434, 740 Dent, W., Walker, H., Holland, W., & Greaves, J. 2000, 314, 702 Desort, M. 2007, in Observing Planetary Systems, ESO Workshop, Santiago, Chile, March 5-8, eds. C. Dumas et al. (Santiago: European), S2-08. http://www.sc.eso.org/santiago/science/OPSWorkshop/Contributions/Posters/Desort_S2- 08_poster.pdf Dick, S. 1996, The Biological Universe: The Twentieth-century Extraterrestrial Life Debate (Cambridge: Cambridge University) Dick, S. 2003, Sky and Ocean Joined – The U.S. Naval Observatory 1830-2000 (Cambridge: Cambridge University Press) Dick, S. 2004, Space Sci. Rev., 64, 1993 Doyle, L., Deeg, H., Jenkins, J., Schneider, J., Ninkov, Z., Stone, R., Blue, J., Götzger, H., Friedman, B., & Doyle, M. 1998, in Brown Dwarfs and Extrasolar Planets, eds. R. Rebolo, E. L. Martin, and M.R.Z. Osorio (eds.), Vol. 134, (San Francisco: PASP), 224 Durda, D., Stern, S., Tomlinson, W., Slater, D., & Vilas, F. 2000, Proc. SPIE, 4127, 24 Dutrey, A., des Etangs, A., Augereau, J.
Recommended publications
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Astron 104 Laboratory #7 the H-R Diagram Section 10.1, 10.5
    Lab #7 Name: Date: Section: Astron 104 Laboratory #7 The H-R Diagram Section 10.1, 10.5 Introduction The Hertzsprung-Russell diagram, or H-R diagram for short, relates two fundamental properties of stars and helps reveal how stars work. In an H-R diagram we plot the luminosity (how bright it is) of a star against its surface temperature. The majority of the stars lie on a narrow band which runs from the top left of the diagram (hot, bright stars) to the bottom right (cool, dim stars). This band is known as the main sequence, and highlights where stars spend the majority of their lives. A small number of stars near the ends of their lives do not lie on the main sequence, and these are classified as red giants, red supergiants, or white dwarfs, depending on their stage of evolution. Experiment 1 This lab will utilize the color and luminosity of different stars, enabling you to construct a Hertzsprung-Russell diagram. 1. Go to the Start Menu 2. Click on All Programs 3. Click on Virtual Astronomy 4. Click on Start Virtual Astronomy Lab 5. Click on Unit 16: The Hertzsprung Russell Diagram 6. Click on Start Lab Astron 104 Spring 2016 1 Lab #7 7. Click on View the Stars The view shows a portion of the sky containing a number of stars, with a range of surface temperatures. The stars are shown as colored, with the hottest stars being blue and the coolest stars red. By selecting \Number of stars" from the top menu, you may change the number of stars appearing in the window.
    [Show full text]
  • Detectability of Atmospheric Features of Earth-Like Planets in the Habitable
    Astronomy & Astrophysics manuscript no. Wunderlich_etal_2019_arxiv c ESO 2019 May 8, 2019 Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs Fabian Wunderlich1, Mareike Godolt1, John Lee Grenfell2, Steffen Städt3, Alexis M. S. Smith2, Stefanie Gebauer2, Franz Schreier3, Pascal Hedelt3, and Heike Rauer1; 2; 4 1 Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany e-mail: [email protected] 2 Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstraße 2, 12489 Berlin, Germany 3 Institut für Methodik der Fernerkundung, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany 4 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany ABSTRACT Context. The characterisation of the atmosphere of exoplanets is one of the main goals of exoplanet science in the coming decades. Aims. We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). Methods. We used a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hy- pothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra. Results. High abundances of methane (CH4) and water (H2O) in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Hw10 Typeset
    Astronomy (Schroeder) Name: fall, 2006 Homework 10 Due Monday, November 6 In this exercise you will construct an H-R diagram for a sample of the nearest and brightest stars, then use the diagram to answer some questions about the sizes of stars. Please draw the diagram on the attached graph paper, on which the temperature and luminosity axes are labeled appropriately. (Note that both axes on the graph are calibrated in a nonlinear way, with units unequally spaced from one end to the other. This kind of “logarithmic” scale is very useful when plotting data that vary over a wide range of values.) A list of stars to include on your diagram is attached. This list consists of two tables of the nearest stars and the brightest stars. (The first table is taken from the web site http://www.chara.gsu.edu/RECONS/TOP100.htm; the second is mostly from Wikipedia.) Plot each of these stars on your H-R diagram, using dots of one color for the brightest stars and dots of another color for the nearest stars. The (absolute) luminosities of the stars are listed in the tables, in units of the sun’s luminosity. (I’ve calculated these from the absolute magnitude values, which are also listed.) To determine the temperatures of the stars, use the following table which relates temperature to spectral type: Spectral type Temperature (K) 05 44,500 B0 30,000 B5 15,400 A0 9500 A5 8200 F0 7200 F5 6400 G0 6000 G5 5770 K0 5250 K5 4350 M0 3850 M5 3240 For intermediate spectral types, do an approximate interpolation from the table.
    [Show full text]
  • 44 Closest Stars and How They Compare to Our Sun
    44 CLOSEST STARS AND HOW THEY COMPARE TO OUR SUN R = Solar radius (a unit of distance to express the size of stars relative to the sun) L = Solar luminosity (a unit of radiant flux used SUN System/constellation to compare the luminosity of stars, galaxies, Solar System Potential planets and other celestial objects in terms of the sunʼs output) 8 Distance From Earth 8.317 light-minutes EARTH 1R (432,288 miles) s) -year (light Proxima Centauri TH EAR Alpha Centauri OM E FR 1 ANC DIST 4.244 light-years 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 25 0.1542R 0.00005L L <=0.0001 α Centauri A (Rigil Kentaurus) 1 Alpha Centauri L 4.365 light-years 1.223R 1.519 L α Centauri B (Toliman) 5 Alpha Centauri light-years 4.37 light-years 0.863R 0.5002L Bernard’s Star Ophiuchus 1 5.957 light-years 0.196R 0.0035L Wolf 359 (CN Leonis) Leo 2 7.856 light-years 0.16R 0.0014L Lalande 21185 Ursa Major 1 8.307 light-years 0.393R 0.026L Sirius A Canis Major Luyten 726-8A 8.659 light-years Cetus 1.711 R 25.4L 8.791 light-years 0.14R 0.00004L Sirius B Canis Major 8.659 light-years Luyten 726-8B 0.0084R 0.056L Cetus 8.791 light-years 0.14R 0.00004L Ross 154 Sagittarius 9.7035 light-years 0.24R 0.0038L 10 light-years Epsilon Eridani Eridanus Ross 248 2 Andromeda 10.446 light-years 10.2903 light-years 0.735R 0.34L 0.16R 0.0018L Lacaille 9352 Piscis Austrinus 3 10.7211 light-years Ross 128 0.47R 0.0367L Virgo 1 EZ Aquarii A 11 light-years Aquarius 61 Cygni A 0.1967R 0.00362L 11.1 light-years Cygnus 0.175R 0.000087L 3 (part of triple star system) 11.4 light-years
    [Show full text]
  • The Widest Ultracool Binary
    A&A 462, L61–L64 (2007) Astronomy DOI: 10.1051/0004-6361:20066814 & c ESO 2007 Astrophysics Letter to the Editor The widest ultracool binary J. A. Caballero1, Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 24 November 2006 / Accepted 12 December 2006 ABSTRACT Aims. I test the ejection scenario for the formation of brown dwarfs and low-mass stars through the detection of a very wide ultracool binary. Methods. LEHPM 494 (M6.0 ± 1.0 V) and DENIS-P J0021.0–4244 (M9.5 ± 0.5 V) are separated by 1.3 arcmin and are high proper motion co-moving ultracool stars. I have used six astrometric epochs spaced by 22 years to confirm their common tangential velocity. Results. The angular separation between both low-mass stars remains constant with an uncertainty of less than 0.1%. I have also de- rived their most probable heliocentric distance (23 ± 2 pc), age interval (2–10 Ga) and masses (0.103 ± 0.006 and 0.079 ± 0.004 M). The pair, with a projected physical separation of 1800 ± 170 AU, is by far the widest ultracool binary yet found in the field. Conclusions. This serendipitous and simple detection is inconsistent with ultra low-mass formation ejection scenarios and comple- ments current searches for low-mass tight binaries. Key words. stars: low-mass, brown dwarfs – stars: binaries: general – stars: individual: DENIS-P J0021.0–4244 – stars: formation – stars: individual: LEHPM 494 – stars: binaries: visual 1. Introduction the observed frequency of tight low-mass binaries (Bate et al.
    [Show full text]
  • The “True” Movement of Double Stars in Space
    Vol. 15 No. 3 July 1, 2019 Journal of Double Star Observations Page 464 The “True” Movement of Double Stars in Space Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: Common movement of any kind (proper motion, transverse velocity, radial ve- locity, total or spatial velocity) of double star components is neither a sufficient nor a necessary criterion to consider a double star as likely physical. This proposition is substantiated by analy- sis of the movement of double star components in space and confirmed by counter-checking with double stars listed in the 6th Catalog of Orbits of Visual Binary Stars. An earlier suggest- ed assessment scheme for potential gravitational relationship (PGR) based on the likely dis- tance between the components of a double star is discussed more in detail. 1. Introduction 2019) with the result that only ~20% of these pairs are Several recent papers like for example: potentially bound by gravitation. See also Appendix B for a counter-check of object samples from the reports • Harshaw 2018 with the statement that in general, mentioned above. doubles with an orbit should have common prop- 2. Data on Movement of Double Stars er motion RA/Dec coordinates, angular separation, position • Greaves 2019 with the assumption that common angle, magnitude, spectral class, proper motion, paral- radial velocity allows for the conclusion that a lax, radial velocity and in best case orbital elements are double star is physically related the data usually used to describe the properties of dou- • Bryant 2019 with the assumption that common ble stars. The “true” movement through space of the spatial velocity allows for the conclusion that a components of a double star can at least for a given double star is physically related point of time derived from such data and used for the • Jiménez-Esteban et al.
    [Show full text]
  • Astron 104 Laboratory #7 the H-R Diagram Section 10.1, 10.5
    Lab #7 Name: Date: Section: Astron 104 Laboratory #7 The H-R Diagram Section 10.1, 10.5 Introduction The Hertzsprung-Russell diagram, or H-R diagram for short, relates two fundamental properties of stars and helps reveal how stars work. In an H-R diagram we plot the luminosity (how bright it is) of a star against its surface temperature. The majority of the stars lie on a narrow band which runs from the top left of the diagram (hot, bright stars) to the bottom right (cool, dim stars). This band is known as the main sequence, and highlights where stars spend the majority of their lives. A small number of stars near the ends of their lives do not lie on the main sequence, and these are classified as red giants, red supergiants, or white dwarfs, depending on their stage of evolution. Experiment 1 This lab will utilize the color and luminosity of different stars, enabling you to construct a Hertzsprung-Russell diagram. 1. Click on Virtual Astronomy on the desktop 2. Click on Start Virtual Astronomy Lab 3. Click on Unit 26: The Hertzsprung Russell Diagram 4. Click on Start Lab 5. Click on View the Stars The view shows a portion of the sky containing a number of stars, with a range of surface temperatures. The stars are shown as colored, with the hottest stars being blue and the coolest stars red. By selecting \Number of stars" from the top menu, you may change the number of stars appearing in the window. Change this number to at least 40.
    [Show full text]
  • NCEA Level 2 Earth and Space Science (91192) 2019 — Page 1 of 3
    NCEA Level 2 Earth and Space Science (91192) 2019 — page 1 of 3 Assessment Schedule – 2019 Earth and Space Science: Demonstrate understanding of stars and planetary systems (91192) Evidence Statement Question One Q Expected Coverage Achievement Merit Excellence ONE As a star is forming from a nebula / giant molecular cloud Describes: Explains in detail: Explains comprehensively: (GMC), there are leftover gas and dust particles. These particles • the formation of a • Gravity causes particles in the • The stages in the formation of outer rotate around the young star and flatten into a gaseous protoplanetary disc. protoplanetary disk to accrete planets including protoplanetary disc, protoplanetary disc. The protoplanetary disc contains particles • how planetesimals / planets into larger and larger bodies. accretion, and sorting of material. that condense together. Once they have enough mass, they collect form due to gravity / • Cooler temperatures further • Vaporisation of lighter elements more particles, due to their increasing gravity forming accretion. from the star lead to (within frost line) linKed to solar planetesimals • the composition of outer condensation of lighter wind increasing abundance of lighter As it is hotter closer to the forming sun, the lighter (lower boiling (Jovian / Gas Giant) planets elements. elements in outer planets. point) elements are vaporised and blown to the outer solar system as mainly lighter elements (H • Solar wind pushes vaporised • Increasing mass linKed to increasing by solar winds. Once they pass the point where it is cool enough / He). (lighter) elements to the outer gravity, which pulls the particles for these gases to condense (the frost line), these lighter elements solar system (to be collected within the planet together and may also be collected by forming planets.
    [Show full text]
  • Celestial Delights
    Francis Reddy Celestial Delights The Best Astronomical Events Through 2020 Third Edition Patrick Mooreʼs Practical Astronomy Series Patrick Moore’s Practical Astronomy Series For further volumes: http://www.springer.com/series/3192 aaaaaaaaaaaaa Celestial Delights The Best Astronomical Events through 2020 Francis Reddy Francis Reddy Syneren Technologies Corp. Lanham, MD, USA ISSN 1431-9756 ISBN 978-1-4614-0609-9 e-ISBN 978-1-4614-0610-5 DOI 10.1007/978-1-4614-0610-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011936392 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) For Kari and Sharon, who eagerly share the sky with a new generation. aaaaaaaaaaaaa Preface There is a widespread impression that the scientific appreciation of the universe must be left wholly to those who have had years of formal training or who devote a large part of their free time to science as a hobby.
    [Show full text]
  • Detectability of Atmospheric Features of Earth-Like Planets in the Habitable
    A&A 624, A49 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834504 & © ESO 2019 Astrophysics Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs? Fabian Wunderlich1, Mareike Godolt1, John Lee Grenfell2, Steffen Städt3, Alexis M. S. Smith2, Stefanie Gebauer2, Franz Schreier3, Pascal Hedelt3, and Heike Rauer1,2,4 1 Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany e-mail: [email protected] 2 Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstraße 2, 12489 Berlin, Germany 3 Institut für Methodik der Fernerkundung, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany 4 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany Received 24 October 2018 / Accepted 31 January 2019 ABSTRACT Context. The characterisation of the atmosphere of exoplanets is one of the main goals of exoplanet science in the coming decades. Aims. We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). Methods. We used a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hypo- thetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra.
    [Show full text]