Contiguously-Hydrophobic Sequences Are Functionally Significant

Total Page:16

File Type:pdf, Size:1020Kb

Contiguously-Hydrophobic Sequences Are Functionally Significant bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458776; this version posted September 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Contiguously-hydrophobic 2 sequences are functionally 3 significant throughout the human 4 exome 5 Ruchi Lohia1§, Matthew E.B. Hansen2†, Grace Brannigan1,3†* *For correspondence: *[email protected] (GB) 6 1Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 7 2 †These authors contributed USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; equally to this work 8 3Department of Physics, Rutgers University, Camden, NJ, USA Present address: §Stanley 9 Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, USA 10 Abstract Hydrophobic interactions have long been established as essential to stabilizing 11 structured proteins as well as drivers of aggregation, but the impact of hydrophobicity on the 12 functional significance of sequence variants has rarely been considered in a genome-wide 13 context. Here we test the role of hydrophobicity on functional impact using a set of 70,000 14 disease and non-disease associated single nucleotide polymorphisms (SNPs), using enrichment 15 of disease-association as an indicator of functionality. We find that functional impact is 16 uncorrelated with hydrophobicity of the SNP itself, and only weakly correlated with the average 17 local hydrophobicity, but is strongly correlated with both the size and minimum hydrophobicity 18 of the contiguous hydrophobic domain that contains the SNP. Disease-association is found to 19 vary by more than 6-fold as a function of contiguous hydrophobicity parameters, suggesting 20 utility as a prior for identifying causal variation. We further find signatures of differential selective 21 constraint on domain hydrophobicity, and that SNPs splitting a long hydrophobic region or 22 joining two short regions of contiguous hydrophobicity are particularly likely to be 23 disease-associated. Trends are preserved for both aggregating and non-aggregating proteins, 24 indicating that the role of contiguous hydrophobicity extends well beyond aggregation risk. 25 26 Statement of Significance 27 Proteins rely on the hydrophobic effect to maintain structure and interactions with the environ- 28 ment. Surprisingly, no signs that amino acid hydrophobicity influences natural selection have been 29 detected using modern genetic data. This may be because analyses that treat each amino acid sep- 30 arately do not reveal significant results, which we confirm here. However, because the hydrophobic 31 effect becomes more powerful as more hydrophobic molecules are introduced, we tested whether 32 unbroken stretches of hydrophobic amino acids are under selection. Using genetic variant data 33 from across the human genome, we found evidence that selection pressure increases continually 34 with the length of the unbroken hydrophobic sequence. These results could lead to improvements 35 in a wide range of genomic tools as well as insights into disease and protein evolutionary history. 36 Introduction 37 An ambitious task for human genetics is discovering the genetic basis for heritable traits and dis- 38 ease risks. In principle, genome-wide association studies (GWAS) can identify variants associated 1 of 18 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458776; this version posted September 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 39 with an effect, independent of the genomic or protein context of the variant (Visscher et al., 2017). 40 In practice, associated variants are often not directly causal but instead passively “tag” haplotypes 41 containing the true causal variants that are either unknown or observed but not directly tested 42 for association (Cannon and Mohlke, 2018). The pattern of linkage disequilibrium that defines “tag- 43 ging” is population dependent. Any information on the protein-level function of the local sequence 44 surrounding an associated variant can help fine-map and rank putative causal variants from a list 45 of associations(Gallagher and Chen-Plotkin, 2018). 46 All protein level methods for variant-to-function prediction rely on some form of residue char- 47 acterization. In addition to physicochemical properties (Stone, 2005; Niroula et al., 2015; López- 48 Ferrando et al., 2017; Hecht et al., 2015; Popov et al., 2019) these may include evolutionary con- 49 servation (Ng and Henikoff, 2001; Thomas and Kejariwal, 2004; Stone, 2005; Capriotti et al., 2006; 50 Choi et al., 2012; Hecht et al., 2015; Niroula et al., 2015) and structural propensities (Capriotti 51 et al., 2004, 2005; Parthiban et al., 2006; Wainreb et al., 2010; Popov et al., 2019; Ittisoponpisan 52 et al., 2019; Iqbal et al., 2020). Such methods may also rely on known protein structures in order 53 to incorporate properties such as local secondary structure and solvent accessibility (Iqbal et al., 54 2020). In the absence of structural information, however, computational prediction accuracy is low, 55 and full three-dimensional structures have been experimentally solved for a tiny fraction of known 56 proteins (Rose et al., 2016; Mir et al., 2017). Fewer than 35% of human protein coding genes have 57 structures deposited in the protein data bank (Prlić et al., 2016). With few exceptions, therefore, 58 these methods have not been applied on a genome-wide scale. 59 Most functional proteins are intrinsically modular. For example, a given protein may include 60 multiple secondary structure elements, ordered and disordered regions, transmembrane and sol- 61 uble portions, or stretches of highly charged regions followed by stretches of highly hydrophobic 62 regions. In the absence of structural information, bioinformatics “variant-to-function” prediction 63 methods that use sequence context typically neglect modularity, by defining the local sequence 64 using a window of constant length, centered around the mutation (Teng et al., 2010; Capriotti 65 et al., 2006; Capriotti and Fariselli, 2017; Hecht et al., 2015). This definition of sequence context 66 can weaken predictive power, particularly for SNPs near the boundary between adjacent protein 67 modules with distinct functional roles. 68 Despite the common framing that “sequence determines structure which determines function”, 69 single nucleotide polymorphisms (SNPs) can alter function while leaving the protein structure es- 70 sentially unchanged. For example, intrinsically disordered proteins (IDPs) lack unique structure 71 yet are both essential for many critical biological pathways (Ward et al., 2004; Dyson and Wright, 72 2005; Uversky, 2013, 2019; Panchenko and Babu, 2015) and sensitive to sequence. (Weinreb et al., 73 1996; Uversky et al., 2012; Cuanalo-Contreras et al., 2013; Patel et al., 2015; Uversky, 2015; Tovo- 74 Rodrigues et al., 2016). 75 Although not all functional proteins have well-defined structures, we showed in a previous 76 study(Lohia et al., 2019) that a long intrinsically disordered protein can retain modularity of inter- 77 actions. Fully-atomistic molecular dynamics simulations of a 92-residue disordered protein, run us- 78 ing enhanced sampling, revealed a soft network of tertiary contacts between contiguous stretches 79 of hydrophobic residues. In order to distinguish these stretches from any other more traditional 80 segment or domain definition, we follow terminology more common to polymer physics and call 81 these stretches “blobs". Blobs may contain secondary structure elements, but are not required to 82 do so. 83 Here we demonstrate that hydrophobic blobs can be used as generic predictors of functional 84 modules, by testing for enrichment of functional effects throughout the proteome. Our hypothesis 85 was motivated by the cooperativity of the hydrophobic effect (Jiang et al., 2017) and the recognition 86 that hydrophobic residues are likely to be buried (Lins et al., 2003) and contain a high density of 87 interactions. Any curve drawn through such a cluster, including a curve representing the peptide 88 chain, will contain contiguous hydrophobic residues (Figure 1). 89 In the present study, we used a large database of protein sequences to determine the extent 2 of 18 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458776; this version posted September 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 90 to which hydrophobicity-based sequence segmentation captures functional modules. Our test in- 91 volves three steps: 1) segmentation of the protein into the blobs (“blobulation"), 2) characteriza- 92 tion of the blobs based on various physicochemical properties and 3) testing whether SNPs with 93 “known" functional impact are enriched or depleted genome-wide in blobs with particular prop- 94 erties. We test for enrichment of hydrophobic blobs among disease-associated SNPs, repeating 95 the calculation with a range of hydrophobicity thresholds and stratifying according to hydrophobic 96 blob length. This process reveals a striking dependence that is muted when a standard moving 97 window approach is used instead, and is completely lost when the sequence context is neglected. 98 We test for consistency against population frequency data,
Recommended publications
  • Independent Evidence for an Association Between General Cognitive Ability and a Genetic Locus for Educational Attainment J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hofstra Northwell Academic Works (Hofstra Northwell School of Medicine) Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2015 Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment J. W. Trampush Hofstra Northwell School of Medicine T. Lencz Hofstra Northwell School of Medicine S. Guha Northwell Health S. Mukherjee Northwell Health P. DeRosse Northwell Health See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Psychiatry Commons Recommended Citation Trampush JW, Lencz T, Guha S, Mukherjee S, DeRosse P, John M, Andreassen O, Deary I, Glahn D, Malhotra AK, . Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment. 2015 Jan 01; 168(5):Article 927 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/927. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. Authors J. W. Trampush, T. Lencz, S. Guha, S. Mukherjee, P. DeRosse, M. John, O. A. Andreassen, I. J. Deary, D. C. Glahn, A. K. Malhotra, and +41 additional authors This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/927 HHS Public Access Author manuscript Author Manuscript Author ManuscriptAm J Med Author Manuscript Genet B Neuropsychiatr Author Manuscript Genet.
    [Show full text]
  • Genetic Influence on Cognitive Development Between Childhood
    Molecular Psychiatry https://doi.org/10.1038/s41380-018-0277-0 ARTICLE Genetic influence on cognitive development between childhood and adulthood 1 1 1 2 3 Josephine Mollon ● Emma E. M. Knowles ● Samuel R. Mathias ● Ruben Gur ● Juan Manuel Peralta ● 4,5,6 4,5,6 2 3 7 1,8 Daniel J. Weiner ● Elise B. Robinson ● Raquel E. Gur ● John Blangero ● Laura Almasy ● David C. Glahn Received: 17 April 2018 / Revised: 15 August 2018 / Accepted: 11 September 2018 © Springer Nature Limited 2018 Abstract Successful cognitive development between childhood and adulthood has important consequences for future mental and physical wellbeing, as well as occupational and financial success. Therefore, delineating the genetic influences underlying changes in cognitive abilities during this developmental period will provide important insights into the biological mechanisms that govern both typical and atypical maturation. Using data from the Philadelphia Neurodevelopmental Cohort (PNC), a large population-based sample of individuals aged 8 to 21 years old (n = 6634), we used an empirical relatedness matrix to establish the heritability of general and specific cognitive functions and determine if genetic factors influence 1234567890();,: 1234567890();,: cognitive maturation (i.e., Gene × Age interactions) between childhood and early adulthood. We found that neurocognitive measures across childhood and early adulthood were significantly heritable. Moreover, genetic variance on general cognitive ability, or g, increased significantly between childhood and early adulthood. Finally, we did not find evidence for decay in genetic correlation on neurocognition throughout childhood and adulthood, suggesting that the same genetic factors underlie cognition at different ages throughout this developmental period. Establishing significant Gene × Age interactions in neurocognitive functions across childhood and early adulthood is a necessary first step in identifying genes that influence cognitive development, rather than genes that influence cognition per se.
    [Show full text]
  • Whole‐Exome Sequencing in 20,197 Persons for Rare Variants In
    RESEARCH PAPER Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease Neha S. Raghavan1,2, Adam M. Brickman1,2,3, Howard Andrews1,2,4, Jennifer J. Manly1,2,3, Nicole Schupf1,2,3,7, Rafael Lantigua1,6, Charles J. Wolock8, Sitharthan Kamalakaran8, Slave Petrovski8,9, Giuseppe Tosto1,2,3, Badri N. Vardarajan1,2,3,5, David B. Goldstein3,6,8, Richard Mayeux1,2,3,4,7 & The Alzheimer’s Disease Sequencing Projecta 1The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 2The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 3Department of Neurology, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 4Department of Psychiatry, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 5Department of Systems Biology, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 6Department of Medicine, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 7The Department of Epidemiology, Mailman School of Public Health, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 8Institute of Genomic Medicine, Columbia University, The New York Presbyterian Hospital, New York, New York 9AstraZeneca Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, CB2 0AA, United Kingdom Correspondence Abstract Richard Mayeux, Department of Neurology, Objective 710 West 168th Street, Columbia University, : The genetic bases of Alzheimer’s disease remain uncertain.
    [Show full text]
  • Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C 'S Role in Working Memory
    Neuropsychopharmacology (2017) 42, 2612–2622 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C 's Role in Working Memory 1 1 2 3 4,5 3 Donna Cosgrove , Omar Mothersill , Kimberley Kendall , Bettina Konte , Denise Harold , Ina Giegling , 3 6 6 7 Annette Hartmann , Alex Richards , Kiran Mantripragada , The Wellcome Trust Case Control Consortium , Michael J Owen6, Michael C O’Donovan6, Michael Gill4, Dan Rujescu3, James Walters2, Aiden Corvin4, Derek W Morris1 and Gary Donohoe*,1 1 The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland; 2Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; 3Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany; 4 Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland; 5 6 School of Biotechnology, Dublin City University, Dublin, Ireland; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK With 4100 common variants associated with schizophrenia risk, establishing their biological significance is a priority. We sought to establish cognitive effects of
    [Show full text]
  • Cognitive Genomics: Linking Genes to Behavior in the Human Brain
    PERSPECTIVE Cognitive genomics: Linking genes to behavior in the human brain Genevieve Konopka Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA ABSTRACT Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic Downloaded from http://direct.mit.edu/netn/article-pdf/1/1/3/1091843/netn_a_00003.pdf by guest on 30 September 2021 localization as well as tissue-specific epigenetics and expression. The use of brain-derived an open access journal expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts. Progress in understanding the inner workings of the brain has come a long way from the preneu- roscience era of phrenology, when we were limited to conjectures about human behavior Citation: Konopka G. (2017). Cognitive genomics: Linking genes to behavior based on the shape of the skull.
    [Show full text]
  • 1 Functional Network Dynamics in a Neurodevelopmental Disorder Of
    bioRxiv preprint doi: https://doi.org/10.1101/463323; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Dynamic functional connectivity networks and gene expression Functional network dynamics in a neurodevelopmental disorder of known genetic origin Erin Hawkins*1, Danyal Akarca*1, Mengya Zhang1, Diandra Brkic1, Mark Woolrich2, Kate Baker1,3, & Duncan Astle1 *these authors took joint responsibility for first authorship 1 MRC Cognition and Brain Sciences Unit, University of Cambridge 15 Chaucer Road, Cambridge, CB2 7EF, UK 2 Oxford Centre for Human Brain Activity, University of Oxford University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK 3 Department of Medical Genetics, University of Cambridge Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK. Corresponding author: Erin Hawkins Email: [email protected] Telephone: +44 (0)1223 273 686 1 bioRxiv preprint doi: https://doi.org/10.1101/463323; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Dynamic functional connectivity networks and gene expression Abstract Cognitive processing depends on the temporal co-ordination of functional brain networks. This fundamental aspect of neurophysiology potentially bridges the genetic regulation of neuronal activity and developmental cognitive impairments.
    [Show full text]
  • Gene Discovery and Polygenic Prediction from a 1.1-Million-Person GWAS of Educational Attainment
    Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment AUTHORS: James J. Lee1,†, Robbee Wedow2,3,4,†, Aysu Okbay5,6,*†, Edward Kong7, Omeed Maghzian7, Meghan Zacher8, Tuan Anh Nguyen-Viet9, Peter Bowers7, Julia Sidorenko10,11, Richard Karlsson Linnér5,6, Mark Alan Fontana12, Tushar Kundu9, Chanwook Lee7, Hui Li7, Ruoxi Li9, Rebecca Royer9, Pascal N. Timshel13,14, Raymond K. Walters15,16, Emily A. Willoughby1, Loïc Yengo10, 23andMe Research Team17, COGENT (Cognitive Genomics Consortium), Social Science Genetic Association Consortium, Maris Alver11, Yanchun Bao18, David W. Clark19, Felix R. Day20, Nicholas A. Furlotte17, Peter K. Joshi19, Kathryn E. Kemper10, Aaron Kleinman17, Claudia Langenberg20, Reedik Mägi11, Joey W. Trampush21, Shefali Setia Verma22, Yang Wu10, Max Lam Zhan Yang23, Jing Hua Zhao20, Zhili Zheng10,24, Jason D. Boardman2,3,4, Harry Campbell19, Jeremy Freese25, Kathleen Mullan Harris26,27, Caroline Hayward28, Pamela Herd29, Meena Kumari18, Todd Lencz30,31,32, Jian'an Luan20, Anil K. Malhotra30,31,32, Andres Metspalu11, Lili Milani11, Ken K. Ong20, John R. B. Perry20, David J. Porteous33, Marylyn D. Ritchie22, Melissa C. Smart18, Blair H. Smith34, Joyce Y. Tung17, Nicholas J. Wareham20, James F. Wilson19,28, Jonathan P. Beauchamp35, Dalton C. Conley36, Tõnu Esko11, Steven F. Lehrer37,38,39, Patrik K. E. Magnusson40, Sven Oskarsson41, Tune H. Pers13,14, Matthew R. Robinson10,42, Kevin Thom43, Chelsea Watson9, Christopher F. Chabris44, Michelle N. Meyer45, David I. Laibson7, Jian
    [Show full text]
  • Ninety-Nine Independent Genetic Loci Influencing General Cognitive Function Include Genes
    bioRxiv preprint doi: https://doi.org/10.1101/176511; this version posted August 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ninety-nine independent genetic loci influencing general cognitive function include genes associated with brain health and structure (N = 280,360) Gail Davies1,182, Max Lam2,182, Sarah E Harris1,3, Joey W Trampush4, Michelle Luciano1, W David Hill1, Saskia P Hagenaars1,5, Stuart J Ritchie1, Riccardo E Marioni1,3, Chloe Fawns-Ritchie1, David CM Liewald1, Judith A Okely1, Ari V Ahola-Olli6,7, Catriona LK Barnes8, Lars Bertram9, Joshua C Bis10 Katherine E Burdick11,12,13, Andrea Christoforou14,15, Pamela DeRosse2,16, Srdjan Djurovic14,17, Thomas Espeseth18,19, Stella Giakoumaki20, Sudheer Giddaluru14,15, Daniel E Gustavson21,22, Caroline Hayward23,24, Edith Hofer25,26, M Arfan Ikram27,28,29, Robert Karlsson30, Emma Knowles31, Jari Lahti32,33, Markus Leber34, Shuo Li35, Karen A Mather36, Ingrid Melle14,18, Derek Morris37, Christopher Oldmeadow38, Teemu Palviainen39, Antony Payton40, Raha PaZoki41, Katja Petrovic25, Chandra A Reynolds42, Muralidharan Sargurupremraj43, Markus ScholZ44,45, Jennifer A Smith46,47, Albert V Smith48,49, Natalie TerZikhan27,50, Anbu Thalamuthu36, Stella Trompet51, Sven J van der Lee27, Erin B Ware47, Beverly G Windham52, Margaret J Wright53,54, Jingyun Yang55,56, Jin Yu16, David Ames57,58, Najaf Amin27, Philippe Amouyel59,60,61, Ole A Andreassen18,62, Nicola Armstrong63,
    [Show full text]
  • Comparative Analysis of Target Gene Exon Sequencing by Cognitive Technology Using a Next Generation Sequencing Platform in Patients with Lung Cancer
    MOLECULAR AND CLINICAL ONCOLOGY 14: 36, 2021 Comparative analysis of target gene exon sequencing by cognitive technology using a next generation sequencing platform in patients with lung cancer YU CHEN1,2, WENQING YAN1,2, ZHI XIE1,2, WEIBANG GUO1,2, DANXIA LU1,2, ZHIYI LV1,2 and XUCHAO ZHANG1,2 1Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080; 2Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China Received March 31, 2020; Accepted December 9, 2020 DOI: 10.3892/mco.2020.2198 Abstract. Next generation sequencing (NGS) technology analysis and the GLCI bioinformatician was 43.48%. In 65 is an increasingly important clinical tool for therapeutic (56.52%) samples, WfG analysis identified and interpreted, decision‑making. However, interpretation of NGS data on average, 1.54 more mutation sites in each sample than the presents challenges at the point of care, due to limitations in manual GLCI review. These mutation sites were located on understanding the clinical importance of gene variants and 27 genes, including EP300, ARID1A, STK11 and DNMT3A. efficiently translating results into actionable information for Mutations in the EP300 gene were most prevalent, and present the clinician. The present study compared two approaches for in 30.77% samples. The Tumor Mutation Burden (TMB) inter‑ annotating and reporting actionable genes and gene mutations preted by WfG analysis (1.82) was significantly higher than from tumor samples: The traditional approach of manual cura‑ the TMB (0.73) interpreted by GLCI review.
    [Show full text]
  • Predicting Factors That Affect the Brain in 35 Countries Worldwide
    ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide Paul Thompson, Ole Andreassen, Alejandro Arias-Vasquez, Carrie Bearden, Premika Boedhoe, Rachel Brouwer, Randy Buckner, Jan Buitelaar, Kazima Bulayeva, Dara Cannon, et al. To cite this version: Paul Thompson, Ole Andreassen, Alejandro Arias-Vasquez, Carrie Bearden, Premika Boedhoe, et al.. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, Elsevier, 2015, 10.1016/j.neuroimage.2015.11.057. hal-01380998 HAL Id: hal-01380998 https://hal.archives-ouvertes.fr/hal-01380998 Submitted on 17 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License YNIMG-12784; No. of pages: 20; 4C: 4, 10, 11, 12 NeuroImage xxx (2016) xxx–xxx Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide☆,☆☆,★ Paul M. Thompson a,s, Ole A. Andreassen b,c, Alejandro Arias-Vasquez d, Carrie E. Bearden e,f,g, Premika S. Boedhoe h,bk,bl, Rachel M.
    [Show full text]
  • Rare Disruptive Variants in the DISC1 Interactome and Regulome: Association with Cognitive Ability and Schizophrenia
    OPEN Molecular Psychiatry (2018) 23, 1270–1277 www.nature.com/mp ORIGINAL ARTICLE Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia S Teng1,2,10, PA Thomson3,4,10, S McCarthy1,10, M Kramer1, S Muller1, J Lihm1, S Morris3, DC Soares3, W Hennah5, S Harris3,4, LM Camargo6, V Malkov7, AM McIntosh8, JK Millar3, DH Blackwood8, KL Evans4, IJ Deary4,9, DJ Porteous3,4 and WR McCombie1 Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339).
    [Show full text]
  • GWAS Meta-Analysis Reveals Novel Loci and Genetic Correlates for General Cognitive Function: a Report from the COGENT Consortium
    OPEN Molecular Psychiatry (2017) 22, 336–345 www.nature.com/mp IMMEDIATE COMMUNICATION GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium JW Trampush1,56, MLZ Yang2,56,JYu1,3, E Knowles4, G Davies5,6, DC Liewald6, JM Starr5,7, S Djurovic8,9, I Melle9,10, K Sundet10,11, A Christoforou9,12, I Reinvang11, P DeRosse1,3, AJ Lundervold13, VM Steen9,12, T Espeseth10,11, K Räikkönen14, E Widen15, A Palotie15,16,17, JG Eriksson18,19,20,21, I Giegling22, B Konte22, P Roussos23,24,25, S Giakoumaki26, KE Burdick23,25, A Payton27,28, W Ollier29, M Horan30, O Chiba-Falek31, DK Attix31,32, AC Need33, ET Cirulli34, AN Voineskos35, NC Stefanis36,37,38, D Avramopoulos39,40, A Hatzimanolis36,37,38, DE Arking40, N Smyrnis36,37, RM Bilder41, NA Freimer41, TD Cannon42, E London41, RA Poldrack43, FW Sabb44, E Congdon41, ED Conley45, MA Scult46, D Dickinson47, RE Straub48, G Donohoe49, D Morris50, A Corvin50, M Gill50, AR Hariri46, DR Weinberger48, N Pendleton29,30, P Bitsios51, D Rujescu22, J Lahti14,52, S Le Hellard9,12, MC Keller53, OA Andreassen9,10,54, IJ Deary5,6, DC Glahn4, AK Malhotra1,3,55 and T Lencz1,3,55 The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾ 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT).
    [Show full text]