The Law of Large Numbers and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

The Law of Large Numbers and Its Applications The Law of Large Numbers and its Applications by Kelly Sedor A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honours Seminar) Lakehead University Thunder Bay, Ontario, Canada copyright c (2015) Kelly Sedor Abstract This honours project discusses the Law of Large Numbers (LLN). The LLN is an extremely intuitive and applicable result in the field of probability and statistics. Essen- tially, the LLN states that in regards to statistical observations, as the number of trials increase, the sample mean gets increasingly close to the hypothetical mean. In this project, a brief historical context will be outlined, basic probability theory concepts will be reviewed, the various versions of the theorem will be stated and one of these variations will be proved using two different methods. This project will continue by illustrating numerous situations in which the LLN can be applied in several different scientific and mathematical fields. i Acknowledgements I would like to thank all of the friends, family and classmates that helped me reach this point. I would also especially like to thank Dr. Deli Li and Dr. Razvan Anisca for the support and encouragement they have given me over the past four years. I am very fortunate to have met so many wonderful people throughout my university career. ii Contents Abstract i Acknowledgements ii Chapter 1. Introduction 1 1. Historical Background of the Law of Large Numbers 1 2. Law of Large Numbers Today 1 Chapter 2. Preliminaries 3 1. Definitions 3 2. Notation 6 Chapter 3. The Law of Large Numbers 7 1. Theorems and Proofs 7 2. The Weak Law Vs. The Strong Law 10 Chapter 4. Applications of The Law of Large Numbers 12 1. General Examples 12 2. Monte Carlo Methods 15 Chapter 5. Further Discussion 18 Bibliography 20 iii CHAPTER 1 Introduction 1. Historical Background of the Law of Large Numbers Early in the sixteenth century, Italian mathematician Gerolamo Cardano (1501-1575) observed what would later become known as The Law of Large Numbers. He observed that in statistics the accuracy of observations tended to improve as the number of trials increased. However, he made no known attempt to prove this observation. It was not until over two-hundred years later that this conjecture was formally proved. In the year 1713, Swiss mathematician Jacob Bernoulli published the first proof for what Cardano had observed centuries earlier. Bernoulli recognized the intuitive nature of the problem as well as its importance and spent twenty years formulating a complicated proof for the case of a binary random variable that was first published posthumously in his book, Ars Conjectandi. Bernoulli referred to this as his \Golden Theorem" but it quickly became known as \Bernoulli's Theorem". In his book, Bernoulli details the problem of drawing balls from an urn that contains both black and white balls. He describes trying to estimate the proportion of white balls to black if they are consecutively drawn from the urn and then replaced. Bernoulli states that when estimating the unknown proportion any degree of accuracy can be achieved through an appropriate number of trials. The official name of the theorem; \The Law of Large Numbers", was not coined until the year 1837 by French mathematician Simeon Denis Poisson. Over the years, many more mathematicians contributed to the evolution of the Law of Large Numbers, refining it to make it what it is today. These mathematicians include: Andrey Markov, Pafnuty Chebyshev who proved a more general case of the Law of Large Numbers for averages, and Khinchin who was the first to provide a complete proof for the case of arbitrary random variables. Additionally, several mathematicians created their own variations of the theorem. Andrey Kolmogorov's Strong Law of Large Numbers which describes the behaviour of the variance of a random variable and Emile Borel's Law of Large Numbers which describes the convergence in probability of the proportion of an event occurring during a given trial, are examples of these variations of Bernoulli's Theorem. 2. Law of Large Numbers Today In the present day, the Law of Large Numbers remains an important limit theorem that is used in a variety of fields including statistics, probability theory, and areas of economics 1 Chapter 1. Introduction 2 and insurance. The LLN can be used to optimize sample sizes as well as approximate calculations that could otherwise be troublesome. As we will see throughout our paper, there are numerous situations in which the Law of Large Numbers is effective as well as others in which it is not. The goal of this project is to introduce the various forms of The Law of Large Numbers as well as answer questions such as, \How powerful is the Law of Large Numbers?", \How can we prove the Law of Large Numbers?" and \How can the Law of Large Numbers be used?" Our paper is structured as follows. In Chapter 2 we will introduce a groundwork for our theorems by providing key definitions and notation that will be used throughout the project. We will then move on to Chapter 3 which will state the various forms of the Law of Large Numbers. We will focus primarily on the Weak Law of Large Numbers as well as the Strong Law of Large Numbers. We will answer one of the above questions by using several different methods to prove The Weak Law of Large Numbers. In Chapter 4 we will address the last question by exploring a variety of applications for the Law of Large Numbers including approximations of sample sizes, Monte Carlo methods and more. We will conclude the project in Chapter 5 by providing topics for further discussion as well as important implications of the Law of Large Numbers. CHAPTER 2 Preliminaries Before we begin our discussion of the Law of Large Numbers, we first introduce suit- able notation and define important terms needed for the discussion. In this chapter some elementary definitions with corresponding examples will also be provided. Additionally, this chapter will outline the notation that will be seen throughout the remainder of the project. In order to best understand the content of the project, one should have an ap- propriate grasp on important concepts such as expected value or mean, variance, random variables, probability distributions and more. 1. Definitions Definition 2.1. A population is a group of objects about which inferences can be made. Definition 2.2. A sample is a subset of the population. Definition 2.3. A random sample of size n from the distribution of X is a collection of n independent random variables each with the same distribution as X. Definition 2.4. An experiment is a set of positive outcomes that can be repeated. Definition 2.5. A random variable, X, is a function that assigns to every outcome of an experiment, a real numerical value. If X can assume at most a finite or countably infinite number of possible values, X is said to be a discrete random variable. If X can assume any value in some interval, or intervals of real numbers and the probability that it assumes a specific given value is 0, then X is said to be a continuous random variable. Example 2.6. Say, for instance we are flipping a fair coin and are concerned with how many times the coin lands on heads. We can define the random variable X by 1; if the coin lands on heads X = 0; if the coin lands on tails This is an classic example of a random variable with a Bernoulli Distribution, which we will see again later in our discussion. Definition 2.7. The probability distribution of a discrete random variable X, is a function f that assigns a probability to each potential value of X. Additionally, f must satisfy the following necessary and sufficient conditions, (1) f(x) = P (X = x) for x real, 3 Chapter 2. Preliminaries 4 (2) f(x) ≥ 0, P (3) x f(x) = 1. Definition 2.8. The probability density function for a continuous random variable X, denoted by f(x), is a function such that (1) f(x) ≥ 0, for all x in R, R +1 (2) −∞ f(x)dx = 1, R b (3) P (a < X < b) = a f(x)dx for all a < b. Definition 2.9. Let X be a discrete random variable with density f(x), the expected value or mean, denoted E(X) or µ, is X µ = E(X) = xf(x) x P provided that x xf(x) is finite Example 2.10. A drug is used to maintain a steady heart rate in patients who have suffered a mild heart attack. Let X denote the number of heartbeats per minute obtained per patient. Consider the hypothetical density given in the table below. What is the average heart rate obtained by all patients receiving the drug, that is what is E(X)? Table 1.2 x 40 60 68 70 72 80 100 f(x) 0.01 0.04 0.05 0.8 0.05 0.04 0.01 X E(X) = xf(x) x = 40(:01) + 60(:04) + 68(:05) + ::: + 100(:01) = 70 Definition 2.11. Let X be a random variable with mean µ, the variance of X denoted V ar(X) or σ2 is σ2 = V ar(X) = E((X − µ)2) = E(X2) − µ2 = E(X2) − (E(X))2: Definition 2.12. The standard deviation of a random variable X, denoted σ is the positive square root of the variance. Example 2.13. Let X and f(x) be the same as that seen in Example 2.10, compute the variance and standard deviation for the given data.
Recommended publications
  • Speech by Honorary Degree Recipient
    Speech by Honorary Degree Recipient Dear Colleagues and Friends, Ladies and Gentlemen: Today, I am so honored to present in this prestigious stage to receive the Honorary Doctorate of the Saint Petersburg State University. Since my childhood, I have known that Saint Petersburg University is a world-class university associated by many famous scientists, such as Ivan Pavlov, Dmitri Mendeleev, Mikhail Lomonosov, Lev Landau, Alexander Popov, to name just a few. In particular, many dedicated their glorious lives in the same field of scientific research and studies which I have been devoting to: Leonhard Euler, Andrey Markov, Pafnuty Chebyshev, Aleksandr Lyapunov, and recently Grigori Perelman, not to mention many others in different fields such as political sciences, literature, history, economics, arts, and so on. Being an Honorary Doctorate of the Saint Petersburg State University, I have become a member of the University, of which I am extremely proud. I have been to the beautiful and historical city of Saint Petersburg five times since 1997, to work with my respected Russian scientists and engineers in organizing international academic conferences and conducting joint scientific research. I sincerely appreciate the recognition of the Saint Petersburg State University for my scientific contributions and endeavors to developing scientific cooperations between Russia and the People’s Republic of China. I would like to take this opportunity to thank the University for the honor, and thank all professors, staff members and students for their support and encouragement. Being an Honorary Doctorate of the Saint Petersburg State University, I have become a member of the University, which made me anxious to contribute more to the University and to the already well-established relationship between Russia and China in the future.
    [Show full text]
  • Richard Von Mises's Philosophy of Probability and Mathematics
    “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Lukas M. Verburgt If the true is what is grounded, then the ground is neither true nor false LUDWIG WITTGENSTEIN Whether all grow black, or all grow bright, or all remain grey, it is grey we need, to begin with, because of what it is, and of what it can do, made of bright and black, able to shed the former , or the latter, and be the latter or the former alone. But perhaps I am the prey, on the subject of grey, in the grey, to delusions SAMUEL BECKETT “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het College voor Promoties ingestelde commissie in het openbaar te verdedigen in de Agnietenkapel op donderdag 1 oktober 2015, te 10:00 uur door Lukas Mauve Verburgt geboren te Amersfoort Promotiecommissie Promotor: Prof. dr. ir. G.H. de Vries Universiteit van Amsterdam Overige leden: Prof. dr. M. Fisch Universitat Tel Aviv Dr. C.L. Kwa Universiteit van Amsterdam Dr. F. Russo Universiteit van Amsterdam Prof. dr. M.J.B. Stokhof Universiteit van Amsterdam Prof. dr. A. Vogt Humboldt-Universität zu Berlin Faculteit der Geesteswetenschappen © 2015 Lukas M. Verburgt Graphic design Aad van Dommelen (Witvorm)
    [Show full text]
  • Reliable Reasoning”
    Abstracta SPECIAL ISSUE III, pp. 10 – 17, 2009 COMMENTS ON HARMAN AND KULKARNI’S “RELIABLE REASONING” Glenn Shafer Gil Harman and Sanjeev Kulkarni have written an enjoyable and informative book that makes Vladimir Vapnik’s ideas accessible to a wide audience and explores their relevance to the philosophy of induction and reliable reasoning. The undertaking is important, and the execution is laudable. Vapnik’s work with Alexey Chervonenkis on statistical classification, carried out in the Soviet Union in the 1960s and 1970s, became popular in computer science in the 1990s, partly as the result of Vapnik’s books in English. Vapnik’s statistical learning theory and the statistical methods he calls support vector machines now dominate machine learning, the branch of computer science concerned with statistical prediction, and recently (largely after Harman and Kulkarni completed their book) these ideas have also become well known among mathematical statisticians. A century ago, when the academic world was smaller and less specialized, philosophers, mathematicians, and scientists interested in probability, induction, and scientific methodology talked with each other more than they do now. Keynes studied Bortkiewicz, Kolmogorov studied von Mises, Le Dantec debated Borel, and Fisher debated Jeffreys. Today, debate about probability and induction is mostly conducted within more homogeneous circles, intellectual communities that sometimes cross the boundaries of academic disciplines but overlap less in their discourse than in their membership. Philosophy of science, cognitive science, and machine learning are three of these communities. The greatest virtue of this book is that it makes ideas from these three communities confront each other. In particular, it looks at how Vapnik’s ideas in machine learning can answer or dissolve questions and puzzles that have been posed by philosophers.
    [Show full text]
  • 18.600: Lecture 31 .1In Strong Law of Large Numbers and Jensen's
    18.600: Lecture 31 Strong law of large numbers and Jensen's inequality Scott Sheffield MIT Outline A story about Pedro Strong law of large numbers Jensen's inequality Outline A story about Pedro Strong law of large numbers Jensen's inequality I One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change. I Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability :53 and down 15 percent with probability :47 (independently of everything else). I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. I Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability :53 and down 15 percent with probability :47 (independently of everything else). I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. I One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change. I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings.
    [Show full text]
  • Stochastic Models Laws of Large Numbers and Functional Central
    This article was downloaded by: [Stanford University] On: 20 July 2010 Access details: Access Details: [subscription number 731837804] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Stochastic Models Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597301 Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes Peter W. Glynna; Peter J. Haasb a Department of Management Science and Engineering, Stanford University, Stanford, California, USA b IBM Almaden Research Center, San Jose, California, USA To cite this Article Glynn, Peter W. and Haas, Peter J.(2006) 'Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes', Stochastic Models, 22: 2, 201 — 231 To link to this Article: DOI: 10.1080/15326340600648997 URL: http://dx.doi.org/10.1080/15326340600648997 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • On the Law of the Iterated Logarithm for L-Statistics Without Variance
    Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 3 (2008), No. 3, pp. 417-432 ON THE LAW OF THE ITERATED LOGARITHM FOR L-STATISTICS WITHOUT VARIANCE BY DELI LI, DONG LIU AND ANDREW ROSALSKY Abstract Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random vari- ables with distribution function F (x). For each positive inte- ger n, let X1:n ≤ X2:n ≤ ··· ≤ Xn:n be the order statistics of X1, X2, · · · , Xn. Let H(·) be a real Borel-measurable function de- fined on R such that E|H(X)| < ∞ and let J(·) be a Lipschitz function of order one defined on [0, 1]. Write µ = µ(F,J,H) = ← 1 n i E L : (J(U)H(F (U))) and n(F,J,H) = n Pi=1 J n H(Xi n), n ≥ 1, where U is a random variable with the uniform (0, 1) dis- ← tribution and F (t) = inf{x; F (x) ≥ t}, 0 <t< 1. In this note, the Chung-Smirnov LIL for empirical processes and the Einmahl- Li LIL for partial sums of i.i.d. random variables without variance are used to establish necessary and sufficient conditions for having L with probability 1: 0 < lim supn→∞ pn/ϕ(n) | n(F,J,H) − µ| < ∞, where ϕ(·) is from a suitable subclass of the positive, non- decreasing, and slowly varying functions defined on [0, ∞). The almost sure value of the limsup is identified under suitable con- ditions. Specializing our result to ϕ(x) = 2(log log x)p,p > 1 and to ϕ(x) = 2(log x)r,r > 0, we obtain an analog of the Hartman- Wintner-Strassen LIL for L-statistics in the infinite variance case.
    [Show full text]
  • The Law of Large Numbers and the Monte-Carlo Method
    Lecture 17: The Law of Large Numbers and the Monte-Carlo method The Law of Large numbers Suppose we perform an experiment and a measurement encoded in the random variable X and that we repeat this experiment n times each time in the same conditions and each time independently of each other. We thus obtain n independent copies of the random variable X which we denote X1;X2; ··· ;Xn Such a collection of random variable is called a IID sequence of random variables where IID stands for independent and identically distributed. This means that the random variables Xi have the same probability distribution. In particular they have all the same means and variance 2 E[Xi] = µ ; var(Xi) = σ ; i = 1; 2; ··· ; n Each time we perform the experiment n tiimes, the Xi provides a (random) measurement and if the average value X1 + ··· + Xn n is called the empirical average. The Law of Large Numbers states for large n the empirical average is very close to the expected value µ with very high probability Theorem 1. Let X1; ··· ;Xn IID random variables with E[Xi] = µ and var(Xi) for all i. Then we have 2 X1 + ··· Xn σ P − µ ≥ ≤ n n2 In particular the right hand side goes to 0 has n ! 1. Proof. The proof of the law of large numbers is a simple application from Chebyshev X1+···Xn inequality to the random variable n . Indeed by the properties of expectations we have X + ··· X 1 1 1 E 1 n = E [X + ··· X ] = (E [X ] + ··· E [X ]) = nµ = µ n n 1 n n 1 n n For the variance we use that the Xi are independent and so we have X + ··· X 1 1 σ2 var 1 n = var (X + ··· X ]) = (var(X ) + ··· + var(X )) = n n2 1 n n2 1 n n 1 By Chebyshev inequality we obtain then 2 X1 + ··· Xn σ P − µ ≥ ≤ n n2 Coin flip I: Suppose we flip a fair coin 100 times.
    [Show full text]
  • Laws of Large Numbers in Stochastic Geometry with Statistical Applications
    Bernoulli 13(4), 2007, 1124–1150 DOI: 10.3150/07-BEJ5167 Laws of large numbers in stochastic geometry with statistical applications MATHEW D. PENROSE Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom. E-mail: [email protected] Given n independent random marked d-vectors (points) Xi distributed with a common density, define the measure νn = i ξi, where ξi is a measure (not necessarily a point measure) which stabilizes; this means that ξi is determined by the (suitably rescaled) set of points near Xi. For d bounded test functions fPon R , we give weak and strong laws of large numbers for νn(f). The general results are applied to demonstrate that an unknown set A in d-space can be consistently estimated, given data on which of the points Xi lie in A, by the corresponding union of Voronoi cells, answering a question raised by Khmaladze and Toronjadze. Further applications are given concerning the Gamma statistic for estimating the variance in nonparametric regression. Keywords: law of large numbers; nearest neighbours; nonparametric regression; point process; random measure; stabilization; Voronoi coverage 1. Introduction Many interesting random variables in stochastic geometry arise as sums of contributions from each point of a point process Xn comprising n independent random d-vectors Xi, 1 ≤ i ≤ n, distributed with common density function. General limit theorems, including laws of large numbers (LLNs), central limit theorems and large deviation principles, have been obtained for such variables, based on a notion of stabilization (local dependence) of the contributions; see [16, 17, 18, 20].
    [Show full text]
  • Hunting the Story of Moses Schönfinkel
    Where Did Combinators Come From? Hunting the Story of Moses Schönfinkel Stephen Wolfram* Combinators were a key idea in the development of mathematical logic and the emergence of the concept of universal computation. They were introduced on December 7, 1920, by Moses Schönfinkel. This is an exploration of the personal story and intellectual context of Moses Schönfinkel, including extensive new research based on primary sources. December 7, 1920 On Tuesday, December 7, 1920, the Göttingen Mathematics Society held its regular weekly meeting—at which a 32-year-old local mathematician named Moses Schönfinkel with no known previous mathematical publications gave a talk entitled “Elemente der Logik” (“Elements of Logic”). This piece is included in S. Wolfram (2021), Combinators: A Centennial View, Wolfram Media. (wolframmedia.com/products/combinators-a-centennial-view.html) and accompanies arXiv:2103.12811 and arXiv:2102.09658. Originally published December 7, 2020 *Email: [email protected] 2 | Stephen Wolfram A hundred years later what was presented in that talk still seems in many ways alien and futuristic—and for most people almost irreducibly abstract. But we now realize that that talk gave the first complete formalism for what is probably the single most important idea of this past century: the idea of universal computation. Sixteen years later would come Turing machines (and lambda calculus). But in 1920 Moses Schönfinkel presented what he called “building blocks of logic”—or what we now call “combinators”—and then proceeded to show that by appropriately combining them one could effectively define any function, or, in modern terms, that they could be used to do universal computation.
    [Show full text]
  • STA111 - Lecture 8 Law of Large Numbers, Central Limit Theorem
    STA111 - Lecture 8 Law of Large Numbers, Central Limit Theorem 1 Law of Large Numbers Let X1, X2, ... , Xn be independent and identically distributed (iid) random variables with finite expectation Pn µ = E(Xi ), and let the sample mean be Xn = i=1 Xi =n. Then, P (Xn ! µ) = 1 as n ! 1. In words, the Law of Large Numbers (LLN) shows that sample averages converge to the popula- tion/theoretical mean µ (with probability 1) as the sample size increases. This might sound kind of obvious, but it is something that has to be proved. The following picture in the Wikipedia article illustrates the concept. We are rolling a die many times, and every time we roll the die we recompute the average of all the results. The x-axis of the graph is the number of trials and the y-axis corresponds to the average outcome. The sample mean stabilizes to the expected value (3.5) as n increases: 2 Central Limit Theorem The Central Limit Theorem (CLT) states that sums and averages of random variables are approximately Normal when the sample size is big enough. Before we introduce the formal statement of the theorem, let’s think about the distribution of sums and averages of random variables. Assume that X1;X2; ::: ; Xn are iid random variables with finite mean and 1 2 variance µ = E(Xi ) and σ = V (X), and let Sn = X1 + X2 + ··· + Xn and Xn = Sn=n. Using properties of expectations and variances, E(Sn) = E(X1) + E(X2) + ··· + E(Xn) = nµ 2 V (Sn) = V (X1) + V (X2) + ··· + V (Xn) = nσ : and similarly for Xn: 1 1 E(X ) = (E(X ) + E(X ) + ··· + E(X )) = (µ + µ + ··· + µ) = µ n n 1 2 n n 1 1 V (X ) = (V (X ) + V (X ) + ··· + V (X )) = (σ2 + σ2 + ··· + σ2) = σ2=n; n n2 1 2 n n2 2 The variance of the sample mean V (Xn) = σ =n shrinks to zero as n ! 1, which makes intuitive sense: as we get more and more data, the sample mean will become more and more precise.
    [Show full text]
  • Law of Large Numbers
    CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Lecture 17 I.I.D. Random Variables Estimating the bias of a coin Question: We want to estimate the proportion p of Democrats in the US population, by taking a small random sample. How large does our sample have to be to guarantee that our estimate will be within (say) 10% (in relative terms) of the true value with probability at least 0.95? This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develop a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper results. Let’s denote the size of our sample by n (to be determined), and the number of Democrats in it by the random variable Sn. (The subscript n just reminds us that the r.v. depends on the size of the sample.) Then 1 our estimate will be the value An = n Sn. (Now as has often been the case, we will find it helpful to write Sn = X1 + X2 + ¢¢¢ + Xn, where Xi = 1 if person i in sample is a Democrat; 0 otherwise. Note that each Xi can be viewed as a coin toss, with Heads probability p (though of course we do not know the value of p!). And the coin tosses are independent.1 What is the expectation of our estimate? 1 1 1 E(An) = E( n Sn) = n E(X1 + X2 + ¢¢¢ + Xn) = n £ (np) = p: So for any value of n, our estimate will always have the correct expectation p.
    [Show full text]
  • The Exact Law of Large Numbers for Independent Random Matching
    NBER WORKING PAPER SERIES THE EXACT LAW OF LARGE NUMBERS FOR INDEPENDENT RANDOM MATCHING Darrell Duffie Yeneng Sun Working Paper 17280 http://www.nber.org/papers/w17280 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 August 2011 This work was presented as "Independent Random Matching" at the International Congress of Nonstandard Methods in Mathematics, Pisa, Italy, May 25-31, 2006, the conference on Random Matching and Network Formation, University of Kentucky in Lexington, USA, October 20-22, 2006, and the 1st PRIMA Congress, Sydney, Australia, July 6-10, 2009. We are grateful for helpful comments from an anonymous associate editor of this journal, two anonymous referees, and from Haifeng Fu, Xiang Sun, Pierre-Olivier Weill, Yongchao Zhang and Zhixiang Zhang. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2011 by Darrell Duffie and Yeneng Sun. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. The Exact Law of Large Numbers for Independent Random Matching Darrell Duffie and Yeneng Sun NBER Working Paper No. 17280 August 2011 JEL No. C02,D83 ABSTRACT This paper provides a mathematical foundation for independent random matching of a large population, as widely used in the economics literature.
    [Show full text]