La Vida En Río Tinto - Ángeles Aguilera / Virginia Souza-Egipsy / Elena González-Toril COLECCIÓN CIENCINTA

Total Page:16

File Type:pdf, Size:1020Kb

La Vida En Río Tinto - Ángeles Aguilera / Virginia Souza-Egipsy / Elena González-Toril COLECCIÓN CIENCINTA La vida en Río Tinto - Ángeles Aguilera / Virginia Souza-Egipsy / Elena González-Toril COLECCIÓN CIENCINTA Nº1 -2020 Ángeles Aguilera / Virginia Souza-Egipsy / Elena González-Toril La vida enRí0 Tinto COLECCIÓN CIENCINTA Nº1-2020 Editorial La colección CIENCINTA pretende difundir y divul- gar los interesantes resultados de investigación del INTA, de la mano de prestigiosos investigadores, que han logrado ser referentes en sus respectivos campos de investigación. El carácter multidisciplinar del INTA ofrece la posi- bilidad de una colección divulgativa, rica, variada y atractiva, que hará las delicias de todo aquel lector que se acerque a esta apasionante aventura del saber: podrá viajar al espacio exterior, pasando por desiertos inhóspitos, descubriendo virus emergen- tes, y vida en condiciones extremas. ¡Bienvenido a Ciencinta! Miguel Ángel Alonso Editor CAB La vida en Río Tinto Ángeles Aguilera1*, Virginia Souza-Egipsy2 y Elena González-Toril1 Centro de Astrobiología-CSIC-INTA, Carretera Ajalvir Km4, 28850 Torrejón de Ardoz, España. 1 Instituto Estructura de la Materia CSIC, Serrano 113 bis, 28006, Madrid. *Corresponding Author: A. Aguilera ([email protected]), Teléfono: +34 91 5206434. CATÁLOGO GENERAL DE PUBLICACIONES OFICIALES https://cpage.mpr.gob.es Edita: © Autor y editor, 2020 NIPO: 078-20-003-2 (edición en papel) NIPO: 078-20-004-8 (edición en línea) ISBN: 978-84-9091-517-2 (edición en papel) Depósito Legal: M-21173-2020 Fecha de edición: noviembre 2020 Maquetación e impresión: Vicente Aparisi - Din Impresores ©Portada: Luis Cuesta / Laguna Ácida de Peña del Hierro Las opiniones emitidas en esta publicación son exclusiva responsabilidad del autor de la misma. Los derechos de explotación de esta obra están amparados por la Ley de Propiedad Intelectual. Ninguna de las partes de la misma puede ser reproducida, almacenada ni transmitida en ninguna forma ni por medio alguno, electrónico, mecánico o de grabación, incluido fotocopias, o por cualquier otra forma, sin permiso previo, expreso y por escrito de los titulares del © Copyright. En esta edición se ha utilizado papel 100% libre de cloro procedente de bosques gestionados de forma sostenible. Prefacio Los ecosistemas extremos y los microorganismos que los habitan, denomina- dos extremófilos, han atraído desde siempre un interés científico considerable, no sólo porque demuestran que la vida es posible y adaptable a condiciones am- bientales muy diversas y adversas sino también porque el estudio de este tipo de ambientes es imprescindible en el campo de la Astrobiología. Estos hábitats nos permiten entender mejor cuáles son los límites de la vida tal y como la co- nocemos, sirviendo como banco de pruebas a la hora de buscar vida en otras partes del universo. En este sentido, el estudio de los ambientes extremos ácidos (pH<3) es cada vez más importante ya que los ambientes ácidos son considerados como análogos terrestres de Marte, planeta al que se encaminan gran parte de las misiones espaciales actuales. Los extremófilos viven en hábitats que son muy hostiles o incluso letales para otras formas de vida y su estudio ha proporciona- do descubrimientos innovadores que desafían algunos de los paradigmas de la biología moderna. De entre los ecosistemas extremos, los ambientes ácidos son relativamente escasos en todo el mundo y están generalmente asociados con la actividad volcánica y con depósitos minerales de gran interés económico. Además de la alta acidez, estos ambientes presentan condiciones químicas y físicas muy variables, dependiendo de su origen y de la naturaleza geoquímica del lugar. El pH ácido facilita la disolución de metales pesados en el agua, lo que provoca un impacto ambiental enorme. Río Tinto, situado en el suroeste de España, es uno de los ecosistemas ácidos extremos más inusuales descritos hasta el momento debido principalmente, además de a su acidez, a su extenso tamaño (92 Km), a sus altas concentraciones de metales pesados disueltos y, sobre todo, su alto nivel de diversidad microbiana, principalmente eucariótica. Numerosos estudios sobre Río Tinto han demostrado la importancia del ciclo del hierro, no sólo en la generación de las condiciones extremas del hábitat sino también en el mantenimiento de su diversidad microbiana. A lo largo del libro, revisaremos los trabajos realizados en cuanto a la geomicrobiología, biodiversidad y ecofisiología de los microorga- nismos que habitan en uno de los mayores y más importantes ambientes ácidos extremos descritos hasta ahora. Ángeles Aguilera Elena González-Toril Virginia Souza-Egipsy Contenidos 1.- Introducción …………………………………………………………………………………………………… 7 1.1 Ambientes extremos y extremófilo ……………………………………………………………………………7 1.2 Microorganismos procariotas en ambientes extremos ……………………………………………8 1.3 Microorganismos eucariotas en ambientes extremos ………………………………………… 10 1.4 Mecanismos de resistencia en extremófilo …………………………………………………………… 13 1.5 Interés biotecnológico de los extremófilo …………………………………………………………… 16 2. Naturaleza y origen de los ecosistemas ácidos extremos ……………………19 3. Río Tinto y su entorno ……………………………………………………………………………………27 3.1 Contexto geológico: Faja Pirítica Ibérica ………………………………………………………………… 27 3.2 Cuenca hidrológica y clima ……………………………………………………………………………………… 28 3.3 Comparación con otros ambientes ácidos extremos …………………………………………… 32 4.- Biodiversidad microbiana de Río Tinto ……………………………………………………35 4.1 Biodiversidad procariota …………………………………………………………………………………………… 36 4.2 Biodiversidad eucariota …………………………………………………………………………………………… 43 4.2.1 Microalgas acidófila ………………………………………………………………………………………46 4.2.2 Euglenófitos y protozoos acidófil ………………………………………………………………48 4.2.3 Hongos y levaduras acidófila …………………………………………………………………………48 4.2.4 Plantas ………………………………………………………………………………………………………………49 4.3 Dinámica poblacional de las comunidades eucariotas ………………………………………… 51 5.- Modelo geomicrobiológico de Río Tinto …………………………………………………53 5.1 Modelo geomicrobiológico del cauce principal ……………………………………………………… 53 5.2 Modelo geomicrobiológico de las salidas de mina ……………………………………………… 56 5.3 Modelo geomicrobiológico de los lagos de cortas de mina ………………………………… 57 5.4 Papel de los eucariotas en el modelo geomicrobiológico de aguas ácidas ………… 61 Contenidos 6.- Formación y estructura de los biofilm ………………………………………………… 63 7.- Mecanismos de adaptación a ambientes ácidos extremos ………………… 71 7.1 Mecanismos de adaptación de procariotas acidófilo …………………………………………… 71 7.2 Mecanismos de adaptación de eucariotas acidófilo …………………………………………… 75 7.2.1 Adaptaciones a pH ácidos ……………………………………………………………………………… 75 7.2.2 Adaptaciones a limitaciones nutricionales ………………………………………………… 76 7.2.3 Adaptaciones fotosintéticas ………………………………………………………………………… 77 7.2.4 Adaptaciones a metales pesados …………………………………………………………………… 81 7.3 La transferencia horizontal de genes como mecanismo de resistencia adaptativa …………………………………………………………………………………………84 8.- Río Tinto y su importancia en Astrobiología ……………………………………… 87 8.1 Interés astrobiológico de los extremófilos y los ambientes extremo …………………89 8.2 Río Tinto como análogo terrestre de Marte ……………………………………………………………90 9.- Bibliografía ………………………………………………………………………………………………… 93 1. Introducción 1.1 Ambientes extremos consideramos normal y los organis- y extremófilos mos que viven en los límites de esta normalidad ambiental o más allá son La exploración del planeta nos ha lle- considerados extremófilos. Es intere- vado a continuos descubrimientos de sante señalar que los extremófilos no vida en ambientes que, inicialmente solo soportan tales condiciones ad- fueron considerados como inhabita- versas para llevar a cabo su actividad bles. De hecho, la vida puede surgir y metabólica, si no que necesitan de prosperar bajo condiciones ambienta- dichas condiciones extremas para de- 7 les muy duras. Esto ha dado lugar al sarrollarse. Los microorganismos capa- origen de una nueva disciplina dentro ces de tolerar estas condiciones, pero de la biología, la Extremofília, que es- que también pueden desarrollarse en tudia la diversidad, ecología y fisiol - hábitats moderados, no son verdade- gía de los ambientes extremos y los ros extremófilos, siendo considerados organismos que los habitan. Estos eco- extremo-tolerantes. sistemas se definen como lugares que El número de extremófilos iden- tienen uno o varios factores ambien- tificados ha crecido rápidamente en tales incompatibles con la mayoría de los últimos años (Tabla 1). Algunos las formas de vida, especialmente con ejemplos de esto los podemos encon- la vida humana, lo que la convierte trar en las comunidades microbianas en una defi ición absolutamente an- que viven a temperaturas elevadas, tropocéntrica. A pesar de la aparente como es el caso de las arqueas hiper- hostilidad de dichos hábitats, los eco- termófilas que pueden encontrarse a sistemas extremos pueden contener temperaturas superiores a los 100ºC un nivel de biodiversidad mayor de [1]. Otros organismos viven en zonas lo esperado. El medio ambiente que polares frías, como los psicrófilos de conocemos tiene oxígeno, nunca es la Antártida que son capaces de vivir demasiado frío ni demasiado caliente en aguas salobres con una salinidad (la mayoría de los organismos viven varias veces mayor que la del agua en un rango relativamente limitado de mar, a temperaturas inferiores a de temperaturas de 5°C a 40°C) una -10ºC y bajo una capa de hielo de 20 radiación moderada por la atmósfera. m de espesor [2]. De manera similar, Este mundo familiar define lo que hay organismos que viven en ambien- consisten en formas
Recommended publications
  • Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
    microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.
    [Show full text]
  • Picrophilus Oshimae and Picrophilus Tomdus Fam. Nov., Gen. Nov., Sp. Nov
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1996, p. 814-816 Vol. 46, No. 3 0020-77 13/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Picrophilus oshimae and Picrophilus tomdus fam. nov., gen. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea CHRISTA SCHLEPER, GABRIELA PUHLER, HANS- PETER KLENK, AND WOLFRAM ZILLIG* Max Plank Institut fur Biochemie, 0-82152 Martinsried, Germany We describe two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea that were isolated from solfataric hydrothermal areas in Hokkaido, Japan. These organisms, Picrophilus oshimae and Picrophilus torridus, represent a novel genus and a novel family, the Picrophilaceae, in the kingdom Euryarchaeota and the order Thermoplasmales. Both of these bacteria are more acidophilic than the genus Thermoplasma since they are able to grow at about pH 0. The moderately thermophilic, hyperacidophilic, aerobic ar- which comprises acid-loving (i.e., hyperacidophilic) organisms. chaea (archaebacteria) (7) Picrophilus oshimae and Picrophilus Separation of these taxa is justified by their phylogenetic dis- rorridus, which have been described previously (4, 5), were tance, (9.5% difference in the 16s rRNA sequences of mem- isolated from moderately hot hydrothermal areas in solfataric bers of the Picrophilaceae and T. acidophilum), by the lack of fields in Hokkaido, Japan. One of the sources of isolation was immunochemical cross-reactions in Ouchterlony immunodif- a solfataric spring which had a temperature of 53°C and a pH fusion assays between the RNA polymerases of P. oshimae and of 2.2, and the other was a rather dry hot soil which had a pH T. acidophilum, which also do not occur between members of of <OS.
    [Show full text]
  • Functionalized Membrane Domains: an Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger
    Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger To cite this version: Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger. Functionalized Membrane Domains: An Ancestral Feature of Archaea?. Frontiers in Microbiology, Frontiers Media, 2020, 11, pp.526. 10.3389/fmicb.2020.00526. hal-02553764 HAL Id: hal-02553764 https://hal.archives-ouvertes.fr/hal-02553764 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-00526 March 30, 2020 Time: 21:44 # 1 ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fmicb.2020.00526 Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte1†, Philippe Schaeffer2†, Vincent Grossi3† and Phil M. Oger1*† 1 Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France, 2 Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France, 3 Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area.
    [Show full text]
  • Microbial Extremophiles in Aspect of Limits of Life. Elena V. ~Ikuta
    Source of Acquisition NASA Marshall Space Flight Centel Microbial extremophiles in aspect of limits of life. Elena V. ~ikuta',Richard B. ~oover*,and Jane an^.^ IT LF " '-~ationalSpace Sciences and Technology CenterINASA, VP-62, 320 Sparkman Dr., Astrobiology Laboratory, Huntsville, AL 35805, USA. 3- Noblis, 3 150 Fairview Park Drive South, Falls Church, VA 22042, USA. Introduction. During Earth's evolution accompanied by geophysical and climatic changes a number of ecosystems have been formed. These ecosystems differ by the broad variety of physicochemical and biological factors composing our environment. Traditionally, pH and salinity are considered as geochemical extremes, as opposed to the temperature, pressure and radiation that are referred to as physical extremes (Van den Burg, 2003). Life inhabits all possible places on Earth interacting with the environment and within itself (cross species relations). In nature it is very rare when an ecotope is inhabited by a single species. As a rule, most ecosystems contain the functionally related and evolutionarily adjusted communities (consortia and populations). In contrast to the multicellular structure of eukaryotes (tissues, organs, systems of organs, whole organism), the highest organized form of prokaryotic life in nature is the benthic colonization in biofilms and microbial mats. In these complex structures all microbial cells of different species are distributed in space and time according to their functions and to physicochemical gradients that allow more effective system support, self- protection, and energy distribution. In vitro, of course, the most primitive organized structure for bacterial and archaeal cultures is the colony, the size, shape, color, consistency, and other characteristics of which could carry varies specifics on species or subspecies levels.
    [Show full text]
  • ABSTRACT AUERNIK, KATHRYNE SHERLOCK. Functional Genomics Analysis of Metal Mobilization by the Extremely Thermoacidophilic Archa
    ABSTRACT AUERNIK, KATHRYNE SHERLOCK. Functional Genomics Analysis of Metal Mobilization by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula. (Under the direction of Dr. Robert Kelly.) Biomining processes recovering base, strategic and precious metals have predominantly utilized mesophilic bacteria, but relatively low yields have impacted wider application of this biotechnology. However, the use of high temperature microorganisms offers great potential to increase metal mobilization rates. Metallosphaera sedula (Mse) is an extremely thermoacidophilic archaeon with bioleaching capabilities, although little is known about the physiology of this microorganism. To better characterize Mse, its genome was sequenced and a whole genome oligonucleotide microarray was constructed for transcriptional response analysis. The physiological and bioenergetic complexities of Mse bioleaching were studied focusing on iron oxidation, sulfur oxidation, and growth modes (heterotrophy, autotrophy, and mixotrophy). The transcriptomes corresponding to each of these elements were examined for clues to the mechanisms by which Mse oxidizes inorganic energy sources (i.e. metal sulfides) and fixes CO2. Quinol/terminal oxidases important for maintaining intracellular pH and contributing to ATP generation via proton pumping were stimulated by different energy sources. The soxABCDD’L genome locus (Msed_0285-Msed_0291) was stimulated in the presence of reduced inorganic sulfur compounds (RISCs) and H2, while the soxNL-CbsABA cluster (Msed_0500-Msed_0504) was induced by Fe(II). Two similar copies of the SoxB/CoxI-like cytochrome oxidase subunit, foxAA’ (Msed_0484/Msed_0485) were implicated in fox cluster oxidation of Fe(II), as well as other energy sources. The doxBCE locus (Msed_2030-Msed2032) did not respond uniformly to either Fe(II) or RISCs, but was up-regulated in the presence of chalcopyrite (CuFeS2).
    [Show full text]
  • Life in Extreme Environments
    insight review articles Life in extreme environments Lynn J. Rothschild & Rocco L. Mancinelli NASA Ames Research Center, Moffett Field, California 94035-1000, USA (e-mail: [email protected]; [email protected]) Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring ‘extremophiles’. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe. ormal is passé; extreme is chic. While thriving in biological extremes (for example, nutritional Aristotle cautioned “everything in extremes, and extremes of population density, parasites, moderation”, the Romans, known for their prey, and so on). excesses, coined the word ‘extremus’, the ‘Extremophile’ conjures up images of prokaryotes, yet the superlative of exter (‘being on the outside’). taxonomic range spans all three domains. Although all NBy the fifteenth century ‘extreme’ had arrived, via Middle hyperthermophiles are members of the Archaea and French, to English. At the dawning of the twenty-first Bacteria, eukaryotes are common among the psychrophiles, century we know that the Solar System, and even Earth, acidophiles, alkaliphiles, piezophiles, xerophiles and contain environmental extremes unimaginable to the halophiles (which respectively thrive at low temperatures, low ‘ancients’ of the nineteenth century.
    [Show full text]
  • Genome Sequence of Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • Biotechnology of Archaea- Costanzo Bertoldo and Garabed Antranikian
    BIOTECHNOLOGY– Vol. IX – Biotechnology Of Archaea- Costanzo Bertoldo and Garabed Antranikian BIOTECHNOLOGY OF ARCHAEA Costanzo Bertoldo and Garabed Antranikian Technical University Hamburg-Harburg, Germany Keywords: Archaea, extremophiles, enzymes Contents 1. Introduction 2. Cultivation of Extremophilic Archaea 3. Molecular Basis of Heat Resistance 4. Screening Strategies for the Detection of Novel Enzymes from Archaea 5. Starch Processing Enzymes 6. Cellulose and Hemicellulose Hydrolyzing Enzymes 7. Chitin Degradation 8. Proteolytic Enzymes 9. Alcohol Dehydrogenases and Esterases 10. DNA Processing Enzymes 11. Archaeal Inteins 12. Conclusions Glossary Bibliography Biographical Sketches Summary Archaea are unique microorganisms that are adapted to survive in ecological niches such as high temperatures, extremes of pH, high salt concentrations and high pressure. They produce novel organic compounds and stable biocatalysts that function under extreme conditions comparable to those prevailing in various industrial processes. Some of the enzymes from Archaea have already been purified and their genes successfully cloned in mesophilic hosts. Enzymes such as amylases, pullulanases, cyclodextrin glycosyltransferases, cellulases, xylanases, chitinases, proteases, alcohol dehydrogenase,UNESCO esterases, and DNA-modifying – enzymesEOLSS are of potential use in various biotechnological processes including in the food, chemical and pharmaceutical industries. 1. Introduction SAMPLE CHAPTERS The industrial application of biocatalysts began in 1915 with the introduction of the first detergent enzyme by Dr. Röhm. Since that time enzymes have found wider application in various industrial processes and production (see Enzyme Production). The most important fields of enzyme application are nutrition, pharmaceuticals, diagnostics, detergents, textile and leather industries. There are more than 3000 enzymes known to date that catalyze different biochemical reactions among the estimated total of 7000; only 100 enzymes are being used industrially.
    [Show full text]
  • Temperature and Elemental Sulfur Shape Microbial Communities in Two Extremely Acidic Aquatic Volcanic Environments
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.312660; this version posted September 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Temperature and elemental sulfur shape microbial communities in two extremely acidic aquatic volcanic environments Diego Rojas-Gätjens1, Alejandro Arce-Rodríguez2α, Fernando Puente-Sánchez3, Roberto Avendaño1, Eduardo Libby4, Raúl Mora-Amador5,6, Keilor Rojas-Jimenez7, Paola Fuentes-Schweizer4,8, Dietmar H. Pieper2 & Max Chavarría1,4,9* 1Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica 2Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany 3Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049 Madrid, Spain 4Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica 5Escuela Centroamericana de Geología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica 6Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, 11501-2060, San José, Costa Rica 7Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, 8Centro de Investigación en Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060, San José, Costa Rica 9Centro de Investigaciones en Productos Naturales
    [Show full text]
  • Function and Adaptation of Acidophiles in Natural and Applied Communities
    Stephan Christel Linnaeus University Dissertations No 328/2018 Stephan Christel and Appliedand Communities Acidophiles in Natural of Adaptation and Function Function and Adaptation of Acidophiles in Natural and Applied Communities Lnu.se ISBN: 978-91-88761-94-1 978-91-88761-95-8 (pdf ) linnaeus university press Function and Adaptation of Acidophiles in Natural and Applied Communities Linnaeus University Dissertations No 328/2018 FUNCTION AND ADAPTATION OF ACIDOPHILES IN NATURAL AND APPLIED COMMUNITIES STEPHAN CHRISTEL LINNAEUS UNIVERSITY PRESS Abstract Christel, Stephan (2018). Function and Adaptation of Acidophiles in Natural and Applied Communities, Linnaeus University Dissertations No 328/2018, ISBN: 978-91-88761-94-1 (print), 978-91-88761-95-8 (pdf). Written in English. Acidophiles are organisms that have evolved to grow optimally at high concentrations of protons. Members of this group are found in all three domains of life, although most of them belong to the Archaea and Bacteria. As their energy demand is often met chemolithotrophically by the oxidation of basic ions 2+ and molecules such as Fe , H2, and sulfur compounds, they are often found in environments marked by the natural or anthropogenic exposure of sulfide minerals. Nonetheless, organoheterotrophic growth is also common, especially at higher temperatures. Beside their remarkable resistance to proton attack, acidophiles are resistant to a multitude of other environmental factors, including toxic heavy metals, high temperatures, and oxidative stress. This allows them to thrive in environments with high metal concentrations and makes them ideal for application in so-called biomining technologies. The first study of this thesis investigated the iron-oxidizer Acidithiobacillus ferrivorans that is highly relevant for boreal biomining.
    [Show full text]
  • Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • Metagenome-Assembled Genomes Provide New Insight Into The
    www.nature.com/scientificreports Corrected: Author Correction OPEN Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal Received: 17 August 2018 Accepted: 17 January 2019 pools in Kamchatka, Russia Published online: 28 February 2019 Laetitia G. E. Wilkins1,2, Cassandra L. Ettinger 2, Guillaume Jospin2 & Jonathan A. Eisen 2,3,4 Culture-independent methods have contributed substantially to our understanding of global microbial diversity. Recently developed algorithms to construct whole genomes from environmental samples have further refned, corrected and revolutionized understanding of the tree of life. Here, we assembled draft metagenome-assembled genomes (MAGs) from environmental DNA extracted from two hot springs within an active volcanic ecosystem on the Kamchatka peninsula, Russia. This hydrothermal system has been intensively studied previously with regard to geochemistry, chemoautotrophy, microbial isolation, and microbial diversity. We assembled genomes of bacteria and archaea using DNA that had previously been characterized via 16S rRNA gene clone libraries. We recovered 36 MAGs, 29 of medium to high quality, and inferred their placement in a phylogenetic tree consisting of 3,240 publicly available microbial genomes. We highlight MAGs that were taxonomically assigned to groups previously underrepresented in available genome data. This includes several archaea (Korarchaeota, Bathyarchaeota and Aciduliprofundum) and one potentially new species within the bacterial genus Sulfurihydrogenibium. Putative functions in both pools were compared and are discussed in the context of their diverging geochemistry. This study adds comprehensive information about phylogenetic diversity and functional potential within two hot springs in the caldera of Kamchatka. Terrestrial hydrothermal systems are of great interest to the general public and to scientists alike due to their unique and extreme conditions.
    [Show full text]