Evolution of Novel Genetic Programs: Insights from Flower and Fruit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013). -
Shiloh National Military Park Natural Resource Condition Assessment
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Shiloh National Military Park Natural Resource Condition Assessment Natural Resource Report NPS/SHIL/NRR—2017/1387 ON THE COVER Bridge over the Shiloh Branch in SHIL. Photo courtesy of Robert Bird. Shiloh National Military Park Natural Resource Condition Assessment Natural Resource Report NPS/SHIL/NRR—2017/1387 Andy J. Nadeau Kevin Benck Kathy Allen Hannah Hutchins Anna Davis Andrew Robertson GeoSpatial Services Saint Mary’s University of Minnesota 890 Prairie Island Road Winona, Minnesota 55987 February 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received formal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data, and whose background and expertise put them on par technically and scientifically with the authors of the information. -
Playing with Extremes Origins and Evolution of Exaggerated Female
Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora. -
Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia Arvensis
fpls-12-633979 February 16, 2021 Time: 19:16 # 1 ORIGINAL RESEARCH published: 22 February 2021 doi: 10.3389/fpls.2021.633979 Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis Edited by: Mercedes Sánchez-Cabrera1*†‡, Francisco Javier Jiménez-López1‡, Eduardo Narbona2, Verónica S. Di Stilio, Montserrat Arista1, Pedro L. Ortiz1, Francisco J. Romero-Campero3,4, University of Washington, Karolis Ramanauskas5, Boris Igic´ 5, Amelia A. Fuller6 and Justen B. Whittall7 United States 1 2 Reviewed by: Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain, Department of Molecular 3 Stacey Smith, Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain, Institute for Plant Biochemistry 4 University of Colorado Boulder, and Photosynthesis, University of Seville – Centro Superior de Investigación Científica, Seville, Spain, Department 5 United States of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain, Department of Biological Science, 6 Carolyn Wessinger, University of Illinois at Chicago, Chicago, IL, United States, Department of Chemistry and Biochemistry, Santa Clara 7 University of South Carolina, University, Santa Clara, CA, United States, Department of Biology, College of Arts and Sciences, Santa Clara University, United States Santa Clara, CA, United States *Correspondence: Mercedes Sánchez-Cabrera Anthocyanins are the primary pigments contributing to the variety of flower colors among [email protected] angiosperms and are considered essential for survival and reproduction. Anthocyanins † ORCID: Mercedes Sánchez-Cabrera are members of the flavonoids, a broader class of secondary metabolites, of which orcid.org/0000-0002-3786-0392 there are numerous structural genes and regulators thereof. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Differential Regulation of Symmetry Genes and the Evolution of Floral Morphologies
Differential regulation of symmetry genes and the evolution of floral morphologies Lena C. Hileman†, Elena M. Kramer, and David A. Baum‡ Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 Communicated by John F. Doebley, University of Wisconsin, Madison, WI, September 5, 2003 (received for review July 16, 2003) Shifts in flower symmetry have occurred frequently during the patterns of growth occurring on either side of the midline (Fig. diversification of angiosperms, and it is thought that such shifts 1h). The two species of Mohavea have a floral morphology that play important roles in plant–pollinator interactions. In the model is highly divergent from Antirrhinum (3), resulting in its tradi- developmental system Antirrhinum majus (snapdragon), the tional segregation as a distinct genus. Mohavea corollas, espe- closely related genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) cially those of M. confertiflora, are superficially radially symmet- are needed for the development of zygomorphic flowers and the rical (actinomorphic), mainly due to distal expansion of the determination of adaxial (dorsal) identity of floral organs, includ- corolla lobes (Fig. 1a) and a higher degree of internal petal ing adaxial stamen abortion and asymmetry of adaxial petals. symmetry relative to Antirrhinum (Fig. 1 a and g). During However, it is not known whether these genes played a role in the Mohavea flower development, the lateral stamens, in addition to divergence of species differing in flower morphology and pollina- the adaxial stamen, are aborted, resulting in just two stamens at tion mode. We compared A. majus with a close relative, Mohavea flower maturity (Fig. -
IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G). -
Exploring Patterns of Variation Within the Central-European Tephroseris Longifolia Agg.: Karyological and Morphological Study
Preslia 87: 163–194, 2015 163 Exploring patterns of variation within the central-European Tephroseris longifolia agg.: karyological and morphological study Karyologická a morfologická variabilita v rámci Tephroseris longifolia agg. Katarína O l š a v s k á1, Barbora Šingliarová1, Judita K o c h j a r o v á1,3, Zuzana Labdíková2,IvetaŠkodová1, Katarína H e g e d ü š o v á1 &MonikaJanišová1 1Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovakia, e-mail: [email protected]; 2Faculty of Natural Sciences, University of Matej Bel, Tajovského 40, SK-97401 Banská Bystrica, Slovakia; 3Comenius University, Bratislava, Botanical Garden – detached unit, SK-03815 Blatnica, Slovakia Olšavská K., Šingliarová B., Kochjarová J., LabdíkováZ.,ŠkodováI.,HegedüšováK.&JanišováM. (2015): Exploring patterns of variation within the central-European Tephroseris longifolia agg.: karyological and morphological study. – Preslia 87: 163–194. Tephroseris longifolia agg. is an intricate complex of perennial outcrossing herbaceous plants. Recently, five subspecies with rather separate distributions and different geographic patterns were assigned to the aggregate: T. longifolia subsp. longifolia, subsp. pseudocrispa and subsp. gaudinii predominate in the Eastern Alps; the distribution of subsp. brachychaeta is confined to the northern and central Apennines and subsp. moravica is endemic in the Western Carpathians. Carpathian taxon T. l. subsp. moravica is known only from nine localities in Slovakia and the Czech Republic and is treated as an endangered taxon of European importance (according to Natura 2000 network). As the taxonomy of this aggregate is not comprehensively elaborated the aim of this study was to detect variability within the Tephroseris longifolia agg. -
To What Extent Can the Phenotypic Differences Between Misopates Orontium and Antirrhinum Majus Be Bridged by Mutagenesis?
Bioremediation, Biodiversity and Bioavailability ©2007 Global Science Books Biodiversity and Dollo’s Law: To What Extent can the Phenotypic Differences between Misopates orontium and Antirrhinum majus be Bridged by Mutagenesis? Wolf-Ekkehard Lönnig1* • Kurt Stüber1 • Heinz Saedler1 • Jeong Hee Kim1 1 Max-Planck-Institute for Plant Breeding Reseach, Carl-von-Linné-Weg 10, 50829 Cologne, Federal Republic of Germany Corresponding author : * [email protected] ABSTRACT According to Dollo’s law, evolution is irreversible. Yet, of the eight derived features essentially distinguishing Misopates orontium from its closely related Antirrhinum majus, five differences have phenotypically been clearly diminished or fully overcome by mutant genes, so that Misopates orontium outwardly approaches, meets or even overlaps the features of Antirrhinum majus or vice versa (aspects of the life cycle, leaf form, flower size, flower colour and mode of fertilization). However, to date the morphological key distinguishing feature between the two genera, the strongly elongated sepals in Misopates (itself a feature being at odds with Dollo’s law), could not be reduced to that of the length of Antirrhinum nor could the development of the short Antirrhinum sepals be extended to that of the length of Misopates, in spite of extensive mutagenesis programmes with both species (agreeing with Dollo’s law as to the stasis of this difference). Also, the long sepal character strongly dominated almost all homeotic Misopates mutants. After a general discussion of Dollo’s -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Paper Version of Palos Verdes
Selected Plants Native to Palos Verdes Peninsula (C.M. Rodrigue, 07/26/11) http://www.csulb.edu/geography/PV/ Succulents (plants with fleshy, often liquid-saturated leaves and/or stems. These features can be found in a variety of life forms, including annual herbaceous plants, vines, shrubs, and trees, as well as cacti) Herbaceous plants (non-woody, though there may be a woody caudex or basal stem and root -- annual growth dies back each year, resprouting in perennial or biennial plants, or the plant dies and is replaced by a new generation each year in the case of annual plants) Extremely tiny plant. Stems only about 2-6 cm tall, occasionally as much as 10 cm, leaves only 1-3 mm long (can get up to 6 mm long), fleshy, found at the plant's base or on the stems, shape generally ovate (egg-shaped), may have a blunt rounded end or a fine acute tip. The leaves are arranged oppositely, not alternately. The plant is green when new but ages to red or pink. Tiny flower (0.5- 2 mm) borne in leaf axils, usually just one per leaf pair on a pedicel (floral stem) less than 6 mm long. Two or 3 petals and 3 or 4 sepals. Flowers February to May. Annual herb. Found in open areas, in rocky nooks and crannies, and sometimes in vernal ponds (temporary pools that form after a rain and then slowly evaporate). Crassula connata (Crassulaceae): pygmy stonecrop or pygmy-weed or sand pygmyweed Leaves converted into scales along stems, which are arranged alternately and overlap.