<<

arXiv:1707.06275v2 [math-ph] 9 Nov 2017 keywords S 00nmes 36,3C0 22,33C20 82C23, 33C70, 33C65, numbers: 2010 MSC systems quantum many-body theorem; Tauberian functions; b a IS nentoa colfrAvne tde,vaBonomea via Studies, Advanced for School International - SISSA rued hsqeSaitqe ´preetd hsqed aMa la de Physique D´epartement de Statistique, Physique de Groupe 2 1 nitga ersnain n smttc fsome of asymptotics and representations On [email protected] [email protected] ntttJa aor(NSUR79) nvri´ eLran Na Lorraine Universit´e de 7198), UMR (CNRS Lamour Jean Institut hoe.Sm nerl fteHmetfntosaeas an also are functions Humbert t the is of asymptotics the Some are and theorem. functions transformations these Laplace of inverse var representations as independent two integral the New of values large. absolute the when found, is h edn smttcbhvoro h ubr ucin Φ functions Humbert the of behaviour asymptotic leading The yegoercfntosi w aibe;Hmetfnto;as ; Humbert variables; two in functions hypergeometric : T ¨rc,SeaoFasiiPaz3 H-89 Z¨urich, Switze 8093 - CH 3, Z¨urich, Stefano-Franscini-Platz ETH c yegoercfntosi w variables two in functions hypergeometric d ehegs¨tt hskdrWrsoe ntttf¨ur Baust Institut Werkstoffe, der Rechnergest¨utzte Physik etod ´sc eoiaeCmuainl nvriaed Lisboa, de Universidade F´ısica Computacional, Te´orica de e Centro 40 adur `sNnyCdx France Cedex, l`es Nancy Vandœuvre 54506 – F acaWald Sascha –7906Lso,Portugal Lisboa, P–1749-016 a,b, 1 Abstract and at Henkel Malte ie.Teeaere-expressed are These given. e on rmaTauberian a from found hen alsbcm simultaneosly become iables alysed. a,c,d, 2 Φ , 6,I316Tise Italy Trieste, I–34136 265, 2 3 Ξ , ie ee e Mat´eriaux, des ti`ere et ff (IfB), offe 2 c,BP 70239, B.P. ncy, ftovariables two of mttc;special ymptotics; rland 1 Introduction

Generalised hypergeometric functions, usually denoted by pFq(z), and of which Gauss’ hyperge- ometric function 2F1(z) is the most important special case, have been studied very thorougly and have found numerous applications in almost all fields of science, see e.g. [3, 4, 6, 1, 9, 5, 8, 2, 7] and refs. therein. A little more than a century old, hypergeometric functions of two variables [13, 14, 15, 10, 11, 12] have also received a lot of scientific interest and recently, many new applications in many different fields of mathematics and physics are being discovered see for example [16, 18, 17]. It is often convenient to define these functions via double power . Most of the mathematical studies of these functions are either focussed on the analysis of do- mains of convergence, or on relating special cases to other known functions or else to derive functional relationships between different hypergeometric functions of two variables, see e.g. [10, 4, 28, 29, 30, 2, 21, 22, 23, 24, 25, 26, 20, 19, 27]. Relatively little seems yet to be known on the asymptotic behaviour of such double series, in contrast to the classic study of Wright [31, 32] on the asymptotics of F (z) when z . Here, we shall present results on the p q | |→∞ leading asymptotics of some hypergeometric functions when the absolute values of both vari- ables become large simultaneously. The main tool to derive these are Eulerian and (inverse) Laplacian integral representations, and a Tauberian theorem [34, 33]. The results are stated as theorems in section 3, see eqs. (3.1-3.4,3.6).

We shall consider the third Appell series F3

m n ∞ ∞ (α)m(β)m(α′)n(β′)n x y F (α,α′,β,β′; γ; x, y)= (1.1) 3 (γ) m! n! m=0 n=0 n+m X X where (α)m = Γ(α + m)/Γ(α) denotes the Pochhammer symbol for α N. We shall also study the confluent forms (Humbert functions) − 6∈

m n ∞ ∞ (α)m(β)m(α′)n x y Ξ (α,α′, β; γ; x, y)= (1.2a) 1 (γ) m! n! m=0 n=0 m+n X X ∞ ∞ (α) (β) xm yn Ξ (α, β; γ; x, y)= m m (1.2b) 2 (γ) m! n! m=0 n=0 m+n X X m n ∞ ∞ (β)m(β′)n x y Φ (β, β′; γ; x, y)= (1.2c) 2 (γ) m! n! m=0 n=0 m+n X X ∞ ∞ (β) xm yn Φ (β; γ; x, y)= m (1.2d) 3 (γ) m! n! m=0 n=0 m+n X X Throughout, we shall implicitly assume that the parameters α,α′,β,β′, γ, . . . are such that any singularity in the coefficients is avoided, without restating this explicitly. While the series F3 converges for max( x , y ) < 1, the series Ξ and Ξ converge for x < 1 and y < and | | | | 1 2 | | | | ∞ Φ2 and Φ3 converge for x < and y < [29]. For reduction formulæ to generalised hypergeometric functions| of| a single∞ variable,| | ∞ see [19, 27]. We shall also be interested in the

1 series

m n (i) ∞ ∞ (β)m(β′)n 1 x y Φ (β, β′; γ,λ; x, y) := (1.3a) 2 (γ) m + n + λ m! n! m=0 n=0 m+n X X ∞ ∞ (β) 1 xm yn Φ(i)(β; γ,λ; x, y) := m (1.3b) 3 (γ) m + n + λ m! n! m=0 n=0 m+n X X which for λ N converge for x < and y < . Clearly, for λ = γ, one has − 6∈ | | ∞ | | ∞

(i) 1 (i) 1 Φ (β, β′; γ,γ; x, y)= Φ (β, β′; γ + 1; x, y) , Φ (β; γ,γ; x, y)= Φ (β; γ + 1; x, y) (1.4) 2 γ 2 3 γ 3 and for λ = 1 these series may be rewritten as Kamp´ede F´eriet series [29]

1 (i) 1;1;0 (1); (β); Φ (β; γ, 1; x, y)= dw Φ3(β; γ; xw,yw)= F − x, y (1.5a) 3 2;0;0 (γ, 2); ; Z0  − − 

1 (i) 1;1;1 (1); (β); (β′) Φ (β, β′; γ, 1; x, y)= dw Φ (β, β′; γ; xw,yw)= F x, y (1.5b) 2 2 2;0;0 (γ, 2); ; Z0  − − 

(i) (i) such that Φ2 , Φ3 might be called ‘integrated Humbert functions’. We are interested in situations where both x and y become large. We shall therefore substitute x tx and y ty and study the| | limit |t | where x, y R will be kept fixed and non-zero.7→ − The minus7→ − signs in the substitution rule→ ∞ are motivated∈ from applications to quantum physics, see section 4. In section 2 the integral and inverse Laplace representations of the Humbert functions and integrated Humbert functions are derived, and the integral representations are used to define the required analytic continuations. Furthermore, the inverse Laplace representations will be used in section 3 to derive the asymptotic forms. Section 4 briefly outlines an application to many-body quantum dynamics.

2 Integral representations

The starting point for the derivation of the asymptotics of the series (1.1, 1.2) are the following Eulerian integral representations. Throughout, the parameters α, β, γ . . . of the functions, as well as x, y, are assumed constants and such that all series and integrals considered exist.

Lemma 1. Using the shorthand notations Φ = Φ (β; γ; tx, ty), Φ = Φ (β, β′; γ; tx, ty), 3 3 − − 2 2 − − Ξ2 =Ξ2(α, β; γ; tx, ty), Ξ1 =Ξ1(α,β,β′; γ; tx, ty) and F3 = F3(α,α′,β,β′; γ; tx, ty), the functions defined− − in (1.1, 1.2) have the integral− − representations − −

1 γ t Γ(γ) t − γ ε 1 ε 1 Φ = dv v − − F (β; γ ε; xv) F (ε; y(t v))(t v) − (2.1a) 3 Γ(γ ε)Γ(ε) 1 1 − − 0 1 − − − − Z0 1 γ t Γ(γ) t − γ ε 1 ε 1 Φ = dv v − − F (β; γ ε; xv) F (β′; ε; y(v t))(t v) − (2.1b) 2 Γ(γ ε)Γ(ε) 1 1 − − 1 1 − − − Z0

2 1 γ t Γ(γ) t − γ ε 1 ε 1 Ξ = dv v − − F (α, β; γ ε; xv) F (ε; y(t v))(t v) − (2.1c) 2 Γ(γ ε)Γ(ε) 2 1 − − 0 1 − − − − Z0 1 γ t Γ(γ) t − γ ε 1 ε 1 Ξ = dv v − − F (α, β; γ ε; xv) F (β′; ε; y(t v))(t v) − (2.1d) 1 Γ(γ ε)Γ(ε) 2 1 − − 1 1 − − − − Z0 1 γ t Γ(γ) t − γ ε 1 F3 = dv v − − 2F1 (α, β; γ ε; xv) Γ(γ ε)Γ(ε) 0 − − × − Z ε 1 F (α′, β′; ε; y(t v))(t v) − (2.1e) × 2 1 − − − and where ε is a fixed constant, which satisfies 0 <ε<γ. The integral representations (2.1) were already given in [25] and (2.1e) in [29, (9.4.16)]. We begin by repeating them since they are the crucial starting point of our analysis.

Proof: We illustrate the technique for the example Φ2. The double series (1.2c) is decoupled by using the decomposition m + n + γ = (m + γ ε)+(n + ε) and the identity [1, (6.2.1)] involving the Euler Beta function −

1 n+ε 1 m+γ ε 1 1 B(n + ε, m + γ ε) du (1 u) − u − − = − = 0 − (2.2) Γ(m + n + γ) Γ(n + ε)Γ(m + γ ε) Γ(n + ε)Γ(m + γ ε) − R − Inserting this into the definition (1.2c) gives, because the series are absolutely convergent

1 m n γ ε 1 Γ(γ) ∞ (β) ( txu) ∞ (β′) ( ty(1 u)) u − − Φ = du m − n − − 2 Γ(γ ε)Γ(ε) (γ ε) m! (ε) n! (1 u)1 ε 0 m=0 m n=0 n − − Z X − X − 1 Γ(γ) ε 1 γ ε 1 = du (1 u) − u − − F (β; γ ε; txu) F (β′; ε; ty(1 u)) Γ(γ ε)Γ(ε) − 1 1 − − 1 1 − − − Z0 The assertion (2.1b) follows by rescaling v = tu. The other identities eqs. (2.1) are derived similarly. q.e.d. Comment. Recall the following definitions of some further double hypergeometric series [29]

m n ∞ ∞ (a)m+n(b)m(b′)n x y F (a, b, b′; c,c′; x, y)= (2.3a) 2 (c) (c ) m! n! m=0 n=0 m ′ n X X m n ∞ ∞ (a)m+n(b)m x y Ψ (a, b; c,c′; x, y)= (2.3b) 1 (c) (c ) m! n! m=0 n=0 m ′ n X X m n ∞ ∞ (a)m+n x y Ψ (a; c,c′; x, y)= (2.3c) 2 (c) (c ) m! n! m=0 n=0 m ′ n X X

3 ∞ z 1 u By using Γ(z)= 0 duu − e− , one may derive in a way similar to Lemma 1 the identities R 1 ∞ u a 1 F (a, b, b′; c,c′; x, y)= du e− u − F (b; c; xu) F (b′; c′; yu) (2.4a) 2 Γ(a) 1 1 1 1 Z0

1 ∞ u a 1 Ψ (a, b; c,c′; x, y)= du e− u − F (b; c; xu) F (c′; yu) (2.4b) 1 Γ(a) 1 1 0 1 Z0

1 ∞ u a 1 Ψ (a; c,c′; x, y)= du e− u − F (c; xu) F (c′; yu) (2.4c) 2 Γ(a) 0 1 0 1 Z0 see also [29, (9.4.29)], [24, (27)]. However, there is no known direct way to render these as con- volutions, which will become our main tool to analyse the t asymptotics of the functions in Lemma 1. A different route is suggested by [24, eq. (31)].→∞

The integral representations (2.1c,2.1d,2.1e) can be used to extend the definition of the func- tions Ξ2, Ξ1, F3 (unecessary for Φ2, Φ3). This is based on the Eulerian integral representation, for γ>β> 0 [1, eq. (15.3.1)]

1 Γ(γ) β 1 γ β 1 α F (α, β; γ; x)= duu − (1 u) − − (1 + ux)− (2.5) 2 1 − Γ(β)Γ(γ β) − − Z0 which defines the analytic continuation of the function 2F1 (α, β; γ; x) in the domain arg x < π, which has a cut for 1 >x> [4]. − | | − −∞

Definition: The integral representations (2.1) define the (principal branch of) the functions Φ = Φ (β; γ; tx, ty), Φ = Φ (β, β′; γ; tx, ty), Ξ =Ξ (α, β; γ; tx, ty), Ξ =Ξ (α, β, 3 3 − − 2 2 − − 2 2 − − 1 1 β′; γ; tx, ty) and F = F (α,α′,β,β′; γ; tx, ty) in the regions arg xt < π and arg yt < − − 3 3 − − | | | | π. They are the analytical continuations of the series (1.1,1.2), beyond their respective domain of convergence. Indeed, from (2.1), the functions Φ , Φ are defined for all x < , y < , while Ξ , Ξ 2 3 | | ∞ | | ∞ 1 2 have a cut for 1 > xt > and F3 has cuts for 1 > xt > and 1 > yt> . All results which follow− will implicitly−∞ use these analytic− continuations.−∞ − −∞

In consequence, if we use F as a generic symbol for any of the functions in (2.1), one can recast (2.1) as follows (in the sense of the analytic continuation)

t Γ(γ) 1 γ F (t)= t − dv F (v)F (t v) Γ(γ ε)Γ(ε) 1 2 − − Z0 Γ(γ) 1 γ 1 = t − L − F (p) F (p) (t) (2.6) Γ(γ ε)Γ(ε) 1 2 −  L ∞ pv where f(p) = (f(v))(p) = 0 dv e− f(v) denotes the Laplace transform. The functions F (v) are readily read off from eqs. (2.1) and are listed in the following table. 1,2 R

4 F (t) F1(v) F2(v) γ ε 1 ε 1 Φ v − − F (β; γ ε; xv) v − F (ε; yv) 3 1 1 − − 0 1 − γ ε 1 ε 1 Φ v − − F (β; γ ε; xv) v − F (β′; ε; yv) 2 1 1 − − 1 1 − γ ε 1 ε 1 Ξ v − − F (α, β; γ ε; xv) v − F (ε; yv) 2 2 1 − − 0 1 − γ ε 1 ε 1 Ξ v − − F (α, β; γ ε; xv) v − F (β′; ε; yv) 1 2 1 − − 1 1 − γ ε 1 ε 1 F v − − F (α, β; γ ε; xv) v − F (α′, β′; ε; yv) 3 2 1 − − 2 1 −

Next, we require the following list of Laplace transforms, taken from [35, (3.35.1.3,3.37.1.2,3.38.1.1)], combined with [1, (13.1.10,13.1.33)]

a 1 a y/p L v − F (a; yv) (p)=Γ(a)p− e− (2.7a) 0 1 − b 1 a b a L v− F (a; b; yv) (p)=Γ(b)p − (p + y)− (2.7b) 1 1 − c 1  a c a p L v − F (a, b; c; yv) (p)=Γ(c)p − y− U a;1+ a b; (2.7c) 2 1 − − y    where U denotes the Tricomi function [1]. Combining these with the integral forms (2.6) gives Lemma 2. The Laplace transforms of the analytically continued functions in Lemma 1 are given by the following table, where U denotes the Tricomi function.

1 γ function F (t)/ (Γ(γ)t − ) Laplace transform F (p) β γ β y/p Φ (β; γ; xt, yt) p − (p + x)− e− 3 − − β+β′ γ β β′ Φ (β, β′; γ; xt, yt) p − (p + x)− (p + y)− 2 − − α α γ y/p Ξ (α, β; γ; xt, yt) x− p − U(α;1+ α β; p/x)e− 2 − − − α α+β′ γ β′ Ξ (α,β,β′; γ; xt, yt) x− p − (p + y)− U(α;1+ α β; p/x) 1 − − − α α′ α+α′ γ p p F (α,α′,β,β′; γ; xt, yt) x− y− p − U(α;1+ α β; )U(α′;1+ α′ β′; ) 3 − − − x − y

The entries for Φ2 and Φ3 are contained in [28].

Corollary 1. Applying again eq. (2.2), the formal Kamp´ede F´eriet series

′ ; (αp); (α′ ′ ) ′ m+n m n 0;p;p − p ∞ (α1)m (αp)m (α1′ )n (αp )n ( 1) (tx) (ty) F1;q;q′ tx, ty = · · · · · · − γ; (βq); (β′ ′ ) − − ! (β1)m (βq)m (β1′ )n (βq′ ′ )n (γ)m+n m! n! q m,n=0 · · · · · · X

1 γ ε 1 Γ(γ) du u − − α1,...,αp = 1 ε pFq+1 ; txu Γ(γ ε)Γ(ε) (1 u) β1,...,βq, γ ε − × − Z0 − −  −  α1′ ,...,αp′ ′ p′ Fq′+1 ; ty(1 u) (2.8) × β′ ,...,β′ ′ , ε − −  1 q 

1 γ 1 γ x y = Γ(γ)t − L − s− F (α ); (β ); ′ F ′ (α′ ′ ); (β′ ′ ); (t) (2.9) p q p q − s p q p q − s      5 contains all functions treated here explicitly as special cases, if (2.8) can be used as above to define an analytic continuation, in the domain arg xt < π and arg yt < π. For the derivation of (2.9), we used the identity [35, (3.38.1.1)] | | | |

µ 1 µ ω L v − F ((a );(b ),µ; ωv) (s)=Γ(µ)s− F (a );(b ); (2.10) p q+1 p q − p q p q − s    (2) For q = q′ = 0 and p = p′ = 2, eq. (2.8) reduces to F3, or the Lauricella function FB in two variables. Furthermore, for p = p′ = q = q′ = 0, one has an addition theorem

∞ 1 xm yn F (γ; x + y)= 0 1 (γ) m! n! m,n=0 m+n X Γ(γ) 1 uγ ε 1 = du − − F (γ ε; xu) F (ε; y(1 u)) (2.11) Γ(γ ε)Γ(ε) (1 u)1 ε 0 1 − 0 1 − − Z0 − −

(i) (i) (i) We now turn to the variants Φ3 and Φ2 defined in eq. (1.3). Since Φ2 is symmetric under the permutation (x, β) (y, β′), we can set x y without restriction of the generality. ↔ ≥ (i) (i) (i) (i) Lemma 3. With the shorthands Φ3 = Φ3 (β; γ, 1; tx, ty), Φ2 = Φ2 (β, β′; γ, 1; tx, ty) (i,s) (i) − − − − with x>y and Φ2 := Φ2 (β, β′; γ, 1; tx, tx), the following integral representations of the integrated Humbert functions (1.3) hold− true−

y/x β 1 (i) 1 γ e y − 1 1 γ y y y Φ = Γ(γ)t − L − p − Γ 1 β, Γ 1 β, + (t) (2.12a) 3 x x − x − − x p          1 γ β′ 1 (i) Γ(γ)t − x − 1 1 γ y Φ = ′ L − p − F 1 β, β′;2 β; 2 (1 β)(x y) β − 2 1 − − −(x y) − − −   −  β+γ 1 β (p + x)y +p (p + x) − F 1 β, β′;2 β; (t) (2.12b) 2 1 − − −p(x y)  −  1 γ (i,s) Γ(γ)t − L 1 β+β′ γ 1 β β′ 1 γ Φ2 = − p − (p + x) − − p − (t) (2.12c) (1 β β′)x − − −   where Γ(a, x) is the incomplete Gamma-function. Proof. Starting from (1.3b), the extra denominator is turned into an auxiliary integral

∞ m n (i) ∞ v(m+n+1) (β)m ( tx) ( ty) Φ = dv e− − − 3 (γ) m! n! 0 m,n=0 m+n Z X and the decoupling of the two series proceeds via (2.2), as in the proof of Lemma 1. A last v change of variables w = e− and using also (2.7) leads to

1 (i) 1 γ L 1 β γ β yw/p Φ3 = Γ(γ)t − − p − dw (p + xw)− e− (t)  Z0  =: M | {z }

6 The integral is found as follows, reducing it to incomplete Gamma functions [1] M x+p y/x 1 β y/x+y/p 1 β y a p e px − β b = da a− exp − = db b− e− M x −x p x y Zp     Zy/x 1 β ey/x px − y y y = Γ 1 β, Γ 1 β, + x y − x − − x p        (i) and inserting into Φ3 gives the assertion (2.12a). (i) Turning to Φ2 , the procedure to go from (1.3a) to an integral representation follows the same lines as before. Changing variables as before and re-using (2.7), we find

1 (i) 1 γL 1 β+β′ γ β β′ Φ2 = Γ(γ)t − − p − dw (p + xw)− (p + yw)− (t)  Z0  =: N which is still symmetric under the simultaneous| exchanges{z (x, β) (y, β′}), as it should be. To evaluate this, recall the following identity on the incomplete Beta↔ function [1, (6.6.8,15.3.4)] ξ ua 1 ξa I(a, b, ξ) := du − = F (a, b;1+ a; ξ) (1 + u)b a 2 1 − Z0 Then we can evaluate the integral , now using x>y N ′ 1 β β β β′ p − p − = x− y− dw w + w + N 0 x y Z     ′ 1 β β (p+x)y/(p(x y)) β β′ p(x y) − − − β β′ = x− y− − db b− (1 + b)− xy y/(x y)   Z − 1 β β′ β β′ p(x y) − − (p + x)y y = x− y− − I 1 β, β′, I 1 β, β′, xy − p(x y) − − −(x y)     −   −  ′ 1 β β β β′ 1 β p(x y) − − x− y− (p + x)y − (p + x)y = − F 1 β, β′;2 β; xy 1 β p(x y) 2 1 − − −p(x y)   − " −   −  1 β y − y F 1 β, β′;2 β; − x y 2 1 − − −x y  −   − # (i) and inserting this into the above expression for Φ2 gives the assertion (2.12b). Finally, in the symmetric case x = y we have

1 (i,s) 1 γ L 1 β+β′ γ β β′ Φ2 = Γ(γ)t − − p − dw (p + xw)− − (t)  Z0  and straightforward integration gives the assertion (2.12c). q.e.d. Corollary 2. For x> 0, and λ> 0, µ> 0, one has the identity

1 λ 1 dww − Γ(λ)Γ(µ) Φ (β, β′; γ; xw, xw)= F (β + β′,λ; µ + λ,γ; x) (2.13) (1 w)1 µ 2 − − Γ(λ + µ) 2 2 − Z0 − − 7 (i,s) Proof. The lines of calculation follow the proof of Φ2 in Lemma 3. Consider

1 λ 1 µ 1 dw w − (1 w) − Φ (β, β′; γ; xtw, xtw) − 2 − − Z0 1 1 γ 1 β+β′ γ λ 1 µ 1 β β′ = Γ(γ)t − L − p − dww − (1 w) − (p + xw)− − (t) −  Z0 

Γ(γ)Γ(λ)Γ(µ) 1 γ 1 γ x = t − L − p− F β + β′,λ; µ + λ; (t) Γ(λ + µ) 2 1 − p    Γ(λ)Γ(µ) = F (β + β′,λ; µ + λ,γ; xt) Γ(λ + µ) 2 2 − where in the third line, the integral representation [1, (15.3.1)] of 2F1 was used and in the forth line, [36, (3.35.1.10)], or else (2.10), was applied. Set t = 1. q.e.d.

Similar, but inequivalent, integral formulae involving Φ2 are stated in [23, eqs. (3.18,3.19)].

3 Asymptotic expansions

We shall use a Tauberian theorem for the asymptotic evaluations: the behaviour of a function f(t) for t is related to the one of its Laplace transform f(p) for p 0 [34], [33, ch. XIII]. Therefore,→∞ it is sufficient to analyse the behaviour of the representations→ as inverse Laplace transformations from Lemmas 2 and 3 in section 2 for p 0, before inverting. → Theorem 1. The Humbert function Φ2 = Φ2(β, β′; γ; tx, ty) has the following leading asymptotic behaviour for t , with x, y =0 being kept− fixed − →∞ 6 Γ(γ) β β′ − − Γ(γ β β′) (tx) (ty) ; for x> 0, y> 0 − −  ′ Γ(γ) yt β β+β γ  ′ e (t( y + x))− (t y ) − ; for x> 0, y< 0  Γ(β ) −  | | | |  ′ ′  Γ(γ) xt β β+β γ  e− (t(y + x ))− (t x ) − ; for x< 0, y> 0  Γ(β) | | | | Φ2  (3.1)  ′ ′ ≃  Γ(γ) x t β+β γ β  e−| | (t x ) − (t x y )− ; for x 0 and y > 0, the leading term for p 0 is found to be Φ2 1 γ 1 β+β′ γ β β′ → ≃ Γ(γ)t − L − p − x− y− (t) and direct evaluation [36, (2.1.1.1)] gives the assertion. Next,  8 for x > 0 and y < 0, one first makes the shift p = q y which produces an exponential − contribution, according to the shift theorem

1 ωt L − f¯(p ω) (t) = e f(t) − Second, one takes the leading term for q 0. Then → 1 γ y t 1 β+β′ γ β β′ Φ = Γ(γ)t − e−| | L − (q + y ) − (q + y + x)− q− (t) 2 | | | |   q 0 1 γ y t 1 β+β′ γ β β′ → Γ(γ)t − e−| | L − y − ( y + x)− q− (t) ≃ | | | |   and direct evaluation gives the assertion. For x < 0 and y > 0 one merely has to permute (x, β) (y, β′). Finally, for x< 0 and y < 0 ↔ 1 γ 1 β+β′ γ β β′ Φ = Γ(γ)t − L − p − (p x )− (p y )− (t) 2 −| | −| |   If x y , one makes the shift q = p x and the stated result follows as before. | | | | −| | If y

Theorem 2. The Humbert function Φ3 = Φ3(β; γ; tx, ty) has the following asymptotic behaviour for t , with x, y =0 being kept fixed − − →∞ 6 β (1+β γ)/2 Γ(γ)(tx)− (ty) − Jγ β 1(2√yt ) ;for x> 0, y > 0 − −

 β (1+β γ)/2 Φ3  Γ(γ)(tx)− (t y ) − Iγ β 1(2 y t ) ; for x> 0, y < 0 (3.2) ≃  | | − − | |  Γ(γ) β γ y/ x x t p (t x ) − e− | |−| | ; for x< 0 Γ(β) | |   where Jν is a Bessel function and Iν the corresponding modified Bessel function and neither γ nor β are non-positive integers. The qualitative behaviour of the leading asymptotic term is only influenced by the signs of β and β γ. − Proof. Use the representation of Φ3 as an inverse Laplace transformation in Lemma 2. For x> 0, simply retain the lowest order in p 0 and use (2.7a). Expressing the hypergeometric → function 0F1 as a Bessel or a modified Bessel function, respectively, gives the assertion for y > 0 and y < 0. For x< 0, make the shift q = p x such that −| | 1 γ x t 1 β γ β y/(q+ x ) Φ = Γ(γ)t − e−| | L − (q + x ) − q− e− | | (t) 3 | | q 0 1 γ x t 1 β γ β y/ x  → Γ(γ)t − e−| | L − x − q− e− | | (t) ≃ | | 1 β β 1  and re-use Γ(β)L − q− (t)= t − [36, (2.1.1.1)]. q.e.d. Theorem 3. The Humbert function Ξ = Ξ (α, β; γ; tx, ty) has the following asymptotic  2 2 − −

9 behaviour for t , with x, y =0 and x> 0 being kept fixed →∞ 6 Γ(α)Γ(α β) β (γ β 1)/2 − (tx)− (ty)− − − Jγ β 1(2√yt ); y > 0, α > β Γ(α) − − ∀  Γ(α)Γ(α β) β (γ β 1)/2 − − − − −  Γ(α) (tx) (t y ) Iγ β 1(2 y t ); y < 0, α > β  | | − − | | ∀   Γ(γ) α (γ α 1)/2 π p  (tx)− (ty)− − − Yγ α 1(2√yt )  Γ(α) 2 − −  1  +Jγ α 1(2 y t ) 2 ln(tx) + ln(x/y) ψ(α) 2CE ; y > 0, α = β  − − | | − − ∀ Ξ2  i (3.3) ≃  Γ(γ) α p (γ α 1)/2   (tx)− (t y )− − − Iγ α 1(2 y t ) Γ(α) − − 1 | | | | ln(tx) + ln(x/ y ) ψ(α) 2CE ; y < 0, α = β  × 2 | | − − p ∀   Γ(α)Γ(β α) α (γ α 1)/2   − (tx)− (ty)− − − J (2√yt ); y > 0, α < β  Γ(β) γ α 1  − − ∀   Γ(α)Γ(β α) α (γ α 1)/2  − (tx)− (t y )− − − Iγ α 1(2 y t ); y < 0, α < β  Γ(β) − −  | | | | ∀  p where Jνand Yν are the Bessel and Neuman functions, respectively, Iν is a modified Bessel function, ψ(x) is the digamma function and C 0.5772 ... is Euler’s constant [1]. For x< 0, E ≃ the function Ξ2 has a cut. Proof. In order to apply the inverse Laplace representation of Lemma 2, the small-p expansion

Γ(α β) p β α − − Γ(α) x ; for α > β p  1 p U α;1+ α β; Γ(α) lnx + ψ(α)+2CE ; for α = β − x ≃  −  Γ(β α)    − Γ(β)   ; for α < β  according to [1, (13.5.6-13.5.12)] is required, for α β N. For x> 0 and α > β, to lowest Γ(γ)Γ(α β) 1 γ β − 1 6∈ −(γ β) y/p order in p 0, this gives Ξ − t − x− L − p− − e (t) and using (2.7a) gives → 2 ≃ Γ(α) the assertion. For x > 0 and α < β the result follows from the symmetry in α and β. For  α = β and y > 0, expansion to lowest order in p 0 gives → 1 γ Γ(γ) t − 1 (γ α) y/p Ξ L − (ψ(α)+2C ln x) p− − e− (t) 2 ≃ −Γ(α) xα E −   1 (γ α) y/p + L − p− − ln p e− (t)   1 1 γ 2 (γ α 1) Γ(γ) t − 1 t t − − = ψ(α)+2CE ln x ln Jγ α 1(2√yt ) −Γ(α) xα − − 2 y y − − "    1 2 (γ α 1) t − − ∂Jν 1(2√yt ) − − y ∂ν   ν=γ α# − re-using (2.7a) and [36, (2.5.7.3)]. For z , one has asymptotically ∂Jν (z ) π Y (z) [1, → ∞ ∂ν ≃ 2 ν (9.25,9.26)]. Collecting terms leads to the stated result. For y < 0 and α = β one has

10 analogously

1 γ Γ(γ) t − 1 (γ α) y /p Ξ L − (ψ(α)+2C ln x) p− − e| | (t) 2 ≃ −Γ(α) xα E −   1 (γ α) y /p + L − p− − ln p e| | (t)   1 1 γ 2 (γ α 1) Γ(γ) t − 1 t t − − = ψ(α)+2CE ln x ln Iγ α 1(2√yt ) −Γ(α) xα − − 2 y y − − "    1 2 (γ α 1) t − − ∂Iν 1(2√yt ) − − y ∂ν   ν=γ α# − ∂I ν (z) ν and from the asymptotic form [1, (9.7.1)] for Iν(z) for z , we see that ∂ν z Iν(z) merely gives a sub-leading correction. Collecting terms we→ ∞complete the list of assertions≃ − if x> 0. For x< 0, the inverse Laplace representation in Lemma 2 has a cut. q.e.d. (i) (i) Theorem 4. The integrated Humbert function Φ3 = Φ3 (β; γ, 1; tx, ty) has the following leading asymptotic behaviour for t , with x, y =0 and x> 0 being− kept− fixed →∞ 6 γ 1 β 1 1 3 − xt− Γ(1 β)(y/x)) 1 β 1F1(1;2 β; y/x) ; y > 0, β + γ > 2 − − − − ∀  h 1 1 i (i) Γ(γ) (β+γ+ ) y β π 1 3 Φ  (yt)− 2 2 cos 2√yt + β γ ; y > 0, β + γ < (3.4) 3 ≃  √π x 2 − − 2 ∀ 2   1 1 Γ(γ) (β γ )  β  − 2 − − 2 − 2√π ( y t) (xt) exp 2 y t ; y < 0  | | | | ∀    where neither γ nor 1 β are non-positive integers.p  − Proof. Begin with the integral representation (2.12a) of Lemma 3. The leading term for p 0 → is found from the asymptotic identity [1, (6.5.30)] for x →∞ x a 1 y Γ(a, x + y) Γ(a, x) e− x − 1 e− − ≃ − − In order to invert L , we also need the identities (2.7a) and [36, (3.10.2.2)]

ν µ+ν 1 1 µ a Γ(ν) µ 1 a t − L − p− Γ ν, (t)= t − F (ν; ν +1,µ + ν; at) p Γ(µ) − νΓ(µ + ν) 1 2 −    Then, for p 0 (here, x> 0 is assumed) → y/x β 1 Γ(1 β, y ) (i) 1 γ e y − L 1 x Φ3 Γ(γ)t − − −γ 1 ≃ x x p −    y Γ(1 β, ) y/p β p e− p y/x − + 1 e− (t) − pγ 1 pγ 1 y − − −     y/x β 1 1 γ e y − Γ(1 β,y/x) Γ(1 β) = Γ(γ)t − − − − x x Γ(γ 1)  β 1   − y/x (yt) − F (1 β;2 β,γ β; yt) (1 e− ) F (γ β 2; yt) + 1 2 − − − − + − 0 1 − − − (1 β)Γ(γ β) Γ(γ β 1)(yt)β − − − − 

11 Further evaluation is simplified by the identity, taken from [1, (6.5.3,6.5.12)]

y (1 β) y 1 y − − Γ(1 β) Γ 1 β, = F 1 β;2 β; x − − − x 1 β 1 1 − − −x   h  i −   and this gives

ey/x F (1 β;2 β; y/x) Φ(i) Γ(γ) 1 1 − − − 3 ≃ xt (β 1)Γ(γ 1)  − − y/x F (1 β;2 β,γ β; yt) 1 x 1 e− + 1 2 − − − − + − F (γ β 2; yt) (3.5) (1 β)Γ(γ β)(xt)β 1 (xt)β y Γ(γ β 1) 0 1 − − − − − − − −  We can now distinguish the two cases y > 0 and y < 0. For y > 0, recall the asymptotic identity [37, (07.22.06.0011.01)]

y Γ(b )Γ(b ) π 1 →∞ 1 2 η/2 2 1F2(a1; b1, b2; y) y cos η +2√y 1+O(y− ) − ≃ √π Γ(a1) 2     Γ(b1)Γ(b2) a1 1 + y− 1+O(y− ) Γ(b a )Γ(b a ) 1 − 1 2 − 1  with η =(a b b + 1 ). Also, the function F can be expressed in terms of Bessel functions 1 − 1 − 2 2 0 1 Jν [1]. Inserting into (3.5) the above expansion and using the asymptotics of Jν [1] leads to

γ 1 y β 1 1 y Φ(i) − Γ(1 β) − F 1;2 β; 3 ≃ xt − x − 1 β 1 1 − x  −    β 1  1  Γ(γ) y (β+γ+ ) π 1 + (yt)− 2 2 cos 2√yt + β γ √π x 2 − − 2      3 3 Herein, the first line dominates for β + γ > 2 and the second line for β + γ < 2 . This is the first part of the assertion. For y = y < 0, recall the asymptotic form [37, (07.22.06.0005.01)] −| | y Γ(b )Γ(b ) 1 1 →∞ 1 2 2 (a1 b1 b2+ 2 ) 2√y 1F2(a1; b1, b2; y) y − − e ≃ 2√π Γ(a1) and now express 0F1 in terms of a modified Bessel function Iν [1]. Insertion into (3.5) and using the known asymptotic behaviour leads to

1 1 2 (β γ 2 ) (i) Γ(γ) ( y t)− − − 2√ y t γ 1 1 y Φ | | e | | + − F 1;2 β; | | 3 ≃ 2π1/2 (xt)β β 1 xt 1 1 − − x −   Clearly, the second term is always sub-dominant. This completes the proof. q.e.d. (i) (i) Theorem 5. The integrated Humbert function Φ2 = Φ2 (β, β′; γ, 1; tx, ty) has the following leading asymptotic behaviour for t , with x>y> 0 being kept− fixed − →∞ β′ β (i) Γ(γ) (xt) − xy Φ2 2F2 1 β, β′;2 β,γ β; t ≃ (1 β)Γ(γ β) ((x y)t)β − − − −x y − − −  ′ −  γ 1 1 x β y + − F 1 β, β′;2 β; (3.6) β 1 xt x y 2 1 − − −x y −  −   − 

12 Herein, none of γ, γ β or 1 β is a non-positive integer. For y>x> 0, one permutes (x, β) − − and (y, β′). Proof. Begin with the integral representation (2.12b) of Lemma 3. For p 0, this simplifies → into 1 γ 1 β p 0 Γ(γ) t − x − xy 1 (i) → 1 Φ ′ ′ L − F 1 β, β′;2 β; 2 ≃ 1 β (x y)β x1 β pγ β 2 1 − − −x y p − − −  −  −  γ 1 y p − F 1 β, β′;2 β; (t) − 2 1 − − −x y  −  We need the identity [36, (3.35.1.10)]

ν 1 1 ν ω t − L − p F a, b; c; (t)= F (a, b; c, ν; ωt) 2 1 − p Γ(ν) 2 2 −    Then straightforward algebra leads to the assertion. For y>x> 0, it is enough to exchange β β′ and x y. q.e.d. ↔ ↔ (i,s) The symmetric case x = y > 0, hence Φ2 , is a special case of the corrollary 2, eq. (2.13). More explicit asymptotics of 2F2 can be found in [32, 37, 38]. These expressions derived in this section can be checked numerically. However, the conver- gence towards the given asymptotics is in general quite slow. Finally, it is now straightforward to obtain the asymptotics of the special Kamp´ede F´eriet series (2.9), by using the known asymptotics of the generalised hypergeometric functions pFq(z) [32].

4 An example from physics

The quantum spherical model [41, 40, 39] is a simple exactly solvable model of quantum phase transitions, in d spatial dimensions, with a non-trivial quantum critical behaviour at zero temperature (that is, the model cannot be described by a simple mean-field approximation, at least for 1

1 d 3 g 1 d 3 g eγZ (4πγt)d/2 = Φ ; ; gZt, t + Cg2t2 dw Φ ; ; tw, gZtw (4.3) 2 3 2 2 − −γ 3 2 2 −γ −   Z0   For the physically interesting long-time behaviour of Z = Z(t) for t , the asymptotics →(i) ∞ of the Humbert function Φ3 and of the integrated Humbert function Φ3 , as studied in this work, are required. In contrast to the original formulation in eqs. (4.1,4.2), the reformulation in eq. (4.3) contains the spatial dimension d merely as a parameter. This allows to discuss also the model’s behaviour at non-integer dimensions d R, which often provides useful physical insight. ∈ The final long-time behaviour obtained from (4.3) turns out to depend subtly on the di- mension d. For d 2, there is a single solution with Z(t) = Z(t) < 0. Then, for t ≥ 1 2 1 −| | → ∞ it follows that Z(t) t− ln t for d > 2 and Z(t) t− for d = 2. In both cases, this is quite different from| the| ∼ form Z(t) ln t obtained| for| a ∼ classical, non-coherent dynamics (limit g 0) [45]. | | ∼ →

Acknowledgements

We are grateful to the Group ‘Rechnergest¨utzte Physik der Werkstoffe’ at ETH Z¨urich, Switzer- land, where this work was done, for their warm hospitality. SW thanks UFA-DFH for financial support through grant CT-42-14-II.

References

[1] Abramowitz M, Stegun IA. Handbook of Mathematical Functions. New York (NY): Dover; 1965. [2] Askey RA, Daalhuis ABO. Generalized hypergeometric functions and Meijer G-function. In: Olver FWJ, Lozier DW, Boisvert et al., editors. NIST Handbook of Mathematical Functions. New York (NY): Cam- bridge University Press; 2010. p. 403-418 [3] Bailey WN. Generalised hypergeometric series. Cambridge (MA): Cambridge University Press; 1935. [4] Erd´elyi A, Magnus W, Oberhettinger F, et al. Higher Transcendental Functions Vol. I. New York (NY): McGraw-Hill; 1953. [5] Buchholz H. The confluent . Heidelberg: Springer; 1969. [6] Mathai AM, Saxena RK. Generalised hypergeometric functions with applications in statistics and the physical sciences. Heidelberg: Springer; 1973. [7] Mathai AM, Saxena RK, Haubold HJ. The H-function: theory and applications. Heidelberg: Springer; 2010. [8] Seaborn JB. Hypergeometric functions and their applications. Heidelberg: Springer; 1991. [9] Slater LJ. Generalized hypergeometric functions. Cambridge (UK): Cambridge University Press; 1966.

14 [10] Appell P, Kamp´ede F´eriet J. Fonctions hyperg´eom´etriques et hypersph´eriques [Hypergeometric and hyperspherical functions]. Paris: Gauthier-Villars; 1926. French. [11] Humbert P. Sur les fonctions hypercylindriques [On the hyper-cylindrical functions]. Comptes rendus Acad Sci Paris. 1920;171:490-492. French. [12] Humbert P. The confluent hypergeometric functions of two variables. Proc Roy Soc Edinburgh. 1920;A41:73-96. [13] Appell P. Sur les s´eries hyperg´eom´etriques de deux variables et sur des ´equations diff´erentielles lin´eaires aux d´eriv´ees partielles [On the hypergeometric series of two variables and on linear partial differential equations]. Comptes rendus Acad Sci Paris. 1880;90:296-298 and 1880;90:731-735. French. ′ ′ ′ ′ [14] Appell P. Sur la s´erie F3(α, α ,β,β ,γ; x, y) [On the series F3(α, α ,β,β ,γ; x, y)]. Comptes rendus Acad Sci Paris. 1880;90:977-980. French. [15] Appell P. Sur les fonctions hyperg´eom´etriques de deux variables [On the hypergeometric functions in two variables]. J Maths Pures Appliqu´ees (3e s´erie). 1882;8:173-216. French. [16] Fleischer J, Jegerlehner F, Tarasov OV. A new hypergeometric representation of one-loop scalar integrals in d dimensions. Nucl Phys B. 2003;672:303-328. arXiv:hep-ph/0307113. [17] Kniehl BA, Tarasov OV. Finding new relationships between hypergeometric functions by evaluating Feyn- man integrals. Nucl Phys B. 2012;854:841-852. arXiv:1108.6019. [18] Shpot M. A massive Feynman integral and some reduction relations for Appell functions J Math Phys. 2007;48:123512. arXiv:0711.2742. [19] Brychkov YuA. Reduction formulas for the Appell and Humbert functions. Integral transforms Spec Funct. 2017;28:22-38 (2017). [20] Liu HM, Wang WP. Transformation and summation formulae for Kamp´ede F´eriet series J Math Anal Appl. 2014;409:100-110. [21] Choi J, Hanasov A. Applications of the operator H(α, β) to the Humbert double hypergeometric functions. Comp Math Appl. 2011;61:663-671. [22] Saxena RK, Kalla SL, Saxena R. Multivariate analogue of generalized Mittag-Leffler function. Integral Transforms Spec Funct. 2011;22:533-548. ′ [23] Brychkov YuA, Saad N, Some formulas for the Appell function F1(a,b,b ; c; w,z). Integral Transforms Spec Funct. 2012;23:793-802 (2012). erratum Integral Transforms Spec Funct. 2012;23:863. ′ ′ [24] Brychkov YuA, Saad N. On some formulas for the Appell function F2(a,b,b ; c,c ; w; z). Integral Trans- forms Spec Funct. 2014;25:111-123. ′ ′ [25] Brychkov YuA, Saad N. On some formulas for the Appell function F3(a,a ,b,b ; c; w,z). Integral Trans- forms Spec Funct. 2015;26:910-923. ′ [26] Brychkov YuA, Saad N. On some formulas for the Appell function F4(a,b; c,c ; w,z). Integral Transforms Spec Funct. 2017;28:629-644.

[27] Brychkov YuA. On new reduction formulas for the Humbert functions Ψ2,Φ2 and Φ3. Integral Transforms Spec Funct. 2017;28:350-360. [28] Erd´elyi A, Magnus W, Oberhettinger F, et al. Table of integral transforms Vol. I. New York (NY): McGraw-Hill; 1954. [29] Srivastava HM , Karlsson PW. Multiple gaussian hypergeometric series. New York (NY): Ellis Horwood Wiley; 1985. [30] Srivastava HM, Pathan-Yasmeen MA. Some reduction formulas for multiple hypergeometric series. Rend Sem Mat Univ Padova. 1989;82:1-7. [31] Wright EM. The asymptotic expansion of the generalized hypergeometric function. J London Math Soc. 1935;10:286-293.

15 [32] Wright EM. The asymptotic expansion of the generalized hypergeometric function. Proc London Math Soc. 1940;46:389-408. erratum J London Math Soc. 1952;27:254. [33] Feller W. An introduction to probability theory and its applications Vol. 2 (2nd ed). New York (NY): Wiley; 1971. [34] Widder DV. The Laplace transform (2nd ed). Princeton (US): Princeton University Press; 1946. [35] Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and series Vol. 4: direct Laplace transforms. New York (NY): Gordon & Breach; 1992. [36] Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and series Vol. 5: inverse Laplace transforms. New York (NY): Gordon & Breach; 1992. [37] wolframresearch:functions.wolfram.com [internet]. Champaign (US): Wolfram Research, Inc.; 2017 [cited 2017 Nov 6]. Available from http://functions.wolfram.com [38] Volkmer H, Wood JJ. A note on the asymptotic expansion of generalised hypergeometric functions. Anal. Appl. 2014; 12: 107-115. [39] Oliveira MH, Raposo EP, Coutinho-Filho MD. Quantum spherical spin model on hypercubic lattices. Phys Rev B. 2006;74:184101. [40] Vojta T. Quantum version of a spherical model: Crossover from quantum to classical critical behaviour. Phys Rev B. 1996;53:710-714. [41] Henkel M, Hoeger C. Hamiltonian formulation of the spherical model in d = r + 1 dimensions. Z Phys B. 1984;55:67-73. [42] Sachdev S. Quantum phase transitions (2nd ed). Cambridge (MA): Cambridge University Press; 2011. [43] Dutta A, Aeppli G, Chakarabarti BK, et al. Quantum phase transitions in transverse-field spin models. Cambridge (MA): Cambridge University Press; 2015. [44] Wald S, Henkel M. Lindblad dynamics of a quantum spherical spin. J Phys A. 2016;49:125001. arXiv:1511.03347. [45] Wald S, Landi GT, Henkel M. Lindblad dynamics of the quantum spherical model. 2017. 61p. Located at: arXiv:1707.06273.

16