Electroanalysis in Biomedical and Pharmaceutical Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Electroanalysis in Biomedical and Pharmaceutical Sciences Monographs in Electrochemistry Series Editor: F. Scholz Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman Electroanalysis in Biomedical and Pharmaceutical Sciences Voltammetry, Amperometry, Biosensors, Applications Electroanalysis in Biomedical and Pharmaceutical Sciences Monographs in Electrochemistry Series Editor: Fritz Scholz, University of Greifswald, Germany Surprisingly, a large number of important topics in electrochemistry is not covered by up-to-date monographs and series on the market, some topics are even not covered at all. The series Monographs in Electrochemistry fills this gap by pub- lishing indepth monographs written by experienced and distinguished electrochemists, covering both theory and applications. The focus is set on existing as well as emerging methods for researchers, engineers, and practitioners active in the many and often interdisciplinary fields, where electrochemistry plays a key role. These fields will range – among others – from analytical and environmental sciences to sensors, materials sciences and biochemical research. More information about this series at http://www.springer.com/series/7386 Sibel A. Ozkan • Jean-Michel Kauffmann • Petr Zuman in collaboration with Ana Maria Oliveira Brett, Christopher Brett, Bengi Uslu, Philippe Hubert, Eric Rozet, Cobra Parsajoo, Ste´phanie Patris, Ahmad Sarakbi Electroanalysis in Biomedical and Pharmaceutical Sciences Voltammetry, Amperometry, Biosensors, Applications Sibel A. Ozkan Jean-Michel Kauffmann Faculty of Pharmacy Faculty of Pharmacy Department of Analytical Chemistry Universite´ Libre de Bruxelles Ankara University Brussels, Belgium Tandogan, Ankara Ankara Turkey Petr Zuman Department of Chemistry and Biomolecular Science Clarkson University Potsdam, New York USA ISSN 1865-1836 ISSN 1865-1844 (electronic) Monographs in Electrochemistry ISBN 978-3-662-47137-1 ISBN 978-3-662-47138-8 (eBook) DOI 10.1007/978-3-662-47138-8 Library of Congress Control Number: 2015944207 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com) Preface In the modern pharmaceutical industry, selective, sensitive, and fully validated analytical methods for drug analysis are major tools applied at all stages of drug discovery, development, and production. Fast and effective development of rugged analytical methods is efficiently undertaken with a thorough understanding of their principles, theory, and instrumentation. The main focus of this book is devoted to electroanalytical methods applied to drug compound analysis. New electrode materials, sensors, biosensors, separation methods with EC detection, their theory, advantages, and limitations have been reported. The unique performance, small size, and low cost of electrochemical devices have led to many useful measuring systems. Given the impressive progress in electroanalytical chemistry and its growing impact on drug analysis, this book offers also an up-to-date, easy-to-read presentations of numerous recent applica- tions in drug compound analysis. In preparing this volume, we have tried to find an appropriate balance between theory and practice, between “classical” and “modern” methods of electroanalysis, and between electroanalytical methods. Only brief consideration, however, has been given on sampling, method optimization, data analysis, and statistics. This textbook contains nine contemporary chapters, sharing one goal in electro- analysis of pharmaceuticals. In the first chapter, an overview of drug analysis is presented to situate electrochemical methods in their analytical context. Chapter 2 contains polarography and its application on pharmaceuticals. The following chap- ter includes modern voltammetric methods which are used most frequently in drug analysis (Chap. 3). In Chap. 4, solid electrodes in detail for drug analysis are described. Screen printed electrodes (SPE) are presented for the determination of drug active compounds in Chap. 5, and the next chapter describes electrochemical biosensors used for drug analysis (Chap. 6). Recent developments in the field of separation methods, specifically liquid chromatography (LC) and flow injection analysis (FIA) with electrochemical detection and the hyphenated techniques related with it, are summarized in Chap. 7. Validation of electroanalytical methods v vi Preface in pharmaceutical analysis, necessary parameters, and their calculations are presented in Chap. 8. The last chapter includes examples of electrochemical application on drug assays. Readers from various fields will likely find new ideas and approaches to solve typical analytical problems in this volume. The completion of this book could not have been possible without the help, inspiration, and encouragement from many people. Last but not least, we warmly acknowledge the gracious support of our families, and we are very grateful to them for their understanding and support throughout the entire process of writing and editing. We would like to thank colleagues (Mehmet Gumustas, Sevinc Kurbanoglu, Burcin Palabiyik, Nurgul Karadas, and Burcu D. Topal) of Sibel A Ozkan for their valuable help. We would like to special thanks to Dr. Heike Kahlert who made useful and valuable comments based on a detailed addition to Chap. 8. Finally, we would like to express our sincere gratitude to a unique set of internationally leading authors, who accepted our invitation to join us and commit- ted their valuable time and efforts to guarantee the success of this book. We would like to express our appreciation and special thanks to Fritz Scholz for his accurate and inspired revision and continuous support and enthusiasm in editing this textbook. Ankara, Turkey Sibel A. Ozkan Brussels, Belgium Jean-Michel Kauffmann Potsdam, NY Petr Zuman Authors of Chapters The chapters have been written by the following authors: Chapter 1 Sibel A. Ozkan Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey Petr Zuman Department of Chemistry, Clarkson University, Potsdam, NY, USA Chapter 2 Sibel A. Ozkan Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey Petr Zuman Department of Chemistry, Clarkson University, Potsdam, NY, USA Chapter 3 Sibel A. Ozkan Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey Ana Maria Oliveira-Brett Faculty of Science and Technology, Department of Chemistry, Coimbra University, Coimbra, Portugal Christopher M.A. Brett Faculty of Science and Technology, Department of Chemistry, Coimbra University, Coimbra, Portugal Chapter 4 Sibel A. Ozkan Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey vii viii Authors of Chapters Christopher M.A. Brett Faculty of Science and Technology, Department of Chemistry, Coimbra University, Coimbra, Portugal Ana Maria Oliveira-Brett Faculty of Science and Technology, Department of Chemistry, Coimbra University, Coimbra, Portugal Chapter 5 Ste´phanie Patris Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectrochemistry, Universite´ Libre de Bruxelles, Bruxelles, Belgium Jean-Michel Kauffmann Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectrochemistry, Universite´ Libre de Bruxelles, Bruxelles, Belgium Chapter 6 Cobra Parsajoo Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectro- chemistry, Universite´ Libre de Bruxelles, Bruxelles, Belgium Jean-Michel Kauffmann Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectrochemistry, Universite´ Libre de Bruxelles, Bruxelles, Belgium Chapter 7 Sibel A. Ozkan Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey Bengi Uslu Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey Ahmad Sarakbi Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectro- chemistry, Universite Libre de Bruxelles, Bruxelles, Belgium Jean-Michel Kauffmann Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectrochemistry, Universite Libre de Bruxelles, Bruxelles, Belgium Chapter 8 Sibel A. Ozkan Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, TURKEY Jean-Michel Kauffmann Faculty of Pharmacy, Lab. Instrumental Analysis and Bioelectrochemistry, Universite Libre de Bruxelles, Bruxelles, Belgium Philippe Hubert Department of Pharmacy,
Recommended publications
  • INULIN and BETA GLUCAN Dr. K. Bhaskarachary
    F11FN – Functional Foods and Nutraceuticals F11FN14 - INULIN AND BETA GLUCAN Dr. K. Bhaskarachary Component – I (A) Role Name Affiliation Principal Investigator Dr. Sheela Ramachandran Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore. Co-Principal Investigators Dr. S.Kowsalya Avinashilingam Institute for Home Science Dr.M.Sylvia Subapriya and Higher Education for Women, Dr.G. Bagyalakshmi Coimbatore. Mrs.E.Indira Paper Coordinator Dr. S. Thilakavathy Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore. Content Writer Dr. K. Bhaskarachary Senior Research Officer Dept. Food Chemistry National Institute of Nutrition Jamai Osmania, Hyderabad – 500007. Content Reviewer Dr. K. Bhaskarachary Senior Research Officer Dept. Food Chemistry National Institute of Nutrition Jamai Osmania, Hyderabad – 500007. Language Editor Dr. K. Bhaskarachary Senior Research Officer Dept. Food Chemistry National Institute of Nutrition Jamai Osmania, Hyderabad – 500007. Component-I (B) Description of Module Items Description of Module Subject Name Foods and Nutrition Paper Name Functional Foods and Nutraceuticals Module Name Inulin and Beta Glucan Module ID F11FN14 Pre-requisites physiological benefits of Beta Glucan Objectives • To understand Inulin sources, metabolism and its role in health and food industry • To know the Betaglucan sources, metabolism and its role in various physiological processs and dietary management of non communicable F11FN – Functional Foods and Nutraceuticals F11FN14 - INULIN AND BETA GLUCAN Dr. K. Bhaskarachary diseases and its role in food and health industry Keywords Inulin, non-digestible oligosaccharides, sinistrin, Beta Glucan, prokaryotes and eukaryotes, immunostimulants INTRODUCTION This module explains the structure, metabolism and uses of inulin and beta glucan. The complex carbohydrates of inulin and its dietary fiber properties and their role in physiological process is explained.
    [Show full text]
  • Size and Shape of Inulin in Dimethyl Sulphoxide Solution B.H
    CARP 1214 Carbohydrate Polymers 38 (1999) 231–234 Size and shape of inulin in dimethyl sulphoxide solution B.H. Azisa, B. China, M.P. Deacona, S.E. Hardinga, G.M. Pavlovb,* aNational Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biology, Sutton Bonington, LE12 5RD UK bInstitute of Physics, St. Petersburg University, Ul’anovskaya ul. 1, 19890 St. Petersburg, Russia Received 3 March 1998; revised 5 April 1998; accepted 7 April 1998 Abstract A comparative hydrodynamic characterization of the solution properties of the fructan polysaccharide inulin extracted from two different sources and solubilized in dimethyl sulphoxide is described. For Jerusalem artichoke inulin a weight average molecular weight M w of 3400 Ϯ 150 Da from sedimentation equilibrium in the analytical ultracentrifuge is obtained, together with an intrinsic viscosity [h] of 9.1 Ϯ ¹1 0.2 ml g and a sedimentation coefficient (corrected to a solvent density and viscosity of that at water at 20ЊC) s20,w of ϳ0.4 S. Chicory ¹1 ¹1 root inulin had somewhat similar properties, with an M w of 6200 Ϯ 200 g mol ,[h] of 10.7 Ϯ 0.2 ml g and s20,w also of ϳ0.7 S. These results appear reasonably consistent with a rather compact model with a relatively large degree of solvent association. ᭧ 1999 Elsevier Science Ltd. All rights reserved. Keywords: Inulin; Fructan; Sedimentation coefficient 1. Introduction Fructans are synthesized by the transfer of a fructose residue from sucrose onto another sucrose receptor Inulins are members of the fructan class of storage poly- molecules (Pollock and Chatterton, 1988).
    [Show full text]
  • Clarkson University Catalog
    CLARKSON UNIVERSITY CATALOG 2008-2009 Undergraduate and Graduate programs offered through School of Arts & Sciences School of Business Wallace H. Coulter School of Engineering Physical Therapy Interdisciplinary Programs www.clarkson.edu 315-268-6400 Clarkson is a nationally recognized research university with rigorous programs in engineering, arts, sciences, business and health sciences. Clarkson’s 3,000 students learn and live in a close-knit residential environment augmented by award-winning career service and experiential learning initiatives. As one of the smallest ranked research institution, Clarkson makes its size its advantage by readily affording students and faculty the flexibility to span the boundaries of traditional academic areas. As a result, Clarkson is at the forefront of exploring the creation of wealth and bridging the processes of discovery, engineering innovation and enterprise. Founded in 1896, Clarkson’s 640-acre wooded campus is located in the foothills of the Adirondack Mountains. Potsdam is the quintessential “college town” with four higher education institutions within a 10-mile radius offering exceptional cultural and recreational venues. Clarkson’s educational strengths include: • rigorous professional preparation • dynamic, real-world learning • highly collaborative community • teamwork that spans disciplines QUESTIONS regarding undergraduate admission and requests for information about Clarkson may be directed to the Office of UndergraduateA dmission. For graduate programs, direct inquiries as indicated
    [Show full text]
  • Glomerular Filtration Rate
    Zitta et al. BMC Nephrology 2013, 14:159 http://www.biomedcentral.com/1471-2369/14/159 RESEARCH ARTICLE Open Access Glomerular Filtration Rate (GFR) determination via individual kinetics of the inulin-like polyfructosan sinistrin versus creatinine-based population-derived regression formulae Sabine Zitta1*, Walter Schrabmair2, Gilbert Reibnegger2, Andreas Meinitzer3, Doris Wagner4, Willibald Estelberger2 and Alexander R Rosenkranz1 Abstract Background: In renal patients estimation of GFR is routinely done by means of population-based formulae using serum creatinine levels. For GFR determination in the creatinine-blind regions or in cases of reno-hepatic syndrome as well as in critical cases of live kidney donors individualized measurements of GFR (mGFR) employing the kinetics of exogenous filtration markers such as the inulin-like polyfructosan sinistrin are necessary. The goal of this study is to compare mGFR values with the eGFR values gained by the Modification of Diet in Renal Disease (MDRD4) and Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) formulae. Methods: In 170 subjects comprising persons with normal renal function or with various stages of kidney diseases (CKD 1-4) GFR was measured by application of intravenous bolus of sinistrin and assessment of temporal plasma concentration profiles by means of pharmacokinetic methods (mGFR). Comparisons of mGFR with MDRD4- and CKD-EPI-derived eGFR values were performed by means of linear regression and Bland-Altman analyses. Results: Reasonable agreement of mGFR and eGFR values was observed in patients with poor renal function [GFR below 60 (ml/min)/1.73 m2]. In cases of normal or mildly impaired renal function, GFR determination by MDRD4 or CKD-EPI tends to underestimate GFR.
    [Show full text]
  • The Hemicellulose-Degrading Enzyme System of the Thermophilic
    Broeker et al. Biotechnol Biofuels (2018) 11:229 https://doi.org/10.1186/s13068-018-1228-3 Biotechnology for Biofuels RESEARCH Open Access The hemicellulose‑degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases Jannis Broeker1 , Matthias Mechelke1 , Melanie Baudrexl1 , Denise Mennerich1 , Daniel Hornburg2,3 , Matthias Mann3 , Wolfgang H. Schwarz1 , Wolfgang Liebl1 and Vladimir V. Zverlov1,4* Abstract Background: The bioconversion of lignocellulosic biomass in various industrial processes, such as the production of biofuels, requires the degradation of hemicellulose. Clostridium stercorarium is a thermophilic bacterium, well known for its outstanding hemicellulose-degrading capability. Its genome comprises about 50 genes for partially still unchar- acterised thermostable hemicellulolytic enzymes. These are promising candidates for industrial applications. Results: To reveal the hemicellulose-degrading potential of 50 glycoside hydrolases, they were recombinantly produced and characterised. 46 of them were identifed in the secretome of C. stercorarium cultivated on cellobiose. Xylanases Xyn11A, Xyn10B, Xyn10C, and cellulase Cel9Z were among the most abundant proteins. The secretome of C. stercorarium was active on xylan, β-glucan, xyloglucan, galactan, and glucomannan. In addition, the recombinant enzymes hydrolysed arabinan, mannan, and galactomannan. 20 enzymes are newly described, degrading xylan, galactan, arabinan, mannan, and aryl-glycosides of β-D-xylose, β-D-glucose, β-D-galactose, α-L-arabinofuranose, α-L- rhamnose, β-D-glucuronic acid, and N-acetyl-β-D-glucosamine. The activities of three enzymes with non-classifed glycoside hydrolase (GH) family modules were determined. Xylanase Xyn105F and β-D-xylosidase Bxl31D showed activities not described so far for their GH families.
    [Show full text]
  • Metabolism of Reverse Triiodothyronine by Isolated Rat Hepatocytes
    Metabolism of reverse triiodothyronine by isolated rat hepatocytes. S J Rooda, … , M A van Loon, T J Visser J Clin Invest. 1987;79(6):1740-1748. https://doi.org/10.1172/JCI113014. Research Article Reverse triiodothyronine (rT3) is metabolized predominantly by outer ring deiodination to 3,3'-diiodothyronine (3,3'-T2) in the liver. Metabolism of rT3 and 3,3'-T2 by isolated rat hepatocytes was analyzed by Sephadex LH-20 chromatography, high performance liquid chromatography, and radioimmunoassay, with closely agreeing results. Deiodinase activity was inhibited with propylthiouracil (PTU) and sulfotransferase activity by sulfate depletion or addition of salicylamide or dichloronitrophenol. Normally, little 3,3'-T2 production from rT3 was observed, and 125I- was the main product of both 3, [3'-125I]T2 and [3',5'-125I]rT3. PTU inhibited rT3 metabolism but did not affect 3,3'-T2 clearance as explained by accumulation of 3,3'-T2 sulfate. Inhibition of sulfation did not affect rT3 clearance but 3,3'-T2 metabolism was greatly diminished. The decrease in I- formation from rT3 was compensated by an increased recovery of 3,3'-T2 up to 70% of rT3 metabolized. In conclusion, significant production of 3,3'-T2 from rT3 by rat hepatocytes is only observed if further sulfation is inhibited. Find the latest version: https://jci.me/113014/pdf Metabolism of Reverse Triiodothyronine by Isolated Rat Hepatocytes Sebo Jan Eelkman Rooda, Maria A. C. van Loon, and Thoo J. Vissef Department ofInternal Medicine III and Clinical Endocrinology, Erasmus University Medical School, Rotterdam, The Netherlands Abstract It deiodinates only the outer ring of substrates such as T4 and rT3 (2-4).
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • United States Patent (10) Patent N0.: US 7,288,257 B2 Powell (45) Date of Patent: Oct
    US007288257B2 (12) United States Patent (10) Patent N0.: US 7,288,257 B2 Powell (45) Date of Patent: Oct. 30, 2007 (54) DIAGNOSIS AND TREATMENT OF HUMAN 5,342,788 A 8/1994 Kunst et a1. .............. .. 436/500 DORMANCY SYNDROME 5,691,456 A 11/1997 AdamcZyk et al. ....... .. 530/405 6,087,090 A 7/2000 Mascarenhas ................ .. 435/4 (76) Inventor: Michael Powell, 150 Catherine Lance, 2003/0007941 A1 1/2003 Cornelius et a1, Suite 1, Grass Valley, CA (US) 95945 ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 199 days. _ Hannah V. Carey, The American Physiological Society, Physical _ Rev 83; Mammalian Hibernation: Cellular and Molecular (21) Appl' NO" 10/444’845 Responses to Depressed Metabolism and Low Temperature, 2003, (22) Filed: May 23, 2003 PP' 1153'1181' _ _ _ Primary ExamineriRuth A Davis (65) Pnor Pubhcatlon Data (74) Attorney, Agent, or F irmiBorson LaW Group, PC; D. US 2003/0228628 A1 Dec. 11, 2003 Benjamin Borson Related US. Application Data (57) ABSTRACT (60) Provisional application No. 60/382,913, ?led on May $112002’ provlslonal apphcanon NO‘ 60/383’271’ New methods for diagnosis of human dormancy syndrome e on May 24’ 2002' are provided. Human dormancy syndrome is characterized (51) Int C1 by elevated serum ratio of rT3/iT 3 compared to a population 1462K 3'9/00 (2006 01) of normal subjects from Which subjects suffering from A 61K 38/22 (200601) ?bromyalgia, chronic fatigue, obesity, dementias including A 61K 38/27 (200601) AlZheimer’s Disease and related dormancy conditions are C1 2 Q 1/00 (200601) excluded, and the presence of one or more ?ndings related ' A / A / A to reduced activity including torpor, chronic fatigue, insulin (52) US.
    [Show full text]
  • Comprehensive Thyroid Plus Adrenal Report
    Comprehensive Thyroid Plus Adrenal Report Jane Doe SAMPLEDate Collected: 2/13/2017 Comprehensive Thyroid Plus Adrenal Report Patient Name: Doe, Jane Batch Number: B0000 Patient DOB: 12/10/1960 Accession Number: Q00000 Gender: F Date Received: 2/14/2017 Physician Jon Doe, ND Report Date: 2/22/2017 Test Patient Results Reference Value DHEAS µg/dL 0 125 250 375 500 107 35 - 430 TSH µIU/mL 0.020 1.260 2.500 3.740 4.980+ 7.030 0.358 - 3.74 T4, Total µg/dL 0.5 4.4 8.3 12.1 16.0 7.2 4.5 - 12.5 T3, Free pg/mL 0.5 1.9 3.3 4.6 6.0 3.6 2.2 - 4.0 T4, Free ng/dL 0.10 0.83 1.55 2.28 3.00 0.87 0.76 - 1.46 Cortisol µg/dL 0.2 11.4 22.6 33.8 45.0 6.5 3.1 - 22.4 AntiTPO Ab IU/mL 10.0 20.0 30.0 40.0 50.0 + > 1000.0 0.0 - 35.0 AntiThyroglobulin Ab IU/mL 20 30 40 50 60 + 97 ND - 40 Thyroglobulin ng/mL 0 20 40 60 80 38 <= 55 Thyroxinebinding globulin, TBG µg/mL SAMPLE0 11 23 34 45 20 14 - 31 10401 Town Park Drive, Houston, Texas 77072 USA CLIA# 45D0710715 (800)227-LABS(5227) / (713)-621-3101 James W. Jacobson, Ph.D., Laboratory Director Comprehensive Thyroid Plus Adrenal Report Patient Name: Doe, Jane Batch Number: B0000 Patient DOB: 12/10/1960 Accession Number: Q00000 Gender: F Date Received: 2/14/2017 Physician Jon Doe, ND Report Date: 2/22/2017 Test Component Flag Result Reference Range DHEA-S µg/dL 107 35 - 430 TSH µIU/mL H 7.030 0.358 - 3.74 T4, Total µg/dL 7.2 4.5 - 12.5 T3, Free pg/mL 3.6 2.2 - 4.0 T4, Free ng/dL 0.87 0.76 - 1.46 Cortisol µg/dL 6.5 3.1 - 22.4 Anti-TPO Ab IU/mL H > 1000.0 0.0 - 35.0 Anti-Thyroglobulin Ab IU/mL H 97 ND - 40 Thyroglobulin ng/mL 38 <= 55 Thyroxine-binding globulin, TBGSAMPLE µg/mL 20 14 - 31 10401 Town Park Drive, Houston, Texas 77072 USA CLIA# 45D0710715 (800)227-LABS(5227) / (713)-621-3101 James W.
    [Show full text]
  • GWAS Reveals the Genetic Complexity of Fructan Accumulation Patterns in Barley Grain 2 3 Andrea Matros1*, Kelly Houston2, Matthew R
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.177881; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 GWAS reveals the genetic complexity of fructan accumulation patterns in barley grain 2 3 Andrea Matros1*, Kelly Houston2, Matthew R. Tucker3, Miriam Schreiber2, Bettina Berger4, 4 Matthew K. Aubert3, Laura G. Wilkinson3, Katja Witzel5, Robbie Waugh2,3, Udo Seiffert6, 5 Rachel A. Burton1 6 7 1ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, 8 University of Adelaide, Adelaide, South Australia, Australia; 9 2Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK; 10 3School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 11 Australia 12 4Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and 13 Wine, University of Adelaide, Adelaide, South Australia, Australia; 14 5Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Brandenburg, Germany 15 6Biosystems Engineering, Fraunhofer IFF, Magdeburg, Saxony-Anhalt, Germany 16 17 18 Running title: GWAS for fructan profiles in two-row spring barley grain 19 20 21 E-Mail addresses: 22 [email protected] 23 [email protected] 24 [email protected] 25 [email protected] 26 [email protected] 27 [email protected] 28 [email protected] 29 [email protected] 30 [email protected]; [email protected] 31 [email protected] 32 [email protected] 33 34 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.177881; this version posted June 29, 2020.
    [Show full text]
  • Proceedings of a Workshop on INFLAMMATORY AIRWAY DISEASE
    H av on emeyer Foundati Havemeyer Foundation Monograph Series No. 9 Proceedings of a Workshop on INFLAMMATORY AIRWAY DISEASE: DEFINING THE SYNDROME 30th September – 3rd October 2002 Boston, USA Editors: A. Hoffman, N. E. Robinson and J. F. Wade H av on emeyer Foundati Havemeyer Foundation Monograph Series No. 9 Proceedings of a Workshop on INFLAMMATORY AIRWAY DISEASE: DEFINING THE SYNDROME 30th September – 3rd October 2002 Boston, USA Editors: A. Hoffman, N. E. Robinson and J. F. Wade © 2003 by R & W Publications (Newmarket) Limited Suites 3 & 4, 8 Kings Court, Willie Snaith Road, Newmarket, Suffolk CB8 7SG, UK No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. Authorisation to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by R & W Publications (Newmarket) Limited for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of £0.02 per copy (no additional fee per page) is paid directly to CCC, 21 Congress Street, Salem, MA 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. First published 2003 ISSN 1472-3158 Published by R & W Publications (Newmarket) Limited Printed in Great Britain by Quality Print Services (Anglia) Limited Havemeyer Foundation Monograph Series No. 9 CONTENTS EDITORS’ FOREWORD .....................................................................................................................Page v SESSION 1: CLINICAL EVIDENCE Inflammatory airway disease: a clinician’s view from North America B.
    [Show full text]
  • Chang Et Al Thyroid
    Available online at www.sciencedirect.com Toxicology 243 (2008) 330–339 Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS)ଝ Shu-Ching Chang a, Julie R. Thibodeaux b,1, Mary L. Eastvold c, David J. Ehresman a, James A. Bjork d, John W. Froehlich e,2, Christopher Lau b, Ravinder J. Singh c, Kendall B. Wallace d, John L. Butenhoff a,∗ a Medical Department, 3M Company, St. Paul, MN 55144, United States b United States Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711, United States c Mayo Clinic and Foundation, Department of Laboratory Medicine and Pathology, Rochester, MN 55095, United States d University of Minnesota, Medical School, Department of Biochemistry and Molecular Biology, Duluth, MN 55812, United States e Pace Analytical Services, Inc., Minneapolis, MN 55414, United States Received 29 August 2007; received in revised form 18 October 2007; accepted 20 October 2007 Available online 26 October 2007 Abstract Introduction: Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Although these animals (rats, mice and monkeys) might have maintained an euthyroid state, the basis for hypothyroxinemia remained unclear. We undertook this study to investigate the causes for the PFOS-induced reduction of serum total thyroxine (TT4) in rats. Hypotheses: We hypothesized that exposure to PFOS may increase free thyroxine (FT4) in the rat serum due to the ability of PFOS to compete with thyroxine for binding proteins.
    [Show full text]