Chapter 7 Quantum Error Correction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Quantum Error Correction Chapter Quantum Error Correction AQuantum ErrorCorrecting Co de In our study of quantum algorithms wehave found p ersuasive evidence that a quantum computer would have extraordinary p ower But will quantum computers really work Will weever b e able to build and op erate them To do so wemust rise to the challenge of protecting quantum information from errors As wehave already noted in Chapter there are several as p ects to this challenge A quantum computer will inevitably interact with its surroundings resulting in decoherence and hence in the decay of the quan tum information stored in the device Unless we can successfully combat decoherence our computer is sure to fail And even if wewere able to pre vent decoherence by p erfectly isolating the computer from the environment errors would still p ose grave diculties Quantum gates in contrast to clas sical gates are unitary transformations chosen from a continuum of p ossible values Thus quantum gates cannot b e implemented with p erfect accuracy the eects of small imp erfections in the gates will accumulate eventually leading to a serious failure in the computation Any eective strategem to prevent errors in a quantum computer must protect against small unitary errors in a quantum circuit as well as against decoherence In this and the next chapter we will see how clever enco ding of quan tum information can protect against errors in principle This chapter will present the theory of quan tum errorcorrecting co des We will learn that quantum information suitably enco ded can b e dep osited in a quantum mem ory exp osed to the ravages of a noisy environment and recovered without CHAPTER QUANTUM ERROR CORRECTION damage if the noise is not to o severe Then in Chapter we will extend the theory in two imp ortantways We will see that the recovery pro cedure can work eectively even if o ccasional errors o ccur during recovery And we will learn howto process enco ded information so that a quantum computation can b e executed successfully despite the debilitating eects of decoherence and faulty quantum gates Aquantum errorcorrecting co de QECC can b e viewed as a mapping k of k qubits a Hilb ert space of dimension into n qubits a Hilb ert space n of dimension where n k The k qubits are the logical qubits or enco ded qubits that we wish to protect from error The additional n k qubits allow us to store the k logical qubits in a redundant fashion so that the enco ded information is not easily damaged We can b etter understand the concept of a QECC by revisiting an ex ample that was intro duced in Chapter Shors co de with n and k Wecancharacterize the co de by sp ecifying two basis states for the co de sub space we will refer to these basis states as ji the logical zero and ji the logical one They are p ji ji ji p ji jiji each basis state is a qubit cat state rep eated three times As you will recall from the discussion of cat states in Chapter the two basis states can b e distinguished by the qubit observable where x x x i denotes the Pauli matrix acting on the ith qubit we will use the x x notation X X X for this op erator There is an implicit I I I acting on the remaining qubits that is suppressed in this notation The states ji and ji are eigenstates of X X X with eigenvalues and resp ectively But there is no way to distinguish ji from ji to gather any information ab out the value of the logical qubit by observing an y one or two of the qubits in the blo ck of nine In this sense the logical qubit is enco ded nonlocal ly it is written in the nature of the entanglement among the qubits in the blo ck This nonlo cal prop erty of the enco ded information provides protection against noise if we assume that the noise is lo cal that it acts indep endently or nearly so on the dierent qubits in the blo ck Supp ose that an unknown quantum state has b een prepared and enco ded as aji bjiNow an error o ccurs we are to diagnose the error and reverse A QUANTUM ERRORCORRECTING CODE it Howdowe pro ceed Let us supp ose to b egin with that a single bit ip o ccurs acting on one of the rst three qubits Then as discussed in Chapter the lo cation of the bit ip can b e determined by measuring the twoqubit op erators Z Z Z Z The logical basis states ji and ji are eigenstates of these op erators with eigenvalue But ipping any of the three qubits changes these eigenvalues For example if Z Z and Z Z then we infer that the rst qubit has ipp ed relative to the other two Wemay recover from the error by ipping that qubit back It is crucial that our measurement to diagnose the bit ip is a collective measurementontwo qubits at once we learn the value of Z Z butwe must not nd out ab out the separate values of Z and Z for to do so would damage the enco ded state How can such a collective measurement b e p erformed In fact we can carry out collectiv e measurements if wehave a quantum computer that can execute controlledNOT gates We rst intro duce an additional ancilla qubit prepared in the state ji then execute the quantum circuit Figure and nally measure the ancilla qubit If the qubits and are in a state with Z Z either ji ji or ji ji then the ancilla qubit will ip once and the measurement outcome will b e ji But if qubits and are in a state with Z Z either ji ji or ji ji then the ancilla qubit will ip either twice or not at all and the measurement outcome will b e ji Similarly the twoqubit op erators Z Z Z Z Z Z Z Z can b e measured to diagnose bit ip errors in the other two clusters of three qubits A threequbit co de would suce to protect against a single bit ip The reason the qubit clusters are rep eated three times is to protect against CHAPTER QUANTUM ERROR CORRECTION phase errors as well Supp ose now that a phase error j iZ j i o ccurs acting on one of the nine qubits We can diagnose in which cluster the phase error o ccurred by measuring the two sixqubit observables X X X X X X X X X X X X The logical basis states ji and ji are b oth eigenstates with eigenvalue one of these observables A phase error acting on any one of the qubits in a particular cluster will change the value of XXX in that cluster relativeto the other two the lo cation of the change can b e identied by measuring the observables in eq Once the aected cluster is identied we can reverse the error by applying Z to one of the qubits in that cluster X Notice Howdowe measure the sixqubit observable X X X X X p that if its control qubit is initially in the state ji ji and its target is an eigenstate of X that is NOT then a controlledNOT acts according to x p p ji ji jxi ji ji jxi CNOT it acts trivially if the target is the X x state and it ips the control if the target is the X x state To measure a pro duct of X s then we execute the circuit Figure p and then measure the ancilla in the jijibasis We see that a single error acting on any one of the nine qubits in the blo ck will cause no irrevo cable damage But if two bit ips o ccur in a single cluster of three qubits then the enco ded information wil l b e damaged For example if the rst two qubits in a cluster b oth ip we will misdiagnose the error and attempt to recover by ipping the third In all the errors together with our CRITERIA FOR QUANTUM ERROR CORRECTION mistaken recovery attempt apply the op erator X X X to the co de blo ck Since j i and ji are eigenstates of X X X with distinct eigenvalues the eect of two bit ips in a single cluster is a phase error in the enco ded qubit X X X aji bjiajibji The enco ded information will also b e damaged if phase errors o ccur in two dierent clusters Then wewillintro duce a phase error into the third cluster in our misguided attempt at recovery so that altogether Z Z Z will have b een applied which ips the enco ded qubit aji bjiaji bji Z Z Z If the likeliho o d of an error is small enough and if the errors acting on distinct qubits are not strongly correlated then using the ninequbit co de will allow us to preserve our unknown qubit more reliably than if we had not b othered to enco de it at all Supp ose for example that the environment acts on each of the nine qubits indep endently sub jecting it to the dep olar izing channel describ ed in Chapter with error probability pThenabit p and a phase ip with probability p The ip o ccurs with probability probability that b oth o ccur is p We can see that the probabilityofaphase error aecting the logical qubit is b ounded ab ovebyp and the probability of a bit ip error is b ounded ab ovebyp The total error probabilityisno worse than p this is an improvementover the error probability p for an unprotected qubit provided that p Of course in this analysis wehave implicitly assumed that enco ding deco ding error syndrome measurement and recovery are all p erformed aw lessly In Chapter we will examine the more realistic case in whicherrors o ccur during these op erations Criteria for Quantum Error Correction In our discussion of error recovery using the ninequbit co de wehave assumed that each qubit undergo es either a bitip error or a phaseip error or b oth This is not a realistic mo del for the errors and wemust understand howto implementquantum error correction under more general conditions To b egin with consider a single qubit initially in a pure state that in teracts with its environment in an arbitrary manner Weknow from Chapter CHAPTER QUANTUM ERROR CORRECTION that there is no loss or generalitywemay
Recommended publications
  • Conversion of a General Quantum Stabilizer Code to an Entanglement
    Conversion of a general quantum stabilizer code to an entanglement distillation protocol∗ Ryutaroh Matsumoto Dept. of Communications and Integrated Systems Tokyo Institute of Technology, 152-8552 Japan Email: [email protected] April 4, 2003 Abstract We show how to convert a quantum stabilizer code to a one-way or two- way entanglement distillation protocol. The proposed conversion method is a generalization of those of Shor-Preskill and Nielsen-Chuang. The recurrence protocol and the quantum privacy amplification protocol are equivalent to the protocols converted from [[2, 1]] stabilizer codes. We also give an example of a two-way protocol converted from a stabilizer bet- ter than the recurrence protocol and the quantum privacy amplification protocol. The distillable entanglement by the class of one-way protocols converted from stabilizer codes for a certain class of states is equal to or greater than the achievable rate of stabilizer codes over the channel cor- responding to the distilled state, and they can distill asymptotically more entanglement from a very noisy Werner state than the hashing protocol. 1 Introduction arXiv:quant-ph/0209091v4 4 Apr 2003 In many applications of quantum mechanics to communication, the sender and the receiver have to share a maximally entangled quantum state of two particles. When there is a noiseless quantum communication channel, the sender can send one of two particles in a maximally entangled state to the receiver and sharing of it is easily accomplished. However, the quantum communication channel is usually noisy, that is, the quantum state of the received particle changes probabilistically from the original state of a particle.
    [Show full text]
  • Modern Quantum Technologies of Information Security
    MODERN QUANTUM TECHNOLOGIES OF INFORMATION SECURITY Oleksandr Korchenko 1, Yevhen Vasiliu 2, Sergiy Gnatyuk 3 1,3 Dept of Information Security Technologies, National Aviation University, Kosmonavta Komarova Ave 1, 03680 Kyiv, Ukraine 2Dept of Information Technologies and Control Systems, Odesa National Academy of Telecommunications n.a. O.S. Popov, Koval`ska Str 1, 65029 Odesa, Ukraine E-mails: [email protected], [email protected], [email protected] In this paper, the systematisation and classification of modern quantum technologies of information security against cyber-terrorist attack are carried out. The characteristic of the basic directions of quantum cryptography from the viewpoint of the quantum technologies used is given. A qualitative analysis of the advantages and disadvantages of concrete quantum protocols is made. The current status of the problem of practical quantum cryptography use in telecommunication networks is considered. In particular, a short review of existing commercial systems of quantum key distribution is given. 1. Introduction Today there is virtually no area where information technology ( ІТ ) is not used in some way. Computers support banking systems, control the work of nuclear reactors, and control aircraft, satellites and spacecraft. The high level of automation therefore depends on the security level of IT. The latest achievements in communication systems are now applied in aviation. These achievements are public switched telephone network (PSTN), circuit switched public data network (CSPDN), packet switched public data network (PSPDN), local area network (LAN), and integrated services digital network (ISDN) [73]. These technologies provide data transmission systems of various types: surface-to-surface, surface-to-air, air-to-air, and space telecommunication.
    [Show full text]
  • A New Family of Fault Tolerant Quantum Reed-Muller Codes
    Clemson University TigerPrints All Theses Theses December 2020 A New Family of Fault Tolerant Quantum Reed-Muller Codes Harrison Beam Eggers Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Eggers, Harrison Beam, "A New Family of Fault Tolerant Quantum Reed-Muller Codes" (2020). All Theses. 3463. https://tigerprints.clemson.edu/all_theses/3463 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. A New Family of Fault Tolerant Quantum Reed-Muller Codes A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mathematics by Harrison Eggers December 2020 Accepted by: Dr. Felice Manganiello, Committee Chair Dr. Shuhong Gao Dr. Kevin James Abstract Fault tolerant quantum computation is a critical step in the development of practical quan- tum computers. Unfortunately, not every quantum error correcting code can be used for fault tolerant computation. Rengaswamy et. al. define CSS-T codes, which are CSS codes that admit the transversal application of the T gate, which is a key step in achieving fault tolerant computation. They then present a family of quantum Reed-Muller fault tolerant codes. Their family of codes admits a transversal T gate, but the asymptotic rate of the family is zero. We build on their work by reframing their CSS-T conditions using the concept of self-orthogonality.
    [Show full text]
  • Quantum Information in the Posner Model of Quantum Cognition
    Quantum information in quantum cognition Nicole Yunger Halpern1, 2 and Elizabeth Crosson1 1Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA (Dated: November 15, 2017) Matthew Fisher recently postulated a mechanism by which quantum phenomena could influence cognition: Phosphorus nuclear spins may resist decoherence for long times. The spins would serve as biological qubits. The qubits may resist decoherence longer when in Posner molecules. We imagine that Fisher postulates correctly. How adroitly could biological systems process quantum information (QI)? We establish a framework for answering. Additionally, we apply biological qubits in quantum error correction, quantum communication, and quantum computation. First, we posit how the QI encoded by the spins transforms as Posner molecules form. The transformation points to a natural computational basis for qubits in Posner molecules. From the basis, we construct a quantum code that detects arbitrary single-qubit errors. Each molecule encodes one qutrit. Shifting from information storage to computation, we define the model of Posner quantum computation. To illustrate the model's quantum-communication ability, we show how it can teleport information in- coherently: A state's weights are teleported; the coherences are not. The dephasing results from the entangling operation's simulation of a coarse-grained Bell measurement. Whether Posner quantum computation is universal remains an open question. However, the model's operations can efficiently prepare a Posner state usable as a resource in universal measurement-based quantum computation. The state results from deforming the Affleck-Lieb-Kennedy-Tasaki (AKLT) state and is a projected entangled-pair state (PEPS).
    [Show full text]
  • (CST Part II) Lecture 14: Fault Tolerant Quantum Computing
    Quantum Computing (CST Part II) Lecture 14: Fault Tolerant Quantum Computing The history of the universe is, in effect, a huge and ongoing quantum computation. The universe is a quantum computer. Seth Lloyd 1 / 21 Resources for this lecture Nielsen and Chuang p474-495 covers the material of this lecture. 2 / 21 Why we need fault tolerance Classical computers perform complicated operations where bits are repeatedly \combined" in computations, therefore if an error occurs, it could in principle propagate to a huge number of other bits. Fortunately, in modern digital computers errors are so phenomenally unlikely that we can forget about this possibility for all practical purposes. Errors do, however, occur in telecommunications systems, but as the purpose of these is the simple transmittal of some information, it suffices to perform error correction on the final received data. In a sense, quantum computing is the worst of both of these worlds: errors do occur with significant frequency, and if uncorrected they will propagate, rendering the computation useless. Thus the solution is that we must correct errors as we go along. 3 / 21 Fault tolerant quantum computing set-up For fault tolerant quantum computing: We use encoded qubits, rather than physical qubits. For example we may use the 7-qubit Steane code to represent each logical qubit in the computation. We use fault tolerant quantum gates, which are defined such thata single error in the fault tolerant gate propagates to at most one error in each encoded block of qubits. By a \block of qubits", we mean (for example) each block of 7 physical qubits that represents a logical qubit using the Steane code.
    [Show full text]
  • Arxiv:Quant-Ph/9705031V3 26 Aug 1997 Eddt Rvn Unu Optrfo Crashing
    CALT-68-2112 QUIC-97-030 quant-ph/9705031 Reliable Quantum Computers John Preskill1 California Institute of Technology, Pasadena, CA 91125, USA Abstract The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 106 qubits, with a probability of error per quantum gate of order 10−6, would be a formidable factoring engine. Even a smaller, less accurate quantum computer would be able to perform many useful tasks. This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18 December 1996. 1 The golden age of quantum error correction Many of us are hopeful that quantum computers will become practical and useful computing devices some time during the 21st century. It is probably fair to say, though, that none of us can now envision exactly what the hardware of that machine of the future will be like; surely, it will be much different than the sort of hardware that experimental physicists are investigating these days. But of one thing we can be quite confident—that a practical quantum computer will incorporate some type of error correction into its operation.
    [Show full text]
  • Fault-Tolerant Quantum Gates Ph/CS 219 2 February 2011
    Fault-tolerant quantum gates Ph/CS 219 2 February 2011 Last time we considered the requirements for fault-tolerant quantum gates that act nontrivially on the codespace of a quantum error-correcting code. In the special case of a code that corrects t=1 error, the requirements are: -- if the gate gadget is ideal (has no faults) and its input is a codeword, then the gadget realizes the encoded operation U acting on the code space. -- if the gate gadget is ideal and its input has at most one error (is one-deviated from the codespace), then the output has at most one error in each output block. -- if the gate has one fault and its input has no errors, then the output has at most one error in each block (the errors are correctable). We considered the Clifford group, the finite subgroup of the m-qubit unitary group generated by the Hadamard gate H, the phase gate P (rotation by Pi/2 about the z-axis) and the CNOT gate. For a special class of codes, the generators of the Clifford group can be executed transversally (i.e., bitwise). The logical U can be done by applying a product of n U (or inverse of U) gates in parallel (where n is the code's length). If we suppose that the number of encoded qubits is k=1, then: -- the CNOT gate is transversal for any CSS code. -- the H gate is transversal for a CSS code that uses the same classical code to correct X errors and Z errors.
    [Show full text]
  • Parafermions in a Kagome Lattice of Qubits for Topological Quantum Computation
    PHYSICAL REVIEW X 5, 041040 (2015) Parafermions in a Kagome Lattice of Qubits for Topological Quantum Computation Adrian Hutter, James R. Wootton, and Daniel Loss Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Received 3 June 2015; revised manuscript received 16 September 2015; published 14 December 2015) Engineering complex non-Abelian anyon models with simple physical systems is crucial for topological quantum computation. Unfortunately, the simplest systems are typically restricted to Majorana zero modes (Ising anyons). Here, we go beyond this barrier, showing that the Z4 parafermion model of non-Abelian anyons can be realized on a qubit lattice. Our system additionally contains the Abelian DðZ4Þ anyons as low-energetic excitations. We show that braiding of these parafermions with each other and with the DðZ4Þ anyons allows the entire d ¼ 4 Clifford group to be generated. The error-correction problem for our model is also studied in detail, guaranteeing fault tolerance of the topological operations. Crucially, since the non- Abelian anyons are engineered through defect lines rather than as excitations, non-Abelian error correction is not required. Instead, the error-correction problem is performed on the underlying Abelian model, allowing high noise thresholds to be realized. DOI: 10.1103/PhysRevX.5.041040 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Non-Abelian anyons supported by a qubit system Non-Abelian anyons exhibit exotic physics that would typically are Majorana zero modes, also known as Ising – make them an ideal basis for topological quantum compu- anyons [12 15]. A variety of proposals for experimental tation [1–3].
    [Show full text]
  • LI-DISSERTATION-2020.Pdf
    FAULT-TOLERANCE ON NEAR-TERM QUANTUM COMPUTERS AND SUBSYSTEM QUANTUM ERROR CORRECTING CODES A Dissertation Presented to The Academic Faculty By Muyuan Li In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computational Science and Engineering Georgia Institute of Technology May 2020 Copyright c Muyuan Li 2020 FAULT-TOLERANCE ON NEAR-TERM QUANTUM COMPUTERS AND SUBSYSTEM QUANTUM ERROR CORRECTING CODES Approved by: Dr. Kenneth R. Brown, Advisor Department of Electrical and Computer Dr. C. David Sherrill Engineering School of Chemistry and Biochemistry Duke University Georgia Institute of Technology Dr. Edmond Chow Dr. Richard Vuduc School of Computational Science and School of Computational Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. T.A. Brian Kennedy Date Approved: March 19, 2020 School of Physics Georgia Institute of Technology I think it is safe to say that no one understands quantum mechanics. R. P. Feynman To my family and my friends. ACKNOWLEDGEMENTS I would like to thank my advisor, Ken Brown, who has guided me through my graduate studies with his patience, wisdom, and generosity. He has always been supportive and helpful, and always makes himself available when I needed. I have been constantly inspired by his depth of knowledge in research, as well as his immense passion for life. I would also like to thank my committee members, Professors Edmond Chow, T.A. Brian Kennedy, C. David Sherrill, and Richard Vuduc, for their time and helpful sugges- tions. One half of my graduate career was spent at Georgia Tech and the other half at Duke University.
    [Show full text]
  • Arxiv:1807.01863V1 [Quant-Ph] 5 Jul 2018 Β 2| +I Γ 2 =| I 1
    Quantum Error Correcting Code for Ternary Logic Ritajit Majumdar1,∗ Saikat Basu2, Shibashis Ghosh2, and Susmita Sur-Kolay1y 1Advanced Computing & Microelectronics Unit, Indian Statistical Institute, India 2A. K. Choudhury School of Information Technology, University of Calcutta, India Ternary quantum systems are being studied because these provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 × 2)-dimensional as well as (3 × 3)-dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 × 2)-dimensional as well as (3 × 3)-dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a new type of error called quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization. I. INTRODUCTION errors or (d d)-dimensional errors only and no explicit circuit has been× presented. Quantum computers hold the promise of reducing the Main Contributions: In this paper, we study error cor- computational complexity of certain problems. However, rection in qutrits considering both (2 2)-dimensional × quantum systems are highly sensitive to errors; even in- as well as (3 3)-dimensional errors. We have intro- × teraction with environment can cause a change of state.
    [Show full text]
  • Arxiv:2104.09539V1 [Quant-Ph] 19 Apr 2021
    Practical quantum error correction with the XZZX code and Kerr-cat qubits Andrew S. Darmawan,1, 2 Benjamin J. Brown,3 Arne L. Grimsmo,3 David K. Tuckett,3 and Shruti Puri4, 5 1Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan∗ 2JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan 3Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia 4 Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USAy 5Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA (Dated: April 21, 2021) The development of robust architectures capable of large-scale fault-tolerant quantum computa- tion should consider both their quantum error-correcting codes, and the underlying physical qubits upon which they are built, in tandem. Following this design principle we demonstrate remarkable error correction performance by concatenating the XZZX surface code with Kerr-cat qubits. We contrast several variants of fault-tolerant systems undergoing different circuit noise models that reflect the physics of Kerr-cat qubits. Our simulations show that our system is scalable below a threshold gate infidelity of pCX 6:5% within a physically reasonable parameter regime, where ∼ pCX is the infidelity of the noisiest gate of our system; the controlled-not gate. This threshold can be reached in a superconducting circuit architecture with a Kerr-nonlinearity of 10MHz, a 6:25 photon cat qubit, single-photon lifetime of > 64µs, and thermal photon population < 8%.∼ Such parameters are routinely achieved in superconducting∼ circuits. ∼ I. INTRODUCTION qubit [22, 34, 35].
    [Show full text]
  • Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
    PHYSICAL REVIEW X 7, 041061 (2017) Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation A. Bermudez,1,2 X. Xu,3 R. Nigmatullin,4,3 J. O’Gorman,3 V. Negnevitsky,5 P. Schindler,6 T. Monz,6 U. G. Poschinger,7 C. Hempel,8 J. Home,5 F. Schmidt-Kaler,7 M. Biercuk,8 R. Blatt,6,9 S. Benjamin,3 and M. Müller1 1Department of Physics, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom 2Instituto de Física Fundamental, IFF-CSIC, Madrid E-28006, Spain 3Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom 4Complex Systems Research Group, Faculty of Engineering and IT, The University of Sydney, Sydney, Australia 5Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland 6Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria 7Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany 8ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia 9Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria (Received 24 May 2017; revised manuscript received 11 August 2017; published 13 December 2017) A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold.
    [Show full text]