Hybrid Messaging Passing in Shared-Memory Clusters∗

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Messaging Passing in Shared-Memory Clusters∗ Hybrid Messaging Passing in Shared-Memory Clusters∗ Vincent W. Freehy Jin Xuz David K. Lowenthalx Abstract An increasingly popular choice for high-performance machines is clusters of SMPs. Such clusters are popular in department-wide as well as national laboratory settings. On clusters of SMPs, there are two different memory models: shared memory, within a node, and distributed memory, between nodes. It is more difficult to write an efficient program using two memory models, i.e., combining OpenMP and MPI, than one. Therefore, several systems provide a hybrid message passing system, in which an IPC mechanism is used for local messaging and a network protocol (i.e., TCP) is used for remote messaging. This allows messaging passing programs to run much more efficiently on shared-memory clusters. The dual to this hybrid message passing program is shared-variable program supported by a software distributed shared memory. In theory, the shared-variable program is easier to create; however, in practice such a program is intolerably slow. While clearly reducing the overhead of messaging, a hybrid message passing system does not take full advantage of the shared memory model. This paper describes the Optimizing Hybrid Messaging (OHM) package that allows for highly efficient local messaging in a dis- tributed memory program. Our prototype implementation of OHM is written in Java. It re- duces message passing overhead between processes on the same shared-memory node, and it has performance comparable to a multi-threaded version. 1 Introduction High-speed networking and low cost make distributed-memory clusters very attractive high-per- formance computers. Furthermore, clusters have proven to be more scalable than shared-memory multicomputers. However, small-scale parallelism is quite usable and cost effective. Consequently, networks of shared-memory multiprocessors, with up to eight processors per node, are emerging as the dominant architecture for high-performance computers. This is because in terms of most raw performance metrics, shared-memory clusters are a highly efficient design point. However, this architecture is problematic in terms of software and programming cost, because it has a hybrid memory model consisting of both shared and distributed memory. Compared to other architectures, ∗This research supprted by NSF grants CCR-9876073 and CCR-9733063 and a grant from DARPA HPCS. yDepartment of Computer Science, North Carolina State University, Raleigh, NC 27965, [email protected] zDepartment of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, [email protected] xDepartment of Computer Science, University of Georgia, Athens, GA, 30602, [email protected] 1 a hybrid architecture presents additional challenges for developing efficient programs as well as tuning and porting them. There are three basic programming models for a hybrid machine. The first is shared memory across all processors and nodes with software distributed shared memory (SDSM). The second uses message passing between processors and nodes, and the third uses message passing between nodes and shared memory within nodes. None of these three is ideal; SDSMs are inefficient between nodes and message passing is inefficient within a node. Although hybrid systems can be efficient, the hybrid model requires a user to use two different programming models. This paper addresses the challenge of efficiently programming shared-memory clusters through the Optimized Hybrid Messaging (OHM) system, which provides several optimized local messaging mechanisms that decrease the cost of message passing. Also, it presents results in which the performance of OHM programs nearly equivalent to multi-threaded programs on a single SM node. Many high-performance messaging systems provide optimizations for SM clusters. For exam- ple, the major MPI implementations use efficient IPC for local messaging instead of a network protocol (which demonstrates the importance of SM clusters and utility of efficient local mes- saging). These implementations provide a short cuts for messages that are destined for another process on the same SM node. However, this is partial a solution because, while it increases ef- ficiency, it does not take full advantage of the opportunities available for message passing using shared memory. Our prototype implementation of OHM uses Java primarily because of the ease of prototyping within a Java virtual machine. There are two major components. First, is a message passing class that is implemented as a “drop-in” replacement for Java’s native1 messaging methods. The second component provides and manages shared memory buffers that are used to hold message headers, queues, and data. At first blush, OHM can be viewed as a multiplexer between local and remote messaging methods. If the source and destination are located on the same machine, then OHM uses specialized, highly efficient local message passing. But when the source and destination are located on different machines, then OHM uses the native messaging methods. In this respect, OHM is similar to systems such as LAM MPI. OHM distinguishes itself from these by providing several mechanisms to pass messages for efficiency. The next section discusses general hybrid message passing. Section 3 introduces a prototype OHM system created as Java class. The next section shows that our OHM prototype is significantly faster than other message passing mechanisms and that it provides excellent SM performance. Then the paper presents related work and conclusions. 2 Hybrid Message Passing In a hybrid computer, there are two types of messages. A remote message is between processes on different nodes, and a local message is between processes on the same node. Typically, a remote mechanism also supports local communication, but not efficiently. For example, a straightforward implementation of message passing in a hybrid computer uses TCP/IP for both local and remote messages. While it is sufficient, this way incurs unnecessary overhead for local message pass- ing. In contrast, a hybrid message passing system uses separate mechanisms for local and remote 1The native package is java.io.net, which supports communication with TCP sockets. 2 messages. A simple hybrid message passing mechanism uses TCP/IP for remote messages and interpro- cess communication (i.e., AF UNIX on Unix machines) for local messages. It is easy to determine whether two communicating processes are local or remote when a connection is being established. Therefore, the proper methods can be dynamically bound to send and receive methods when the connection is created. Thus, the mechanism that establishes a connection between two processes serves as a clearing house for specific, and efficient, implementations of message passing. As a result the inherent overhead of hybrid messaging is negligible. This simple form of hybrid message passing is supported in some MPI implementations. 2.1 Shared Memory Message Passing Messages are typically passed using copy semantics [LH89a]. In copy semantics, the send op- eration copies message data from an application buffer to an intermediate buffer. Similarly, the receive operation copies data from an intermediate buffer to an application buffer. Because source, destination, and intermediate buffers are all independent, copy semantics provides the simplest message passing interface and semantics. But not the most efficient. Other message passing semantics exist, but are not as widespread and are more difficult to use. For example, MPI provides the Isend and Irecv interface, which can be more efficient than copy semantics. However, significant effort may be necessary to transform a program from copy semantics to this more efficient form. In particular, because message data is shared (not copied), the programmer must explicitly verify that a buffer is no longer shared before modifiying it. In MPI, this involves the insertation of Wait statements before the appropriate subsequent uses of message data. Simple hybrid message passing uses generic IPC. While this is more efficient than using TCP/IP, it still has significant overhead. There are two primary sources of overhead: (i) cross- ing the user-kernel boundary and (ii) copying data. This overhead is a consequence of using a kernel-level, general-purpose mechanism. Both of these sources of overhead are eliminated in OHM. Local message passing can be performed very efficiently because memory (and hence message data) can be shared between processes. In the common case, OHM will exchange messages without a system call or other intervention from the kernel. This user-to-user transfer can be performed with very little overhead. Additionally, when the message data originates in shared memory, message passing can often be accomplished without copying buffers. As described above, the standard method of local send and receive involves two copies. The sender copies from a private buffer into a shared buffer, and the receiver copies from the shared buffer into a private buffer. A 1-copy send method allocates a shared memory buffer, then copies message data from a private buffer into it. It then inserts a descriptor into a queue associated with this connection, indicating that the message was sent. Similarly, a 1-copy receive method removes the descriptor from the queue and copies data from the shared buffer into a private buffer. The sending and receiving processes are free to manipulate the private buffers without affecting program correctness. When 0-copy versions of send and receive are available in
Recommended publications
  • Efficient Inter-Core Communications on Manycore Machines
    ZIMP: Efficient Inter-core Communications on Manycore Machines Pierre-Louis Aublin Sonia Ben Mokhtar Gilles Muller Vivien Quema´ Grenoble University CNRS - LIRIS INRIA CNRS - LIG Abstract—Modern computers have an increasing num- nication mechanisms enabling both one-to-one and one- ber of cores and, as exemplified by the recent Barrelfish to-many communications. Current operating systems operating system, the software they execute increasingly provide various inter-core communication mechanisms. resembles distributed, message-passing systems. To sup- port this evolution, there is a need for very efficient However it is not clear yet how these mechanisms be- inter-core communication mechanisms. Current operat- have on manycore processors, especially when messages ing systems provide various inter-core communication are intended to many recipient cores. mechanisms, but it is not clear yet how they behave In this report, we study seven communication mech- on manycore processors. In this report, we study seven anisms, which are considered state-of-the-art. More mechanisms, that are considered state-of-the-art. We show that these mechanisms have two main drawbacks that precisely, we study TCP, UDP and Unix domain sock- limit their efficiency: they perform costly memory copy ets, pipes, IPC and POSIX message queues. These operations and they do not provide efficient support mechanisms are supported by traditional operating sys- for one-to-many communications. We do thus propose tems such as Linux. We also study Barrelfish message ZIMP, a new inter-core communication mechanism that passing, the inter-process communication mechanism of implements zero-copy inter-core message communications and that efficiently handles one-to-many communications.
    [Show full text]
  • D-Bus, the Message Bus System Training Material
    Maemo Diablo D-Bus, The Message Bus System Training Material February 9, 2009 Contents 1 D-Bus, The Message Bus System 2 1.1 Introduction to D-Bus ......................... 2 1.2 D-Bus architecture and terminology ................ 3 1.3 Addressing and names in D-Bus .................. 4 1.4 Role of D-Bus in maemo ....................... 6 1.5 Programming directly with libdbus ................. 9 1 Chapter 1 D-Bus, The Message Bus System 1.1 Introduction to D-Bus D-Bus (the D originally stood for "Desktop") is a relatively new inter process communication (IPC) mechanism designed to be used as a unified middleware layer in free desktop environments. Some example projects where D-Bus is used are GNOME and Hildon. Compared to other middleware layers for IPC, D-Bus lacks many of the more refined (and complicated) features and for that reason, is faster and simpler. D-Bus does not directly compete with low level IPC mechanisms like sock- ets, shared memory or message queues. Each of these mechanisms have their uses, which normally do not overlap the ones in D-Bus. Instead, D-Bus aims to provide higher level functionality, like: Structured name spaces • Architecture independent data formatting • Support for the most common data elements in messages • A generic remote call interface with support for exceptions (errors) • A generic signalling interface to support "broadcast" type communication • Clear separation of per-user and system-wide scopes, which is important • when dealing with multi-user systems Not bound to any specific programming language (while providing a • design that readily maps to most higher level languages, via language specific bindings) The design of D-Bus benefits from the long experience of using other mid- dleware IPC solutions in the desktop arena and this has allowed the design to be optimised.
    [Show full text]
  • Message Passing Model
    Message Passing Model Giuseppe Anastasi [email protected] Pervasive Computing & Networking Lab. (PerLab) Dept. of Information Engineering, University of Pisa PerLab Based on original slides by Silberschatz, Galvin and Gagne Overview PerLab Message Passing Model Addressing Synchronization Example of IPC systems Message Passing Model 2 Operating Systems Objectives PerLab To introduce an alternative solution (to shared memory) for process cooperation To show pros and cons of message passing vs. shared memory To show some examples of message-based communication systems Message Passing Model 3 Operating Systems Inter-Process Communication (IPC) PerLab Message system – processes communicate with each other without resorting to shared variables. IPC facility provides two operations: send (message ) – fixed or variable message size receive (message ) If P and Q wish to communicate, they need to: establish a communication link between them exchange messages via send/receive The communication link is provided by the OS Message Passing Model 4 Operating Systems Implementation Issues PerLab Physical implementation Single-processor system Shared memory Multi-processor systems Hardware bus Distributed systems Networking System + Communication networks Message Passing Model 5 Operating Systems Implementation Issues PerLab Logical properties Can a link be associated with more than two processes? How many links can there be between every pair of communicating processes? What is the capacity of a link? Is the size of a message that the link can accommodate fixed or variable? Is a link unidirectional or bi-directional? Message Passing Model 6 Operating Systems Implementation Issues PerLab Other Aspects Addressing Synchronization Buffering Message Passing Model 7 Operating Systems Overview PerLab Message Passing Model Addressing Synchronization Example of IPC systems Message Passing Model 8 Operating Systems Direct Addressing PerLab Processes must name each other explicitly.
    [Show full text]
  • Message Passing
    COS 318: Operating Systems Message Passing Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Sending A Message Within A Computer Across A Network P1 P2 Send() Recv() Send() Recv() Network OS Kernel OS OS COS461 2 Synchronous Message Passing (Within A System) Synchronous send: u Call send system call with M u send system call: l No buffer in kernel: block send( M ) recv( M ) l Copy M to kernel buffer Synchronous recv: u Call recv system call M u recv system call: l No M in kernel: block l Copy to user buffer How to manage kernel buffer? 3 API Issues u Message S l Buffer (addr) and size l Message type, buffer and size u Destination or source send(dest, msg) R l Direct address: node Id, process Id l Indirect address: mailbox, socket, recv(src, msg) channel, … 4 Direct Addressing Example Producer(){ Consumer(){ ... ... while (1) { for (i=0; i<N; i++) produce item; send(Producer, credit); recv(Consumer, &credit); while (1) { send(Consumer, item); recv(Producer, &item); } send(Producer, credit); } consume item; } } u Does this work? u Would it work with multiple producers and 1 consumer? u Would it work with 1 producer and multiple consumers? u What about multiple producers and multiple consumers? 5 Indirect Addressing Example Producer(){ Consumer(){ ... ... while (1) { for (i=0; i<N; i++) produce item; send(prodMbox, credit); recv(prodMbox, &credit); while (1) { send(consMbox, item); recv(consMbox, &item); } send(prodMbox, credit); } consume item; } } u Would it work with multiple producers and 1 consumer? u Would it work with 1 producer and multiple consumers? u What about multiple producers and multiple consumers? 6 Indirect Communication u Names l mailbox, socket, channel, … u Properties l Some allow one-to-one mbox (e.g.
    [Show full text]
  • Multiprocess Communication and Control Software for Humanoid Robots Neil T
    IEEE Robotics and Automation Magazine Multiprocess Communication and Control Software for Humanoid Robots Neil T. Dantam∗ Daniel M. Lofaroy Ayonga Hereidx Paul Y. Ohz Aaron D. Amesx Mike Stilman∗ I. Introduction orrect real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for Clocomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multi-process software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operating. This approach also assists with modularity and concurrency. For real-time tasks such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general purpose and real-time needs [19], [17], [13], [9], [15]. Typical methods focus on reliable communication or network-transparency and accept a trade-off of increased mes- sage latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new Interprocess Communication (IPC) library, Ach,1 which addresses this need, and discuss its application for real-time, multiprocess control on three humanoid robots (Fig. 1). There are several design decisions that influenced this robot software and motivated development of the Ach library. First, to utilize decades of prior development and engineering, we implement our real-time system on top of a POSIX-like Operating System (OS)2.
    [Show full text]
  • Message Passing
    Message passing CS252 • Sending of messages under control of programmer – User-level/system level? Graduate Computer Architecture – Bulk transfers? Lecture 24 • How efficient is it to send and receive messages? – Speed of memory bus? First-level cache? Network Interface Design • Communication Model: Memory Consistency Models – Synchronous » Send completes after matching recv and source data sent » Receive completes after data transfer complete from matching send – Asynchronous Prof John D. Kubiatowicz » Send completes after send buffer may be reused http://www.cs.berkeley.edu/~kubitron/cs252 4/27/2009 cs252-S09, Lecture 24 2 Synchronous Message Passing Asynch. Message Passing: Optimistic Source Destination Source Destination (1) Initiate send Recv Psrc, local VA, len (1) Initiate send (2) Address translation on Psrc Send Pdest, local VA, len (2) Address translation (3) Local/remote check Send (P , local VA, len) (3) Local/remote check dest (4) Send-ready request Send-rdy req (4) Send data (5) Remote check for (5) Remote check for posted receive; on fail, Tag match allocate data buffer posted receive Wait Tag check Data-xfer req (assume success) Processor Allocate buffer Action? (6) Reply transaction Recv-rdy reply (7) Bulk data transfer Source VA Dest VA or ID Recv P , local VA, len Time src Data-xfer req Time • More powerful programming model • Constrained programming model. • Wildcard receive => non-deterministic • Deterministic! What happens when threads added? • Destination contention very limited. • Storage required within msg layer? • User/System boundary? 4/27/2009 cs252-S09, Lecture 24 3 4/27/2009 cs252-S09, Lecture 24 4 Asynch. Msg Passing: Conservative Features of Msg Passing Abstraction Destination • Source knows send data address, dest.
    [Show full text]
  • Inter-Process Communication
    QNX Inter-Process Communication QNX IPC 2008/01/08 R08 © 2006 QNX Software Systems. QNX and Momentics are registered trademarks of QNX Software Systems in certain jurisdictions NOTES: QNX, Momentics, Neutrino, Photon microGUI, and “Build a more reliable world” are registered trademarks in certain jurisdictions, and PhAB, Phindows, and Qnet are trademarks of QNX Software Systems Ltd. All other trademarks and trade names belong to their respective owners. 1 IntroductionIntroduction IPC: • Inter-Process Communication • two processes exchange: – data – control – notification of event occurrence IPC Thread Thread Process A Process B QNX IPC 2008/01/08 R08 2 © 2006, QNX Software Systems. QNX and Momentics are registered trademarks of QNX Software Systems in certain jurisdictions NOTES: 2 IntroductionIntroduction QNX Neutrino supports a wide variety of IPC: – QNX Core (API is unique to QNX or low-level) • includes: – QNX Neutrino messaging – QNX Neutrino pulses – shared memory – QNX asynchronous messaging • the focus of this course module – POSIX/Unix (well known, portable API’s ) • includes: – signals – shared memory – pipes (requires pipe process) – POSIX message queues (requires mqueue or mq process) – TCP/IP sockets (requires io-net process) • the focus of the POSIX IPC course module QNX IPC 2008/01/08 R08 3 © 2006, QNX Software Systems. QNX and Momentics are registered trademarks of QNX Software Systems in certain jurisdictions NOTES: API: Application Programming Interface 3 InterprocessInterprocess Communication Communication Topics: Message Passing Designing a Message Passing System (1) Pulses How a Client Finds a Server Server Cleanup Multi-Part Messages Designing a Message Passing System (2) Client Information Structure Issues Related to Priorities Designing a Message Passing System (3) Event Delivery Asynchronous Message Passing QNET Shared Memory Conclusion QNX IPC 2008/01/08 R08 4 © 2006, QNX Software Systems.
    [Show full text]
  • 1 Interprocess Communication
    COMP 242 Class Notes Section 3: Interprocess Communication 1 Interprocess Communication Readings: Chapter 7, Comer. An operating system provides interprocess communication to allow processes to exchange informa- tion. Interprocess communication is useful for creating cooperating processes. For instance an ‘ls’ process and a ‘more’ process can cooperate to produce a paged listing of a directory. There are several mechanisms for interprocess communication. We discuss some of these below. 1.1 Shared Memory Processes that share memory can exchange data by writing and reading shared variables. As an example, consider two processes p and q that share some variable s. Then p can communicate information to q by writing new data in s, which q can then read. The above discussion raises an important question. How does q know when p writes new information into s? In some cases, q does not need to know. For instance, if it is a load balancing program that simply looks at the current load in p’s machine stored in s. When it does need to know, it could poll, but polling puts undue burden on the cpu. Another possibility is that it could get a software interrupt, which we discuss below. A familiar alternative is to use semaphores or conditions. Process q could block till p changes s and sends a signal that unblocks q. However, these solutions would not allow q to (automatically) block if s cannot hold all the data it wants to write. (The programmer could manually implement a bounded buffer using semaphores.) Moreover, conventional shared memory is accessed by processes on a single machine, so it cannot be used for communicating information among remote processes.
    [Show full text]
  • Shared Memory Introduction
    12 Shared Memory Introduction 12.1 Introduction Shared memory is the fastest form of IPC available. Once the memory is mapped into the address space of the processes that are sharing the memory region, no kernel involvement occurs in passing data between the processes. What is normally required, however, is some form of synchronization between the processes that are storing and fetching information to and from the shared memory region. In Part 3, we discussed various forms of synchronization: mutexes, condition variables, read–write locks, record locks, and semaphores. What we mean by ‘‘no kernel involvement’’ is that the processes do not execute any sys- tem calls into the kernel to pass the data. Obviously, the kernel must establish the mem- ory mappings that allow the processes to share the memory, and then manage this memory over time (handle page faults, and the like). Consider the normal steps involved in the client–server file copying program that we used as an example for the various types of message passing (Figure 4.1). • The server reads from the input file. The file data is read by the kernel into its memory and then copied from the kernel to the process. • The server writes this data in a message, using a pipe, FIFO, or message queue. These forms of IPC normally require the data to be copied from the process to the kernel. We use the qualifier normally because Posix message queues can be implemented using memory-mapped I/O (the mmap function that we describe in this chapter), as we showed in Section 5.8 and as we show in the solution to Exercise 12.2.
    [Show full text]
  • The Client/Server Architecture DES-0005 Revision 4
    PNNL-22587 The Client/Server Architecture DES-0005 Revision 4 Charlie Hubbard February 2012 The Client/Server Architecture Charlie Hubbard DES-0005 Revision 4 February 2012 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062 ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service,
    [Show full text]
  • MODELS of DISTRIBUTED SYSTEMS Basic Elements
    Distributed Systems Fö 2/3- 1 Distributed Systems Fö 2/3- 2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements • Resources in a distributed system are shared between users. They are normally encapsulated within one of the computers and can be accessed from other computers by communication. 1. Architectural Models • Each resource is managed by a program, the resource manager; it offers a communication 2. Interaction Models interface enabling the resource to be deceased by its users. 3. Failure Models • Resource managers can be in general modelled as processes. If the system is designed according to an object- oriented methodology, resources are encapsulated in objects. Petru Eles, IDA, LiTH Petru Eles, IDA, LiTH Distributed Systems Fö 2/3- 3 Distributed Systems Fö 2/3- 4 Architectural Models Client - Server Model How are responsibilities distributed between system components and how are these components placed? ☞ The system is structured as a set of processes, called servers, that offer services to the users, called • Client-server model clients. • Proxy server • Peer processes (peer to peer) • The client-server model is usually based on a simple request/reply protocol, implemented with send/receive primitives or using remote procedure calls (RPC) or remote method invocation (RMI): - the client sends a request message to the server asking for some service; - the server does the work and returns a result (e.g. the data requested) or an error code if the work could not be performed. Petru Eles, IDA, LiTH Petru Eles, IDA, LiTH Distributed Systems Fö 2/3- 5 Distributed Systems Fö 2/3- 6 Client - Server Model (cont’d) Proxy Server ☞ A proxy server provides copies (replications) of resources which are managed by other servers.
    [Show full text]
  • A Ugni-Based Asynchronous Message-Driven Runtime System for Cray Supercomputers with Gemini Interconnect
    A uGNI-based Asynchronous Message-driven Runtime System for Cray Supercomputers with Gemini Interconnect Yanhua Sun, Gengbin Zheng, Laxmikant V. Kale´ Terry R. Jones Ryan Olson Department of Computer Science Computer Science and Mathematics Division Cray Inc University of Illinois at Urbana-Champaign Oak Ridge National Lab [email protected] Urbana, Illinois Oak Ridge, Tennessee fsun51, gzheng, [email protected] [email protected] Abstract—Gemini, the network for the new Cray XE/XK user-level Generic Network Interface (uGNI) [?] is pro- systems, features low latency, high bandwidth and strong scal- vided as a low-level interface for Gemini, on top of which ability. Its hardware support for remote direct memory access the Cray MPI is implemented. Gemini-based interconnects enables efficient implementation of the global address space programming languages. Although the user Generic Network have been deployed in two petaflop supercomputers, Cielo Interface (uGNI) provides a low-level interface for Gemini with at Los Alamos National Lab and Hopper at Lawrence support to the message-passing programming model (MPI), it Berkeley National Lab. Jaguar, one of the most powerful remains challenging to port alternative programming models supercomputers, is being upgraded to a XK6 system with with scalable performance. Gemini interconnect. The newly announced Blue Waters CHARM++ is an object-oriented message-driven program- ming model. Its applications have been shown to scale up to supercomputer, which will deliver sustained performance of the full Jaguar Cray XT machine. In this paper, we present 1 petaflop, will also be equipped with a Gemini interconnect. an implementation of this programming model on uGNI for As Cray supercomputers with Gemini interconnects become the Cray XE/XK systems.
    [Show full text]