Neural Network Decoder for Topological Color Codes with Circuit Level OPEN ACCESS Noise
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Family of Fault Tolerant Quantum Reed-Muller Codes
Clemson University TigerPrints All Theses Theses December 2020 A New Family of Fault Tolerant Quantum Reed-Muller Codes Harrison Beam Eggers Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Eggers, Harrison Beam, "A New Family of Fault Tolerant Quantum Reed-Muller Codes" (2020). All Theses. 3463. https://tigerprints.clemson.edu/all_theses/3463 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. A New Family of Fault Tolerant Quantum Reed-Muller Codes A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mathematics by Harrison Eggers December 2020 Accepted by: Dr. Felice Manganiello, Committee Chair Dr. Shuhong Gao Dr. Kevin James Abstract Fault tolerant quantum computation is a critical step in the development of practical quan- tum computers. Unfortunately, not every quantum error correcting code can be used for fault tolerant computation. Rengaswamy et. al. define CSS-T codes, which are CSS codes that admit the transversal application of the T gate, which is a key step in achieving fault tolerant computation. They then present a family of quantum Reed-Muller fault tolerant codes. Their family of codes admits a transversal T gate, but the asymptotic rate of the family is zero. We build on their work by reframing their CSS-T conditions using the concept of self-orthogonality. -
Fault-Tolerant Quantum Gates Ph/CS 219 2 February 2011
Fault-tolerant quantum gates Ph/CS 219 2 February 2011 Last time we considered the requirements for fault-tolerant quantum gates that act nontrivially on the codespace of a quantum error-correcting code. In the special case of a code that corrects t=1 error, the requirements are: -- if the gate gadget is ideal (has no faults) and its input is a codeword, then the gadget realizes the encoded operation U acting on the code space. -- if the gate gadget is ideal and its input has at most one error (is one-deviated from the codespace), then the output has at most one error in each output block. -- if the gate has one fault and its input has no errors, then the output has at most one error in each block (the errors are correctable). We considered the Clifford group, the finite subgroup of the m-qubit unitary group generated by the Hadamard gate H, the phase gate P (rotation by Pi/2 about the z-axis) and the CNOT gate. For a special class of codes, the generators of the Clifford group can be executed transversally (i.e., bitwise). The logical U can be done by applying a product of n U (or inverse of U) gates in parallel (where n is the code's length). If we suppose that the number of encoded qubits is k=1, then: -- the CNOT gate is transversal for any CSS code. -- the H gate is transversal for a CSS code that uses the same classical code to correct X errors and Z errors. -
Arxiv:2104.09539V1 [Quant-Ph] 19 Apr 2021
Practical quantum error correction with the XZZX code and Kerr-cat qubits Andrew S. Darmawan,1, 2 Benjamin J. Brown,3 Arne L. Grimsmo,3 David K. Tuckett,3 and Shruti Puri4, 5 1Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan∗ 2JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan 3Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia 4 Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USAy 5Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA (Dated: April 21, 2021) The development of robust architectures capable of large-scale fault-tolerant quantum computa- tion should consider both their quantum error-correcting codes, and the underlying physical qubits upon which they are built, in tandem. Following this design principle we demonstrate remarkable error correction performance by concatenating the XZZX surface code with Kerr-cat qubits. We contrast several variants of fault-tolerant systems undergoing different circuit noise models that reflect the physics of Kerr-cat qubits. Our simulations show that our system is scalable below a threshold gate infidelity of pCX 6:5% within a physically reasonable parameter regime, where ∼ pCX is the infidelity of the noisiest gate of our system; the controlled-not gate. This threshold can be reached in a superconducting circuit architecture with a Kerr-nonlinearity of 10MHz, a 6:25 photon cat qubit, single-photon lifetime of > 64µs, and thermal photon population < 8%.∼ Such parameters are routinely achieved in superconducting∼ circuits. ∼ I. INTRODUCTION qubit [22, 34, 35]. -
Quantum Error-Correcting Codes by Concatenation QEC11
Quantum Error-Correcting Codes by Concatenation QEC11 Second International Conference on Quantum Error Correction University of Southern California, Los Angeles, USA December 5–9, 2011 Quantum Error-Correcting Codes by Concatenation Markus Grassl joint work with Bei Zeng Centre for Quantum Technologies National University of Singapore Singapore Markus Grassl – 1– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 Why Bei isn’t here Jonathan, November 24, 2011 Markus Grassl – 2– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 Overview Shor’s nine-qubit code revisited • The code [[25, 1, 9]] • Concatenated graph codes • Generalized concatenated quantum codes • Codes for the Amplitude Damping (AD) channel • Conclusions • Markus Grassl – 3– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 Shor’s Nine-Qubit Code Revisited Bit-flip code: 0 000 , 1 111 . | → | | → | Phase-flip code: 0 + ++ , 1 . | → | | → | − −− Effect of single-qubit errors on the bit-flip code: X-errors change the basis states, but can be corrected • Z-errors at any of the three positions: • Z 000 = 000 | | “encoded” Z-operator Z 111 = 111 | −| = Bit-flip code & error correction convert the channel into a phase-error ⇒ channel = Concatenation of bit-flip code and phase-flip code yields [[9, 1, 3]] ⇒ Markus Grassl – 4– 07.12.2011 Quantum Error-Correcting Codes by Concatenation QEC11 The Code [[25, 1, 9]] The best single-error correcting code is = [[5, 1, 3]] • C0 Re-encoding each of the 5 qubits with yields = [[52, 1, 32]] -
2013 Industry Canada Report
Industry Canada Report 2012/13 Reporting Period Institute for Quantum Computing University of Waterloo June 15, 2013 Industry Canada Report | 2 Note from the Executive Director Harnessing the quantum world will lead to new technologies and applications that will change the world. The quantum properties of nature allow the accomplishment of tasks which seem intractable with today’s technologies, offer new means of securing private information and foster the development of new sensors with precision yet unseen. In a short 10 years, the Institute for Quantum Computing (IQC) at the University of Waterloo has become a world-renowned institute for research in the quantum world. With more than 160 researchers, we are well on our way to reaching our goal of 33 faculty, 60 post doctoral fellows and 165 students. The research has been world class and many results have received international attention. We have recruited some of the world’s leading researchers and rising stars in the field. 2012 has been a landmark year. Not only did we celebrate our 10th anniversary, but we also expanded into our new headquarters in the Mike and Ophelia Lazaridis Quantum-Nano Centre in the heart of the University of Waterloo campus. This 285,000 square foot facility provides the perfect environment to continue our research, grow our faculty complement and attract the brightest students from around the globe. In this report, you will see many examples of the wonderful achievements we’ve celebrated this year. IQC researcher Andrew Childs and his team proposed a new computational model that has the potential to become an architecture for a scalable quantum computer. -
Graphical and Programming Support for Simulations of Quantum Computations
AGH University of Science and Technology in Kraków Faculty of Computer Science, Electronics and Telecommunications Institute of Computer Science Master of Science Thesis Graphical and programming support for simulations of quantum computations Joanna Patrzyk Supervisor: dr inż. Katarzyna Rycerz Kraków 2014 OŚWIADCZENIE AUTORA PRACY Oświadczam, świadoma odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałam osobiście i samodzielnie, i nie korzystałam ze źródeł innych niż wymienione w pracy. ................................... PODPIS Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Informatyki Praca Magisterska Graficzne i programowe wsparcie dla symulacji obliczeń kwantowych Joanna Patrzyk Opiekun: dr inż. Katarzyna Rycerz Kraków 2014 Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr Katarzyna Rycerz, for the continuous support of my M.Sc. study, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me a lot during my research and writing of this thesis. I would also like to thank Dr Marian Bubak, for his suggestions and valuable advices, and for provision of the materials used in this study. I would also thank Dr Włodzimierz Funika and Dr Maciej Malawski for their support and constructive remarks concerning the QuIDE simulator. My special thank goes to Bartłomiej Patrzyk for the encouragement, suggestions, ideas and a great support during this study. Abstract The field of Quantum Computing is recently rapidly developing. However before it transits from the theory into practical solutions, there is a need for simulating the quantum computations, in order to analyze them and investigate their possible applications. Today, there are many software tools which simulate quantum computers. -
Basic Probability Theory A
Basic Probability Theory A In order to follow many of the arguments in these notes, especially when talking about entropies, it is necessary to have some basic knowledge of probability theory. Therefore, we review here the most important tools of probability theory that are used. One of the basic notions of probability theory that also frequently appears throughout these notes is that of a discrete random variable. A random variable X can take one of several values, the so-called realizations x,givenbythealphabet X. The probability that a certain realization x ∈ X occurs is given by the probability distribution pX(x). We usually use upper case letters to denote the random variable, lower case letters to denote realizations thereof, and calligraphic letters to denote the alphabet. Suppose we have two random variables X and Y , which may depend on each other. We can then define the joint probability distribution pX,Y (x, y) of X and Y that tells you the probability that Y = y and X = x. This notion (and the following definition) can be expanded to n random variables, but we restrict ourselves to the case of pairs X, Y here to keep the notation simple. Given the joint probability distribution of the pair X, Y , we can derive the marginal distribution PX(x) by pX(x) = pX,Y (x, y) ∀ x ∈ X (A.1) y∈Y and analogously for PY (y). The two random variables X and Y are said to be independent if pX,Y (x, y) = pX(x)pY (y). (A.2) © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 219 R. -
Universal Quantum Computation with Ideal Clifford Gates and Noisy Ancillas
PHYSICAL REVIEW A 71, 022316 ͑2005͒ Universal quantum computation with ideal Clifford gates and noisy ancillas Sergey Bravyi* and Alexei Kitaev† Institute for Quantum Information, California Institute of Technology, Pasadena, 91125 California, USA ͑Received 6 May 2004; published 22 February 2005͒ We consider a model of quantum computation in which the set of elementary operations is limited to Clifford unitaries, the creation of the state ͉0͘, and qubit measurement in the computational basis. In addition, we allow the creation of a one-qubit ancilla in a mixed state , which should be regarded as a parameter of the model. Our goal is to determine for which universal quantum computation ͑UQC͒ can be efficiently simu- lated. To answer this question, we construct purification protocols that consume several copies of and produce a single output qubit with higher polarization. The protocols allow one to increase the polarization only along certain “magic” directions. If the polarization of along a magic direction exceeds a threshold value ͑about 65%͒, the purification asymptotically yields a pure state, which we call a magic state. We show that the Clifford group operations combined with magic states preparation are sufficient for UQC. The connection of our results with the Gottesman-Knill theorem is discussed. DOI: 10.1103/PhysRevA.71.022316 PACS number͑s͒: 03.67.Lx, 03.67.Pp I. INTRODUCTION AND SUMMARY additional operations ͑e.g., measurements by Aharonov- Bohm interference ͓13͔ or some gates that are not related to The theory of fault-tolerant quantum computation defines topology at all͒. Of course, these nontopological operations an important number called the error threshold. -
Workshop on Quantum Algorithms and Devices Friday, July 15, 2016 - Microsoft Research Building 33
Workshop on Quantum Algorithms and Devices Friday, July 15, 2016 - Microsoft Research Building 33 In 1981, Richard Feynman proposed a device called a “quantum computer” that would take advantage of methods founded on the laws of quantum physics and promise computational speed-ups over classical methods. In the last three decades, quantum algorithms have been developed that offer fast solutions to problems in a variety of fields including number theory, optimization, database search, chemistry, and physics. For quantum devices, this past year marks significant progress towards scalable quantum bits and gates. The workshop will highlight recent advances in quantum algorithms, quantum devices, control systems, and quantum error correction. Other quantum topics may be covered depending on the speakers’ preferences. 8:30 – 9:00 ARAM HARROW - QUANTUM MONTE CARLO VS TUNNELING IN ADIABATIC OPTIMIZATION 9:05 – 9:35 STEPHEN JORDAN - ADIABATIC OPTIMIZATION VERSUS DIFFUSION MONTE CARLO 9:40 – 10:10 FERNANDO BRANDAO - QUANTUM SPEED-UPS FOR SEMIDEFINITE PROGRAMMING 10:15 – 10:30 *COFFEE BREAK* 10:35 – 11:05 DMITRI MASLOV - HOW TO PROGRAM A TRAPPED IONS QUANTUM COMPUTER 11:10 – 11:40 JEREMY O’BRIEN & TERRY RUDOLPH - PHOTONIC QUANTUM COMPUTING 11:45 – 12:00 LIQUI|> CODING CHALLENGE WINNERS 12:00 – 1:00 *LUNCH* 1:05 – 1:35 BARBARA TERHAL - LOCAL DECODERS AND THEIR PERFORMANCE FOR 2D AND 4D TORIC CODES 1:40 – 2:10 DAVID POULIN - FAULT-TOLERANT QUANTUM MEMORY FOR NON-ABELIAN ANYONS (JOINT WORK WITH GUILLAUME DAUPHINAIS) 2:15 – 2:45 SCOTT AARONSON - QUANTUM -
Estimating the Resources for Quantum Computation with the Qure Toolbox
ESTIMATING THE RESOURCES FOR QUANTUM COMPUTATION WITH THE QuRE TOOLBOX MARTIN SUCHARA1;a, ARVIN FARUQUE2, CHING-YI LAI3, GERARDO PAZ3, FREDERIC T. CHONG2, JOHN KUBIATOWICZ1 1Computer Science Division, UC Berkeley, 387 Soda Hall Berkeley, CA 94720, U.S.A. 2Computer Science Department, UC Santa Barbara, Harold Frank Hall Santa Barbara, CA 93106, U.S.A. 3Department of Electrical Engineering Systems, University of Southern California Los Angeles, CA 90089, U.S.A. This report describes the methodology employed by the Quantum Resource Estimator (QuRE) toolbox to quantify the resources needed to run quantum algorithms on quantum computers with realistic properties. The QuRE toolbox estimates several quantities including the number of physical qubits required to run a specified quantum algorithm, the execution time on each of the specified physical technologies, the probability of success of the computation, as well as physical gate counts with a breakdown by gate type. Estimates are performed for error-correcting codes from both the concatenated and topological code families. Our work, which provides these resource estimates for a cross product of seven quantum algorithms, six physical machine descriptions, several quantum control protocols, and four error-correcting codes, represents the most comprehensive resource estimation effort in the field of quantum computation to date. 1 Introduction Estimating the running time, number of qubits and other resources needed by realistic models of quantum computers is the first necessary step to reducing these resource requirements. This report describes our Quantum Resource Estimator (QuRE) toolbox which we used to calculate resource estimates for a cross product of several quantum algorithms, quantum technologies, and error-correction techniques. -
Introduction to Quantum Error Correction
Introduction to Quantum Error Correction Gilles Zémor Nomade Lodge, May 2016 1 Qubits, quantum computing 1.1 Qubits A qubit is a mathematical description of a particle, e.g. a photon, it is a vector of unit norm in a Hilbert space H of dimension 2. It is customary to give oneself a basis of this space, that is written in Dirac notation (j0i; j1i) rather than the usual mathematical notation (e0; e1). A qubit is therefore a quantity expressed as αj0i + βj1i with jαj2 + jβj2 = 1. The physical state of n particles is described by a vector in the Hilbert space H⊗n, which consists of all complex linear combinations of products jx1i⊗jx2i⊗· · ·⊗jxni, where jxii ranges over the two basis vectors of the i-th copy of the Hilbert space H. Typically one uses the convention xi 2 f0; 1g and the basis vectors of the 2n-dimensional complex vector space H⊗n are written, to lighten notation as jx1ijx2i · · · jxni or simply as jx1x2 : : : xni: This basis of H⊗n will be referred to as the computational basis. Quantum states are described by vectors of unit norm in H⊗n. Quantum states are also not changed by multiplication by a complex number of modulus 1, so that strictly speaking quantum states are unit vectors of H⊗n modulo the multiplicative group of complex numbers of unit norm. Unitary transformations. A quantum state j i may be changed into another quantum state j 0i by any unitary transformation U of the Hilbert space H⊗n. A unitary transformation is an operator of H⊗n that preserves the hermitian inner product. -
A Decoding Algorithm for CSS Codes Using the X/Z Correlations Nicolas Delfosse, Jean-Pierre Tillich
A decoding algorithm for CSS codes using the X/Z correlations Nicolas Delfosse, Jean-Pierre Tillich To cite this version: Nicolas Delfosse, Jean-Pierre Tillich. A decoding algorithm for CSS codes using the X/Z correlations. 2014. hal-00937128 HAL Id: hal-00937128 https://hal.archives-ouvertes.fr/hal-00937128 Preprint submitted on 27 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A decoding algorithm for CSS codes using the X/Z correlations Nicolas Delfosse* and Jean-Pierre Tillich** *Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada, [email protected] **INRIA, Project-Team SECRET, 78153 Le Chesnay Cedex, France, [email protected] January 27, 2014 Abstract We propose a simple decoding algorithm for CSS codes taking into account the cor- relations between the X part and the Z part of the error. Applying this idea to surface codes, we derive an improved version of the perfect matching decoding algorithm which uses these X=Z correlations. 1 Introduction Low Density Parity–Check (LDPC) codes are linear codes defined by low weight parity-check equations. It is one of the most satisfying construction of error-correcting codes since they are both capacity approaching and endowed with an efficient decoding algorithm.