TheMolecularBasisofV2Receptor/GProtein CouplingSelectivity

Dissertation zurErlangungdesDoktorgrades derNaturwissenschaften

vorgelegtbeimFachbereich ChemischeundPharmazeutischeWissenschaften derJohannWolfgangGoethe-Universität FrankfurtamMain

von IsoldeErlenbach ausTrier

FrankfurtamMain 2001 (DF1) vomFachbereich ChemischeundPharmazeutischeWissenschaften derJohannWolfgangGoethe-Universität alsDissertationangenommen

Dekan:Prof.Dr.J.Engels 1.Gutachter:Prof.Dr.Dr.Dres.h.c.E.Mutschler 2.Gutachter:Dr.habil.J.Wess

DatumderDisputation:30.Juli2001 Tomyparentsinloveandgratitude

MeinenElterninLiebeundDankbarkeitgewidmet ThisworkhasbeencarriedoutattheNationalInstitutesofHealth( Bethesda,MD,USA) intheLaboratoryofBioorganicChemistry(NationalInstituteofDiabetes,Digestive,and KidneyDiseases)fromMay1997untilNovember2000.

Iwishtoexpressmysinceregratitudeto:

Prof.Dr.Dr.Ernst Mutschler,forgivingmetheopportunitytoconductthesestudies underhissupervision,forhiscontinuousinterestandsupport, and

Dr.habil.Jürgen Wess,mymentor,forhisguidance,manyvaluableandrewarding discussions,andpracticaladvice.

Iwouldalsoliketothank:

Dr.MarkDumontforgivingmetheopportunitytolearnyeastexpressiontechnologiesin hislaboratoryinRochester,NY,andallmembersoftheDumontlabforprovidinga friendlyandrewardingworkingenvironment.

Dr.MarkPauschforkindlyprovidingtheyeaststrainsusedinthisstudy.

Dr.ClaudineSerradeil-LeGalforconductingthe[ 3H]-SR121463bindingstudiesinher laboratory.

Allpresentandpastmembersandco-workersoftheLaboratoryofBioorganicChemistry forprovidingmewithajoyfulandrelaxingworkingenvironment,inparticularDrs.Evi KostenisandJesus Gomezafortheirsupport,practicaladvice,andfruitfuldiscussions, andforgeneratingsomeofthe muscarinicyeastexpressionvectors,Dr.StuartWardfor helpingmecreateFigs.1.3,and3.28,Drs. FadiHamdanandAlokeshDuttaroyfortheir friendship,valuablediscussionsandencouragement(andDr. Hamdanforcarryingout bindingassaysontheM 1andM 1∆i3receptorsexpressedinyeast(Table.3.4)),Dr. ClariceSchmidtforherfruitfuladviceonyeasttechnologyandotherimportantareasof life,andforconductingbindingassaysontheM3andM3∆i3receptors(Table3.4)aswell asliquidbioassayswith constitutivelyactive muscarinicM3∆i3receptorsexpressedin yeast(Fig.3.20A),andDr.JanJakubikforgeneratingFig.3.12.

MyfriendsJohannesVoigt,JonathanGuyer,JenniferKorpacz,andSusieandJens CoorssenhereinBethesdafortheirvaluablefriendshipandformakingmefeelathome, andmyfriendsUlrike KettandEvaReuterinGermanyfortheircontinuoussupportand interest.

The“Deutscher AkademischerAustauschdienst”and“CourtesyAssociatesProgram” (NIH)forfinancialsupportthroughoutmygraduatestudies. LastbutnotleastIwouldliketothankmyparentsandmysisterAlmuthfortheirlove andsupport,whodespitebeingapproximately4,000milesawayhaveneverfailedto inspireandencourageme. TableofContents

1IntroductionandAimoftheThesis 1

1.1Gprotein-coupledreceptors 2

1.1.1ClassificationanddiversityofGPCRs 5 1.1.2Thethree-dimensionalstructureofrhodopsin-likereceptors 8 1.1.3HeterotrimericGproteinsandtheireffectorsystems 11 1.1.4Thereceptoractivationprocess 14 1.1.5TheheterotrimericGproteinactivationcycle 17

1.2Vasopressinreceptors 19

1.2.1Theneurophysealhormonesvasopressinand 19 1.2.2Localizationandphysiologicalfunctionsofvasopressinreceptors 21 1.2.3TherenalphysiologyoftheV2vasopressinreceptor 22 1.2.4NephrogenicDiabetesInsipidus(NDI) 23 1.2.4.1NDI:generalimplicationsandclinicalpicture 23 1.2.4.2TreatmentofNDI 25

1.3Structuralfeaturesofvasopressinreceptors 26

1.3.1Ligandbindingdomains 28 1.3.1.1Agonistbindingdomain 28 1.3.1.2Antagonistbindingdomain 33 1.3.2Regulationofreceptorexpressionandfunction 34 1.3.2.1Receptorglycosylation 34 1.3.2.2Disulfide-linkageofextracellulardomainsandreceptorpalmitoylation35 1.3.2.3Receptorphosphorylationanddesensitization 37 1.3.3Gproteincouplingdomains 40

1.4Structuralbasisofreceptor/Gproteincouplingselectivity 42

1.4.1IdentificationofGproteincouplingdomains 45 1.4.2InvolvementoftheintracellularloopsofGPCRsinGproteincoupling 46 selectivity 1.4.2.1Firstintracellular(i1)loop 46 1.4.2.2Secondintracellular(i2)loop 47 1.4.2.3Thirdintracellular(i3)loop 48 1.4.2.4Fourthintracellular(i4)loop 52 1.4.3Gproteindomainsdeterminingcouplingselectivity 53

1.5Aimofthethesis 56

I TableofContents

2MaterialsandMethods 59

2.1Materials 60 2.1.1Commerciallyavailablecompoundsandmaterials 60 2.1.2Mediaandbuffersolutions 63 2.1.2.1Mammaliancellculturerelatedmediaandbuffersolutions 63 2.1.2.2Yeastrelatedmediaandbuffersolutions 64 2.1.2Gifts 66

2.2Methods 67

2.2.1Mammalianexpressiontechnologies 67 2.2.1.1Geneticengineering 67 2.2.1.1.1MammalianexpressionplasmidpcD 67 2.2.1.1.2Constructionofmammalianexpressionplasmids 67 2.2.1.2Cellculture 68 2.2.1.3TransientexpressionofclonedreceptorsinCOS-7cells 68 2.2.1.4Preparationofmembranehomogenates 69 2.2.1.5Radioligandbindingassays 69 2.2.1.6cAMPassays 71 2.2.1.7PIassays 72

2.2.2Yeastexpressiontechnologies 73 2.2.2.1Geneticengineering 73 2.2.2.1.1Yeastexpressionplasmidp416GPD 73 2.2.2.1.2ConstructionofwildtypeV2andmutantV1a/V2vasopressin 75 receptorplasmids 2.2.2.1.3Constructionofwildtypeandmutantmuscarinicreceptorplasmids75 2.2.2.2Manipulationofyeastexpressionplasmidsemployingthe“gap-repair” 77 method 2.2.2.3Transformationofyeaststrains 79 2.2.2.4Yeastminiprep 79 2.2.2.5Yeaststrainsusedinthisstudy 80 2.2.2.6Randommutagenesisstrategyandcreationofmutantreceptorlibrary 82 2.2.2.6.1Libraryconstruction 82 2.2.2.6.2Receptorselection 83 2.2.2.7Liquidbioassays 85 2.2.2.8Isolationofyeastmembranes 86 2.2.2.9Radioligandbindingassayswithyeastmembranesexpressing 87 wildtypeandmutantvasopressinreceptors 2.2.2.10Radioligandbindingassayswithyeastmembranesexpressing 87 wildtypeandmutantmuscarinicreceptors 2.2.2.11Westernblottinganalysis 88

II TableofContents

3ResultsandDiscussion 89

3.1StructuralbasisofV2vasopressinreceptor/Gscouplingselectivity 90

3.1.1Aimofthestudy 90 3.1.2ConstructionofmutantV1a/V2vasopressinreceptors 92 3.1.3Results 92 3.1.3.1Importanceofthei4domainincouplingselectivityoftheV2receptor 95 3.1.3.2RoleoftheN-terminalportionofthei3loopindetermining 99

V2receptor/Gscouplingselectivity 3.1.3.3IdentificationofsingleresiduesattheTMV/i3loopjunction 102

criticalforV2receptor/Gscoupling 3.1.3.4Roleofchargedaminoacidsinthecentralportionofthei3loop 104

inregulatingreceptor/Gscouplingefficiency 3.1.3.5PIassayswithhybridreceptorsthatwereunabletostimulatecAMP 108 production 3.1.4Discussion 111

3.2SingleaminoacidsubstitutionsthataltertheGproteincoupling 117 propertiesoftheV2vasopressinreceptoridentifiedinyeast byreceptorrandommutagenesis

3.2.1Aimofthestudy 117 3.2.2Yeastexpressionsystem 118 3.2.3Results 121 3.2.3.1FunctionalexpressionofthehumanV2vasopressinreceptorinyeast 121 3.2.3.2Functionalexpressionofmuscarinicreceptorsinyeast 125

3.2.3.2.1WildtypeM1,M3,andM5muscarinicreceptorsarepoorly 125 expressedanddonotcoupleefficientlytoGproteinsinyeast

3.2.3.2.2TheM1∆i3,M3∆i3,andM5∆i3muscarinicreceptorscouple 128

withhighefficiencytoahybridGpa1p/αqGprotein

3.2.3.2.3LigandbindingpropertiesoftheM1∆i3,M3∆i3,andM5∆i3 132 muscarinicreceptorsexpressedinyeast 3.2.3.3Validationofyeastexpressionsystem 132 3.2.3.4ScreeningandselectionofmutantreceptorswithalteredGprotein 134 couplingproperties 3.2.3.5CharacterizationoftheGproteincouplingpropertiesofthe 139 RM1-RM4mutantV2receptorsinyeastliquidbioassays 3.2.3.6SubstitutionsatpositionMet145havepronouncedeffectson 139 theGproteincouplingprofileoftheV2vasopressinreceptor 3.2.3.7FunctionalanalysisofRM4-basedmutantV2vasopressinreceptors 143 3.2.3.8Aminoacidsatthebeginningofthei2looparecriticalforproper 148 foldingoftheV2vasopressinreceptor 3.2.4Discussion 150

III TableofContents

4Summary 157

4.1MolecularbasisofV2vasopressinreceptor/Gscouplingselectivity 159 4.2SingleaminoacidsubstitutionsanddeletionsthataltertheGprotein 161 couplingpropertiesoftheV2vasopressinreceptoridentified inyeastbyreceptorrandommutagenesis 4.3Conclusion 163

5Zusammenfassung 165

5.1MolekulareFaktoren,diedieGsKopplungsselektivitätdesV2- 167 Vasopressinrezeptorsbestimmen 5.2IdentifizierungeinzelnerAminosäuresubstitutionenundAmino- 169 säuredeletionen,diedieG-Protein-Kopplungsselektivitätdes V2-Rezeptorsbeeinflussen:EinsatzvonHefeexpressionstechnologie undzufallsgerichteterMutagenese(“randommutagenesis”) 5.3Schlußfolgerung 172

6References 173

7ListofAbbreviations 211

8BibliographyandCurriculumVitae 215

IV 1.IntroductionandAimoftheThesis 1.IntroductionandAimoftheThesis

1.1Gprotein-coupledreceptors

Everycellcommunicateswithitsenvironmentinordertofunctionproperlyandto respondtoenvironmentalchanges.Thisinteractionisachievedthroughreceptors,which aremacromoleculesthatareabletotransmitextracellularregulatorysignalstothecell interior,thusmodulatingcellactivityandfunction.Threemajortypesofplasma membranereceptorsareknown,a)receptorsthatinteractwithGproteins(Gprotein- coupledreceptors),b)ligand-gatedionchannels(e.g.nicotiniccholinergicreceptor),and c)receptorswithenzymaticactivity(e.g.insulinreceptor). Gprotein-coupledreceptors( GPCRs)formoneofthelargestproteinfamilies foundinnature(WatsonandArkinstall,1994).Sequenceanalysissuggeststhatthe humangenomecontainsabout600-700distinctGPCRgenes( Venteretal.,2001).To dateseveralhundred GPCRshavebeenclonedandsequenced(WatsonandArkinstall, 1994).Fig.1.1demonstratesthetopologyofaprototypicalmemberoftheGPCR superfamily,theV2vasopressinreceptor. AllGPCRsignaltransductionpathwaysfollowthesamegeneralscheme(Fig. 1.2).Bindingof extracellularligandstothecellsurfaceGPCRinducesconformational changesinthereceptorprotein,whichenablethereceptortointeractwithGproteinsthat arelocalizedintracellularlyattheplasmamembrane.Gproteinsare heterotrimers consistingofaguaninenucleotide(GTP/GDP)binding α-subunitanda βγ-complex. ActivationoftheGproteinthroughligand-occupiedreceptorspromotesthereleaseof GDPandsubsequentexchangeforGTPonthe α-subunit,whichthendissociatesfrom the βγ subunit.BothGTP- αandfree βγareabletomodulatetheactivityofdistinct effectorsystemssuchasadenylylandguanylylcyclases, phosphodiesterases, phospholipasesAandC,aswellasK +andCa2+ionchannels.Thisactivityisterminated byhydrolysisofboundGTPtoGDPbytheGTPaseabilityintrinsictothe α-subunit. HydrolysisofboundGTPcanbeacceleratedbyRGS(regulatorofGproteinsignaling) proteins,whichact allostericallyontheG α-subunit,increasingtherateatwhichthe α- subunithydrolyzesGTP(RossandWilkie,2000).SubsequentreassociationofGαwith

2 G H P P S L N-glycosylation site V A P disulfide bond E R S S P Q extracellular T L S L P T S N S D e1 T S R D F e2 A R T R e3 D A E P W M A G G F A C E L P K R A S G G P P L P M W G R W E D D L L A V T C V W A A F NH2 A R L D T Y N A G E Q L C R V R A A L A T W P P V Q W W F A L L K Y A A I Q L V I F L V V L S Q F L L M F L M I L Q L F V V M Q P P F L F A V V F A L A V A G M L P V W V A L Y S A C S D A L T L L N A L G V S L A S L L I Y C N S L Y S S A V C A V T N V G H L M A F V P L I W C Q I W palmitoylation L I G L A V V I A F A V L T L Y A V M V L I T A L H L T F M S site A D R R P R K V S C C I R H A F A R A R R II I V E R L I P N S S I V G R C W V L L A IV H A S R G III A S E R H A S W T R A VI S R G H P S P G V M L VII P S H L V P E D G S Q S i1 A G S E A P H P C L intracellular Y R G G G G T T P T L A K R S S A D i2 R S S E G T R S R i4 S P R G G R 371 COOH i3

Fig.1.1Aminoacidsequenceandproposed transmembranedispositionofthehumanV2 vasopressinreceptor. TheV2receptor,likeallotherG protein-coupledreceptors,arepredictedtobecomposedofsevenhydrophobic transmembranehelices(TMI-VII),thatarejoinedbythreeextracellular(e1-e3) andthreeintracellular(i1-i3)loops,withan extracellularN-terminaldomainandanintracellularC-terminaltail(i4).Accordingtothecrystalstructureof bovine rhodopsin(Palczewski etal. ,2000)theN-terminaldomainofthe cytoplasmictailis α-helicallyarrangedandrunsparalleltotheplaneofthe membrane.Theputativei4 α-helicaldomainisshowninthisscheme.Also,theN-glycosylationsite,theputativedisulfidebondformedby atthe e1/TMIIIjunctionande2loop,andthepalmitoylationsiteintheC-terminaltailareindicated.Thesingleletteraminoacidcodeisused. 1.IntroductionandAimoftheThesis

Gβγallowsthesystemtoreturntotherestingstate(forreviews,seeRoss,1989 ;Conklin andBourne,1993).GPCRsareinvolvedinmanyfundamentalphysiologicalprocesses andrepresentattractivetherapeutictargets.Estimatesarethatabout50%ofdrugsin currentclinicaluseactonspecificGPCRsorGPCR-mediatedsignalingpathways (Hardmanetal.,1996).Understandinghow GPCRsfunctionatamolecularlevelis thereforeofgreatpotentialtherapeuticinterest.Structuralanalysisofthe ligand/GPCR/G proteincomplexshouldeventuallyleadtothedesignofmoreselectivetherapeuticagents targetedatspecificGPCRsorGPCR-dependentsignaltransductionpathways.

P i agonist RGS βγ subunit α receptor GDP subunit

GTP GDP

GTP GDP Effector proteins

GTP

Fig.1.2Thereceptor-Gproteinactivationcycle. Thediagrambrieflyshowstheeventsthatoccurduring ligandbindingandGproteinactivation.The heterotrimericGproteinismadeupofthethree subunitsα,β, andγ.Theα-subunitbindsguaninenucleotides,the β-andγ-subunitsarealwaysassociated.Intheinactive stateoftheGprotein,allthree subunitsareassociatedandGDPisboundtothe α-subunit.Agonistbinding tothereceptorcausesaconformationalchange,whichincreasesheterotrimericGproteinbindingtothe receptors.OncetheGproteinbindstothereceptor/ agonistcomplex,GDPisexchangedforGTPonthe α- subunitandtheGproteindissociatesintothe α-and βγ-subunits,whichbothinturncanactivate downstreameffectorproteins.TheactivationcycleisterminatedbyhydrolysisofGTPintoGDPandPby theendogenousGTPaseactivityofthe α-subunit. HydrolysisofboundGTPcanbeacceleratedbyRGS (regulatorofGproteinsignaling)proteins,whichact allostericallyontheGα-subunit,increasingtherateat whichthe α-subunithydrolyzesGTP.SubsequentreassociationofG αwithG βγallowsthesystemto returntotherestingstate(seetextfordetails).

4 1.IntroductionandAimoftheThesis

1.1.1ClassificationanddiversityofGPCRs

HydrophobicityanalysishasshownthatallGPCRscontainsevenstretchesof about20-28predominantlyhydrophobicresidueswhicharethoughttoform αhelical membranespanningdomains( Trumpp-Kallmeyeretal.,1992).These transmembrane domains(TMs)areconnectedbyalternatingintracellular(i1-i3)and extracellularloops (e1-e3),withanextracellularamino-terminusandanintracellularcarboxy-terminus (Wangetal.,1989)(Fig.1.1). TheligandsthatactonGPCRsarehighlydiverse,comprisingalargerangeof agentsvaryinggreatlyinstructure,sizeandphysiologicalfunction.GPCRligandscanact asneurotransmitters,hormones,localmediatorsubstances,orcanconveysensory information.Such ligandsinclude,forexample,thesmall biogenicaminessuchas acetycholine,catecholamines,serotoninandhistamine,aswellasthelarge glycoprotein hormonesfollicle-stimulatinghormone(FSH),thyroid-stimulatinghormone(TSH),and luteinizinghormone/ choriogonadotropin(LH/CG).Peptide ligands,whichare particularlyabundant,canactasneurotransmittersaswellashormones.OtherGPCR activatorsencompassstimulantsasdiverseaslight, odorants,nucleotides(e.g. ATP/UTP),calciumions, prostanoids,theaminoacidL-glutamate,andlipids(e.g. platelet-activatingfactor). Basedonnucleotideandaminoacidsequencesimilarity,thesuperfamilyof GPCRscanbesubdividedintofourmajorgroupsofreceptors(BockaertandPin,1999; Wess,1998).ClassItypereceptorssharekeystructuralfeatureswiththelightreceptor rhodopsinandarethereforereferredtoas rhodopsin-typereceptors.Thisclasscomprises themajorityof GPCRsthathavebeenidentifiedtodateandhasbeenstudiedingreat detail(Baldwin,1994;Straderetal.,1994;Dohlmanetal.,1991).ClassItypereceptors areactivatedbyalargevarietyofstimuli,includingphotons, odorants,hormones,and neurotransmitters,ranginginsizefromsmallbiogenicaminestopeptidesandlarge glycoproteins(NathansandHogness,1983;Paceetal.,1985;Dixonetal.,1986;Loosfelt etal.,1989;Kaiseretal.,1992,Karkaretal.,1992;Vassartetal.,1995).Therhodopsin- typereceptorsarecharacterizedbyasetofabout20aminoacidsthatarehighly

5 1.IntroductionandAimoftheThesis conservedonlyinthisGPCRsubfamily(formoredetails,seechapter1.6).Mostofthese residuesarelocatedinthe transmembranereceptorcoreandareinvolvedinprotein foldingandstabilityandrelayingconformationalchangesduringthereceptoractivation process(Wessetal.,1993;Baldwin,1994;VanRheeandJacobson,1996).Unlikethe transmembraneregions,boththeN-andC-terminaldomainscanvaryremarkablyin lengthamongClassIreceptors.Areasonforthisstructuralvariabilitymaybethegreat structuraldiversityofactivatingagents. Thesecretin/glucagonreceptorfamily(ClassII)comprisesarelativelysmall groupofreceptorsthatbindneuropeptidesandpeptidehormones.ClassIIreceptorsdo notexhibitthefingerprintresiduesthatarecharacteristicoftherhodopsin-typereceptors, withtheexceptionoftheputativedisulfidebridgebetweenthee1ande2loops( Ishigara etal.,1991;Lin etal.,1991; Ishigaraetal.,1992).However, secretin/glucagon-type receptorsshareabout20identicalaminoacidsandarecharacterizedbyalargeN- terminalextracellulardomainwithatleastsixhighlyconservedresiduesthatare thoughttoplayanimportantroleinligandbinding(Strader,1994). ClassIIIreceptorscomprisethemetabotropicglutamatereceptors(mGluR)(Conn andPin,1997),thecalciumsensor(Brown etal. ,1993),the γ-aminobutyricacid

(GABA)Breceptors( Kaupmann etal. ,1997),andagroupofabout100putative pheromonereceptors(HerradaandDulac,1997;MatsunamiandBuck,1997).Thegroup ofthe mGluRsencompasseseightsubtypesthatbindL-glutamate,themajorexcitatory neurotransmitterinthecentralnervoussystem.ClassIIIreceptorsarecharacterizedbya longN-terminalextracellulardomain;theC-terminaltailisofvariablelength(Nakanishi, 1992,Wess,1998). ClassIVreceptorsareunrelatedtoanyothergroupof GPCRsandaremadeupof pheromonereceptorsthatareexclusivelyexpressedinapicalneuronsofthe vomeronasal organ(DulacandAxel,1995).Thesereceptorssharebetween47-87%sequenceidentity andcontainarelativelyshortN-terminalextracellulardomain.

6 1.IntroductionandAimoftheThesis

1.1.2Thethreedimensionalstructureofrhodopsin-likereceptors

TherecentelucidationofthefirsthighresolutionX-raystructureofaGPCR representsamajorbreakthroughinGPCRresearch.Palczewski etal.(2000)generated bovinerhodopsincrystalsfrommixedmicellesandobtainedstructuralinformationfor rhodopsininthegroundstatebyemploying multiwavelengthanomalousdiffraction (MAD)methods.Thisyieldedinformationofthethree-dimensionalcrystalstructureof rhodopsinatahighresolution(2.8Å)(Fig.1.3A,B). BeforethefirstGPCRX-raywasavailable,moststructureinformationwas derivedfrombiochemicalandtheoreticalstudiesandextrapolationfromthestructureof bacteriorhodopsin,aserpentinereceptorproteinfrom Halobacteriumhalobium,whichis anionchannelandnotcoupledtoGproteins. Alowresolutionimageofbovine rhodopsin(Schertler etal. ,1993)andsequenceanalysisof200differentGPCRs (Baldwin,1993)ledtothefirststructuralmodelofthetransmembranereceptorcore, whichwasingoodagreementwithagreatnumberofmutagenesisandbiochemical studies(forreviews,seeBaldwin,1994; Bourne,1997;Wess,1997).In1997, Ungeret al.presentedanimprovedlow-resolutionelectrondensitymapoffrog rhodopsin. Combiningthisnewstructuralinformationwiththesequenceanalysisofabout500 GPCRs,Baldwinetal(1997)proposedarefinedmodelforrhodopsin-likereceptors.This modelprovedtobehighlyusefultointerprettheresultsofalargenumberofGPCR structure-functionstudies. AsshowninFig.1.3,theseven transmembranehelices(TMI-VII)formabarrel- shapedtightlypackedbundle,orientedroughlyperpendiculartotheplaneofthe membraneinaclockwisefashion(whenviewedfromthecytoplasm)(Palczeswki etal., 2000).Mostoftheprimarysequencehomologyamongthedifferentrhodopsin-like receptorsiscontainedwithinthehydrophobic transmembranedomain.Interestingly,the variousTMsdifferintheir hydrophobicity:TMsI,IV,andVIIcontainonlyone hydrophilicresidueandarethereforemorehydrophobicthanTMsII,III,V,andVI whichharborseveralionicand/orhydrophilicaminoacids.

7

1.IntroductionandAimoftheThesis

AccordingtotheUngermodel(1997),thehelicalbundleappearedtobepacked muchmoretightlyontheintracellularsideofthemembrane,resultinginanasymmetric proteinwithdifferentsizesateitherend.However,thispredictionprovedtobeincorrect, sincethehigh-resolutionX-raystructureof rhodopsinindicatethattheintra-and extracellularsurfaceoftheproteinhaveaboutthesamespatialdimensions. Rhodopsin-typeGPCRsharborahighlyconservedProresidueinTMsIV,V,VI, andVII.ProoftencausesakinkwithinahelixbutaccordingtothehighresolutionX-ray structureofrhodopsin,onlyTMsVIandVIIaresignificantlybent(Fig.1.3A).TMIIis bentatGly89andGly90,whichbringsthisregioninclosecontacttoTMI.Apartfrom thehelicalstructure,theaxesofthedifferentTMsalsovarysignificantly.TMsIV,VI andVIIareorientedalmostperpendiculartotheplaneofthemembrane,whereastheaxes ofTMsI,II,III,andVaretiltedwithTMIIIbeingthemostinclinedTM,deeplyburied intheproteincore.ThiscausestheextracellularendsofTMIII,IandIItobeneareach other,whereaswithTMIIImovingbetweenTMsIIandIVtowardtheintracellularside ofthemembrane,the cytoplasmicendofTMsIIIliesnearTMV(Fig.1.3A,B). Likewise,TMsIIandIVareincloseproximityattheintracellularsideofthemembrane butdivergetowardstheextracellularside.ThiscausestherelativepositionsofTMIII andIVtobereversedontheintracellularsideofthemembrane(Fig.1.3B).Boththe Balwinmodelandthehigh-resolutionX-raydataindicatethatthesevenTMhelicesvary inlength,withTMsIIIandVIbeingthelongestandTMsIVandVIIbeingtheshortest. Thehigh-resolutionX-raystructureindicatesthatTMsIIIandVIprotrudeintothe cytoplasmbyabouttwotothreehelicalturns(Palczewskietal.,2000).

______

Fig.1.3Modelofthethreedimensionalstructureofbovine rhodopsin(adaptedfromPalczewski et al.,2000).A,Ribbondrawingofrhodopsin,viewedparalleltotheplaneofthemembraneand B, viewed ontothemembraneplanefromthecytoplasmicsideofthemembrane.TMsI-VIIandhelixVIIIare indicated:copper:TMsI,III,V,andVII ;white:TMsII,IV,VI,andhelixVIII.Theintracellularloopsare highlightedindifferentcolors: red:firstintracellular(i1)loop, yellow:secondintracellular(i2)loop, green: thirdintracellular(i3)loop, blue:cytoplasmictail(i4).Notethatsomefewaminoacidsinthei3andC- terminaldomainaremissinginthecurrentmodel(Palczewskietal.,2000).

9 1.IntroductionandAimoftheThesis

The cytoplasmictailofclassIGPCRscontainsoneortwohighlyconserved cysteineresidues,whicharethoughttobelinkedtotheplasmamembraneviafattyacid modifications(e.g. myristoylationorpalmitoylation;note,however,thattheGPCR structurewasresolvedusingproteinsdevoidoflipidmodifications),thusforminga fourthintracellular(i4)loop.Interestingly,thehighresolutionrhodopsinstructure indicatesthatthe“i4loop”adoptsan amphiphilichelicalstructure(helixVIII),which runsalmostparalleltotheplaneofthemembrane,withhydrophobicresiduesfacingthe receptorproteinandcharged/polargroupsorientedtowardsthehydrophilicenvironment. HelixVIIIisdistinctfromTMVIIandconnectedwithTMVIIviaastretchofnon- helicallyarrangedaminoacids(Palczeswskietal.,2000).TheexistenceofhelixVIIIhas alsobeenpredictedbasedonNMRstudieswithasyntheticpeptidederivedfromthe correspondingβ-adrenergicreceptorregion(Jungetal.,1996). Thehigh-resolutionstructureofbovine rhodopsinalsoprovidesthefirstdirect viewofthethree-dimensionalarchitectureoftheintra-and extracellularloops.TheN- terminalextracelluardomainformsacompactstructureconsistingoffive antiparallel strandsformingβ-sheetsthatrunattimesincloseproximitytoother extracellularloops, likethee1ande3loops.Thee1ande3loopsrunalongtheperipheryofthemolecule, whereaspartsofe2projectintothereceptorcore.ClassIGPCRscontaintwohighly conservedcysteines,oneislocatedatthe extracellularendofTMIIIandtheotherone withine2.Thesecysteinesformadisulfidebondthatdrawse2intothereceptorcore.As aresult,partsofthee2loopareinclosecontactwithotherextracellulardomains,while otherpartsareinproximitytoregionsdeepwithinthereceptorprotein(e.g.the chromophoreretinalinthecaseof rhodopsin).Mutagenesisstudieshavedemonstrated thatthisdisulfidebondisessentialforreceptorstructureandfunction(VanRheeand Jacobson,1996;CookandEidne,1997;Zengetal.,1999a,b).Inthecaseofrhodopsin,it isrequiredforformationofthelight-activated metarhodopsinIIstate(Davidson etal., 1994). Analogoustothe extracellularreceptorregion,theintracellularreceptorsurface alsoadoptsarathercompactstructure.Partsofthei1looprunalmostparalleltotheC- terminaltailandseemtobeincontactespeciallywithitsN-terminalportion(Fig.1.3A,

10 1.IntroductionandAimoftheThesis

B).Thei2loopexhibitsarigid,almostright-angledstructurepointingawayfromthe receptorprotein.ThetipoftheloopiskinkedandtracesbacktohelixIValmost perpendicularly(Fig.1.3A,B).Themostflexibleloopseemstobethei3loop,which variesextensivelyinsizeamongGPCRs.Accordingtothehigh-resolutionX-ray structure,thei3looptakesonanS-shaped structurewhichrunsalmostparallelalongthe surfaceofthemembrane(Fig.1.3A,B).PartsoftheC-terminalportionofthei3loop alsoappeartobeincontactwiththeC-terminaltailviahydrogenbonding.Eventhougha fewaminoacidsinthecentralportionofthei3loopandtheC-terminaltailaremissingin thecurrentmodel,theX-raydatasuggestthattheintracellularloopsdonotfoldoverthe TMbundle(Palczewski etal.,2000)(Fig.1.3B).Thehelicalstructureofthe“i4loop” hasalreadybeendiscussedearlier.ThedistalsegmentoftheC-terminaltailseemstobe themostexposedpartofthereceptormolecule(Palczewskietal.,2000). Asdiscussedinchapter1.3 (alsoseeFig.1.6),ClassIreceptorsshareasetof highlyconservedaminoacidsthatarethoughttobeimportantforreceptorfolding,ligand bindingandotherimportantaspectsofreceptorfunction.Thehigh-resolutionX-ray structureofrhodopsinindicatesthatthereceptorcoreishighlyorganizedbyinterhelical constraintsmediatedbyseveraloftheseconservedaminoacidsthuskeepingthereceptor inaninactiveconformation( Palczewskietal.,2000).Uponligandbinding,someofthe conformationalconstraintsarelikelytobebrokenleadingtoare-arrangementand movementofhelices,notablyTMIIIandTMVI(Farrens etal.,1996),andallowingthe receptortoadoptitsactiveconformation.Initsactiveconformation,thereceptoristhen abletoproductivelyinteractwithheterotrimericGproteins.

1.1.3HeterotrimericGproteinsandtheireffectorsystems

HeterotrimericGproteinsaremembersoftheguanosine5’triphosphatase (GTPase)superfamilyandaremadeupofα-,β-,andγ-subunits(forreviews,seeHamm, 1998;Sprang,1997).Atleast20α-,6β-,and12γ-subunitsareexpressedbymammalian cells,allowingtheformationofalargenumberofdifferentGproteinheterotrimers.On thebasisofaminoacidsimilarityoftheG α-subunits,Gproteinscanbesubdividedinto

11 1.IntroductionandAimoftheThesis

fourmajorclasses:G s,Gi/o,G q/11andG 12/13.GsclassGproteinscompriseseveralsplice

variantsofGsandGolfandhaveastimulatoryeffectonadenylylcyclase.Membersofthe

Gi/ofamilyareαi(withsubtypesαi1,αi2,andαi3)andαo(therearetwosplicevariants,αo1

andαo2),αgust,αzandαt(αt1andαt2,thesesubunitsmediaterhodopsin-relayedstimulation

ofcyclic guanosine5’monophosphate( cGMP)phosphodiesterase).Giproteinshavean

inhibitoryeffectonadenylylcyclase;thusGsandGiproteinscanberegardedaspositive

andnegativeregulatorsofintracellularcAMPproduction(Fig.1.4).G q/11proteins

encompassseveralmembersthatareabletoactivate phospholipaseCβ:αq,α11,α14,α15,

andα16.α15andα16,whichrepresentthe murineandhumanversionofthesamegene, havebeenshowntobethemostpromiscuousGproteinstodate( OffermannsandSimon,

1995).ThefunctionofthemembersofthefourthclassofGproteins,G 12andG13,isnot wellunderstoodatpresent. Liketheactivated α-subunits,free βγ-complexescanalsointeractwithcertain adenylylcyclaseandphospholipaseC βisoformsandother effectorproteins.Inmany cases,α-and βγ-subunitscanactindividuallybutalsosynergistically,thusamplifying certaineffects( Sunaharaetal.,1996).Since βγcanactondownstream effectorsonly whenreleasedfromthe α-subunit,G αcanbeviewedasnegativeregulatorof βγ function.Thisisespeciallyapparentinthepheromonesignalingpathwayof S.cerevisiae wherethe βγ-subunitappearstobethesoletransducerofGPCR-relayedsignaling (Lebereretal.,1997;Dowelletal.,1998).

Recently,twoheterotrimericGproteins,Gαi1β1γ2(Walletal.,1995)andGαtβ1γ1 (Lambright etal. ,1996)havebeencrystallizedtoyieldhigh-resolutionstructural informationandinsightintohowGproteinsoperate.The α-subunitischaracterizedby twodomains,whichshieldandkeeptheguaninenucleotideinitsproperposition.One domainisinvolvedinGTPbindinganditssubsequenthydrolysis.Thisso-calledras-like GTPasedomain(duetoitsstructuralsimilaritytomembersoftheGTPasesuperfamily (Kjeldgaardetal.,1996))consistsofacentralsix-stranded β-sheetsurroundedbysixα- helices.TheotherdomainisahelicaldomainthatholdstheGTP/GDPwithinitsbinding site (Noel etal. ,1993;Coleman etal.,1994) .The β-subunithasa“ propeller”-like structure(Sondeketal.,1996)madeupofsevenβ-sheets(whichresemble“blades”)with

12 1.IntroductionandAimoftheThesis

AGONIST

AC PLCβ

PIP2

γ DAG α β γ PKC

+/- Gαq

Gαs/i

cAMP IP3

++ CaMKinase [Ca ]i PKA

CellResponse

Fig.1.4Signalingpathwaysof GPCRs.Examplesofmajorclassicalsignalingeventsinducedbyagonist activationofaGPCR. Agonistbindingresultsintheactivationof heterotrimericGproteins,whichinturn regulatetheactivityofcellulareffectors( e.g.AC:adenylylcyclase,PLC β: phospholipaseCβ).Other abbreviations:PKC:proteinkinaseC,PKA:proteinkinaseA, CaM: calmodulin,IP 3:inositol-1,4,5- trisphosphate,PIP2:phosphatidylinositol-4,5-bisphosphate,DAG:diacylglycerol(seetextfordetails).

contactpointsatoppositesidesfortheα-andγ-subunits(Bourne,1997).Theγ-subunitis relativelysmall,withtwohelicalstructuresateitherend,whichbothinteractwiththe β- subunit.TheN-terminalhelicaldomainformsa“coiled-coil”withtheN-terminusofG β, whereastheC-terminalhelixinteractswithonesideofthe β-subunitpropeller.Freeand boundβγseemtohavevirtuallythesamethree-dimensionalstructure(Wall etal.,1995;

13 1.IntroductionandAimoftheThesis

Lambrightetal.,1996; Sondeketal.,1996)).Eventhough β-and γ-subunitsarenot covalentlyattachedtoeachother,theycanberegardedasonefunctionalunit. GαandG βarelinkedtoeachotheratvariouspoints;the α-helixattheN- terminusofG αcontactstheG β-“propeller”atblade1,andtheG αregionthatshows majormobilitychangesuponGproteinactivation(switchIandII)interactswiththeface oftheβ-propellerthatisoppositetothatwherethe γ-subunitisbound(Walletal.,1995; Lambrightetal.,1996).BothGαandGγcontainlipidmodifications.TheN-terminusof the α-subunitisboth myristoylatedand/or palmitoylated,whereasthe γ-subunitis prenylatedatitsC-terminus.Bothα-andγ-subunitsareattachedtotheplasmamembrane viatheirlipidmodifications,placingtheN-terminusofG αincloseproximitytotheC- terminusofGγandsuggestingthatthereisasingletetherpointforbothsubunits.

1.1.4Thereceptoractivationprocess

Thebindingofactivatingagents(agonists)to GPCRscausesconformational changesinthereceptorproteinwhichleadtothestimulationof heterotrimericGproteins thatarelocated intracellularlyontheplasmamembrane.Manybiochemicalstudiesas wellasthehigh-resolutionrhodopsinstructure(Palczewskietal.,2000)indicatethatthe transmembranecoreofGPCRsistightlypacked,involvingmanytertiaryinteractionsof hydrophilicandhydrophobicnatureaswellassaltbridges.Theseinteractionsarethought tokeepthereceptorproteininitsinactiveconformation.MutantGPCRswithconstitutive activephenotypeshaveprovidedvaluableinsightsintotheprocessesthatareinvolvedin receptoractivation(ScheerandCotecchia,1997b).Forinstance,singlepointmutationsat Glu113orLys296in rhodopsinledtoconstitutivelyactivemutants(Robinson etal., 1992),suggestingthatthesetwoaminoacidsareinvolvedinformingasaltbridgethat keepsthereceptorinitsinactiveconformation. Constitutivelyactivereceptorshavealso beenidentifiedinmanyotherclassesof GPCRsincludingthe α1b–adrenergic(Porteret

al.,1996),theM 5muscarinic(Spaldingetal.,1995,1997),theM 1muscarinic( Hulme andLu,1998)andtheluteinizinghormone(LH)(Shenkeretal.,1993).

14 1.IntroductionandAimoftheThesis

Wonerowetal.(1998)recentlydescribeda9-amino-aciddeletionmutationatthe C-terminalportionofthei3loopofthehumanTSHreceptor,whichleadstoa constitutivelyactivephenotype.AsimilarphenotypewasobservedwiththeLHreceptor (Schulzetal.,1999).Moredetailedmutationalanalysisindicatedthatananionicamino acid(Asp564)wasnecessarytokeepthereceptorintheinactivestate,probablyby formingasaltbridgewithotherresiduesinadjacentreceptordomains.Theauthors proposedthatdisruptionofthisinteraction,eitherligand-ormutation-induced,allowsthe receptortotakeonitsactiveconformation(Wonerowetal.,1998;Schulzetal.,1999). AlargebodyofevidencesuggeststhatthehighlyconservedE/D-R-Y/Wmotif (DRY-motif),anaminoacidtripletpresentatthe cytosolicendofTMIIIinmostclassI GPCRs,takesonanimportantfunctionalroleinreceptoractivation.Accordingtothe high-resolutiondensitymapofbovinerhodopsin(Palczewski etal. ,2000),the carboxylateofGlu134andthehighlybasicguanidiumofArg135formasaltbridge.This interactionisthoughttopreventthefrominteractingwiththeGproteininthe restingstate.Severalstudiesdemonstratedthatcharge-neutralizingmutationsofthe glutamate(Glu->Gln)oraspartate(Asp->Asn)residuesleadtoreceptorsthatdisplay pronouncedconstitutiveactivity(Robinson etal.,1992; Arnisetal.,1994;Kim etal., 1997;Alewijnseetal.,2000).Therefore,ithasbeenproposedthatthehighlyconserved glutamateoraspartateresiduesmightfunctionasprotonacceptorsandthatneutralization oftheseresiduesrepresentsakeyeventininitiatingreceptoractivation(Robinson etal., 1992;Arnisetal.,1994).Consistentwiththesefindings,variousothermutationalstudies showedthatreplacementoftheconservedglutamate/aspartateresidueswithhydrophobic orneutralaminoacidsledtomutantreceptorswithconstitutivephenotypes(Cohenetal., 1993;Acharyaand Karnik,1996;Scheer etal. ,1996,1997a).Also,thefirst constitutivelyactiveV2receptorharboringanaspartateto alaninemutation(Asp136Ala) hasbeendescribedrecently(Morin etal. ,1998).However,severalrhodopsin-like GPCRsareknowninwhichthenegativelychargedaminoacidisreplacedbyhistidine, asparagine,valine,,orcysteine(Schöneberg etal.,1999).Also,mutationofthe analogousglutamateintheLHreceptor(Glu441)todidnotaffectcoupling efficacysignificantly(Wangetal.,1993).Similarresultswereobtainedinstudiesonthe

15 1.IntroductionandAimoftheThesis

M1muscarinic(Luetal.,1997),α1B-adrenergic(Scheeretal.,1997),andgonadotropin- releasinghormonereceptors( Aroraetal.,1997).Interestingly,manyoftheresulting mutantreceptorswereexpressedonlypoorly(Wang etal.,1993;Luetal.,1997;Scheer etal.,1997a),suggestingthattheconservedglutamate/ aspartatealsoplaysanimportant roleinreceptorfoldingandtrafficking. Mutationalanalysishasdemonstratedthatthe Tyr/Trpresiduecontainedinthe DRY-motifisnotessentialforGproteincouplingbutisrequiredforreceptorfolding (Zhuetal.,1994;Lu etal.,1997).Forinstance,replacingtheconservedtyrosineinthe

M1muscarinicreceptoryieldedmutantreceptorsthatwereonlypoorlyexpressedinthe plasmamembrane(Luetal.,1997). The arginineresiduewithintheDRY-motifrepresentsoneofthemosthighly conservedaminoacidsamongrhodopsin-typereceptors.Thehigh-resolution rhodopsin structureindicatesthatthisarginine(Arg135)isinvolvedinhydrogenbond-interactions withitsneighboringGlu134(seeabove)andwithGlu247andThr251inTMVI.The arginineresidueisconsideredtobethecentraltriggerofGDPreleasefromtheGprotein α-subunit(AcharayaandKarnik,1996). Thisconceptissupportedbyseveral mutagenesisstudies:replacementoftheconservedarginine withdifferentaminoacids

virtuallyabolishedGproteincouplingin rhodopsin(Franke etal. ,1992),the α 1b- adrenergicreceptor(Scheer etal.,1996),themuscarinicreceptors(Zhu etal.,1994; Jonesetal.,1995),andseveralother GPCRs(Wess,1998 ).Interestingly,Jones etal.

(1995)demonstratedthatacharge-conservingmutation(Arg->Lys)intheM1muscarinic receptoronlyslightlyimpairedreceptorfunctionsuggestingthatthepositivechargein the argininesidechain iscriticalforGproteinactivation.Similarly,arecentstudy

conductedonthe β2-adrenoceptorreportedthatmutationoftheconserved arginineto histidineresultedinamutantreceptorwithunchangedcouplingefficacy(Seibold etal., 1998). Severalstudieshaveexaminedtheconformationalchangesthataccompanythe activationofaGPCR.Anearlystudyonrhodopsinshowedthatthe cytoplasmicendof TMIIImovesoutwardsduringreceptoractivationaccompaniedbystructuralchangesin thei2loop(Farahbakhsh etal. ,1993). Farrens etal.(1996)employedSDSL(site-

16 1.IntroductionandAimoftheThesis

directedspinlabeling)technologyusingmutant rhodopsinreceptorsthatcontainedone labeledcysteineinTMIIIandasecondoneinTMVI.Thisanalysisshowedthatreceptor activationisaccompaniedbyaclock-wiserotation(about30 °Casviewedfromthe cytoplasm)andanoutwardmovementofthe cytoplasmicendofTMVIrelativetoTM III.Also,disulfidebondsgeneratedbetweenthecytoplasmicendsofTMIIIandTMVI preventedactivationoftransducin,theGproteinlinkedto rhodopsin(Farrens etal., 1996).Inanotherstudy, histidinemutationswereinsertedintothecytoplasmicendsof TMsIIIandVI,resultingintheinhibitionofreceptoractivationinthepresenceofzinc ions(Sheikhetal.,1996).Apparently,thehistidinescreateda“bindingpocket”inwhich metalions(e.g.zinc)wereboundtopreventmovementofthetwohelices.Thesefindings suggestthatmajormobilitychangesoccurinTMsIIIandVIduringreceptoractivation, whicheventuallymayallowtheGproteintoaccessfunctionallyimportantresidues(e.g. atthei3loop/TMjunctions)whichhadpreviouslybeenburied.However,theexact molecularmechanismsandconformationalchangesaccompanyingreceptoractivation stillremainelusive.

1.1.5TheheterotrimericGproteinactivationcycle

Asdescribedabove,thebindingof agonisttoGPCRscausesconformational changesinthereceptorcorethatleadtotheactivationofheterotrimericGproteins.A schematicoverviewdisplayingthereceptor/GproteinactivationcycleisgiveninFig. 1.2. TheGproteins,consistingof α-,β-,and γ-subunits,arelinkedtotheplasma membranevialipidmodificationsoftheN-terminaldomainofG αandtheC-terminal helixofGγ.AccordingtotheX-raystructuresoftwoGprotein heterotrimers,theN-and C-terminiofthe α-subunitandtheC-terminusofthe γ-subunitarelocatedinclose proximityfacingtheplasmamembrane(Wall etal. ,1995;Lambright etal. ,1996). ResiduesthatarelikelytodefinetheGproteinsurfacethatisdirectlyinvolvedin receptor/Gproteininteractionshavebeenmappedtothe α4/β6loop,the β6strand,the α5helix,andtheC-terminaltailofGα(Walletal.,1995;Lambrightetal.,1996).

17 1.IntroductionandAimoftheThesis

Despitethehigh-resolutioncrystallographicdata,detailedstructuralinformation onthedynamicsofthereceptor/Gproteinactivationcycleisstilllimited.Initsresting state,theGα-subunitcontainsboundGDPandassembleswithhighaffinitywithG βγto formatrimerthatisabletointeractwithGPCRs.SincetheGDP/GTPbindingpocketis approximately30Åawayfromthereceptor,itisunlikelythatthereceptorisdirectly involvedintheGDP/GTPexchange(Bourne,1997).Threeso-calledswitchregionson Gα(switchI,switchII,andswitchIII)areknowntoundergomajorconformational changesuponGproteinactivationbuttheexactprocessbywhich GPCRstriggerthese changesisyet unkown.UponGTP-binding,theG α-subunitundergoesconformational changesprimarilyinthethreeswitchregions(seeabove),whichresultsinareduced affinityforGβγandthesubsequentdissociationofGαfromGβγ(Lambrightetal.,1994, 1996).Also,bothGprotein subunitsdissociatefromthereceptorallowingthemto interactwithdownstreameffectors(reviewedbySprang,1997,and Hamm,1998).The releaseoftheGprotein,inturn,causesthereceptortoreturntotheinactivestate.GTPis hydrolyzedtoGDPbytheGTPaseabilityintrinsictoG α.Theratewithwhichbound GTPishydrolyzedisincreasedbyRGS(regulatorofGproteinsignaling)proteins,which actallostericallyontheG α-subunit(RossandWilkie,2000).HydrolysisofboundGTP toGDPcausesthe α-subunittoadoptitsinactiveconformation.Thisresultsinan increasedaffinityofGαfortheβγ-subunitandthe reassociationofthetrimer,returning thesystemtoitsrestingstate(ConklinandBourne,1993;ClaphamandNeer,1997). Mutationalandbiochemicalstudieswithsyntheticpeptideshavedelineated residuesontheGproteinwhichseemtoformasurfacethatinteractswiththeactivated receptor(Garcia etal.,1995;OsawaandWeiss,1995; Onrustetal.,1997;Kallaland Kurjan,1997;alsoseereviewsbyNeer,1995; Bourne,1997).TheC-terminaldomainof Gαharborsmanykeyresidues,withthemostdistalC-terminal10aminoacidsplayinga majorroleinthereceptor/Gproteinactivationprocess.Inparticular,twoconserved residuesatpositions–2and–7areessentialforreceptor/Gproteinbindingand subsequentGproteinactivation(Garcia etal.,1995;OsawaandWeiss,1995;Martin et al.,1996;Onrustetal.,1997).Moredetailedfunctionalanalysishasidentifiedresidues onvariousα-subunitsthatdeterminereceptor/Gproteincouplingselectivity(seechapter

18 1.IntroductionandAimoftheThesis

1.4foradetaileddiscussion).AnotherregionoftheG α-subunitinvolvedinreceptor/G proteinbindingseemstobethehelicalN-terminaldomain.Studieswithsynthetic peptidesshowedthatapeptidecorrespondingtotheN-terminalportionof transducin couldblockrhodopsin/Gαtinteractions(Hammetal.,1988).Likewise,peptidesderived fromreceptorregionsknowntobeessentialforGproteinactivation(e.g.thei3loopof the α2A-adrenoceptor(Taylor etal. ,1994)ormastoparan,areceptor-mimeticpeptide toxin(Wakamatsuetal.,1992;HigashijimaandRoss,1994),couldbecross-linkedtothe

N-terminusofGαo.ThesefindingssupportthenotionthattheN-terminusofGα-subunits isindirectcontactwiththereceptorproteinduringthereceptor/Gproteincoupling process. Despitetheavailabilityofhigh-resolutionX-raycrystallographyofbothaGPCR (Palczewskietal.,2000)andGproteins(Wall etal.,1995;Lambrightetal.,1996),the dynamicstructuralchangesinvolvedinthereceptor/Gproteinactivationprocessandthe moleculararchitectureofthereceptor/Gproteincomplexstillremainpoorlyunderstood. Therefore,molecularmodelsderivedfrommutationalandbiochemicalanalysesstill representanindispensabletooltogainmoreinsightintothemolecularmechanisms involvedinreceptor/Gproteincoupling.

1.2Vasopressinreceptors

1.2.1Theneurohypophysealhormonesvasopressinandoxytocin

TheV2vasopressinreceptorrepresentsaprototypicalGPCRandbelongstoone ofthelargestGPCRsubclasses,thepeptidereceptorsubfamily.Thephysiologicalligand thatexertsitsfunctionviabindingandactivationofmammalianvasopressinreceptorsis theneurohypophysealhormone8-arginine-vasopressin(AVP).AVPissynthesizedasa precursorproteinlinkedtoitscarrierprotein neurophysinIIinthevasopressinergic neuronsofthesupraopticandparaventricularnucleiofthe(Schmaleetal., 1993).Itisthenpackagedintovesiclesandduringitstransporttotheaxonterminals,the biologicallyactiveform,AVP,isenzymaticallyreleasedfromits precusor.Thevesicles

19 1.IntroductionandAimoftheThesis

arestoredintheneurohypophysis(posteriorpituitary)whereAVPisreadilysecretedinto thebloodstreamuponstimulation(Mohr,1995).The neurohypophysisisalsothelocus ofreleaseof oxytocin(OT),ahormonethatisverysimilarinstructuretoAVP.Both hormonesarecyclicnonapeptidesthatformadisulfidebondviatwocysteinesat positions1and6,resultinginacyclicpartcomprisingsixaminoacidsandalinear extensionofthreeaminoacids.AVPandOTdifferonlyintheaminoacidsatpositions3 and8.Insomespecies,includingpig, vasopressincontainsaatposition8andis thereforecalled8-lysine-vasopressin(LVP).AVPandOThavepredominantlyhormonal character,butmayalsoexertneurotransmitterand neuromodulatorfunctionsinthebrain (DantzerandBluthe,1992). Despitetheirstructuralsimilarity,AVPandOTexertverydifferentbiological activities.ThemainendocrinefunctionsofOTarewelldefinedandareconfinedto functionsthatareessentialformammalianreproductionsuchasuterinecontraction,milk- ejectingactivitiesandstimulationofthesynthesisandreleaseofprolactinintheanterior pituitary.Also,OTplaysaroleinthecontrolofadaptive,socialandsexualbehaviorand hasbeenshowntostrengthenpartnershipbondinginmammals(prairievole)(Inseletal., 1993). Incontrast,thephysiologicalactivitiesofAVParemuchmorediverse.Its alternativename,antidiuretichormone,revealstheprimaryroleofAVPintheregulation ofrenalwater reabsorption(Handler etal.,1981).However,AVPalsomediatesthe contractionofsmoothmuscles( Hofbaueretal.,1984),stimulationof glycogenolysisin theliver(Hems etal. ,1976),aggregationofplatelets( Haslem etal. ,1972),the modulationofinsulinsecretionbypancreatic β-cells(Dunning etal .,1984),and stimulationof adrenocorticotropichormone(ACTH)releasefromanteriorpituitary corticotrophs(Jardetal.,1988).AVPalsoactsasa neuromodulatorinthebrainandis involvedintemperatureregulation,controlofbloodpressure,andlearningandmemory processes(Dantzeretal.,1992,Kovacsetal.,1994). Onthebasisofpharmacologicalandmolecularcriteria,atleastfourreceptor subtypesforneurohypophysialpeptidescanbedistinguished:V1a,V1b(alsoreferredto

20 1.IntroductionandAimoftheThesis

asV3),V2 vasopressinreceptors,and oxytocinreceptors.Thevarious subtypeswillbediscussedinthefollowingchapter.

1.2.2Localizationandphysiologicalfunctionsofvasopressinreceptorsubtypes

Threedifferent vasopressinreceptorsubtypes(V1a,V1b,andV2)canbe distinguishedonthebasisofboththeaffinitiestheydisplayforvariousvasopressinand oxytocinanaloguesandthesecondmessengersystemsthattheyarelinkedto.Molecular cloningstudieshaveshownthatthethreereceptorsrepresentdistinctmolecularentities. Thevasopressin-1receptors(furtherdifferentiatedintoV1a(Thibonnier etal., 1994)andV1b(Sugimoto etal.,1994)receptorsubtypes)areselectivelylinkedtoG

proteinsoftheG q/11class.ActivationoftheV1-typereceptorsleadstothestimulationof phosphatitylinositol(PI)turnoverviaactivationofdistinctphopholipaseC β isoforms (Berridge,1987,Thibonnier etal.,1994).Incontrast,theV2vasopressinreceptor

preferentiallycouplestoGproteinsoftheG sclass,whichthenstimulateadenylyl cyclase,elevatingintracellular cAMPconcentrations( OrloffandHandler,1967)(Fig. 1.4,page13). TheV1areceptoriswidelydistributedandisresponsibleforAVP-dependent contractionofvascularsmoothmuscle,theaggregationofplatelets,andincreased glycogenolysisinhepatocytes.Ostrowskietal.(1992,1993)demonstratedthepresence ofV1areceptormRNAinthekidneyonglomerular mesangialcells,withintherenal medullaandcortex.V1areceptorsarealsofoundinthebrain( Tribolletetal.,1988)and spinalcord(Sermasi etal.,1993)andmaybeinvolvedincentralprocessessuchas memoryandlearning. TheexpressionoftheV1breceptorappearedtoberestrictedtothe adenohypophysis(anteriorpituitary)whereAVPstimulationleadstothesecretionof ACTH(Jardetal.,1986). Lolaitetal.(1995),however,demonstratedthepresenceof V1breceptormRNAinmanyperipheraltissuesandnumerousotherareasofthebrain. V2receptorsseemtohavearatherlimitedtissuedistributionandareprimarily expressedinthecollectingductsystemofthekidney.However,theuseofspecificV2

21 1.IntroductionandAimoftheThesis receptoragonistsalsosuggeststhepresenceof extrarenalV2receptors.Interestingly,the administrationof(1-deamino-[8-D-arginine]-vasopressin=dDAVP)leads tovasodilatoryactionsintherataortathroughstimulationofnitricoxiderelease( Liard, 1994,Tamakietal.,1996).Also,administrationofdDAVPtohealthysubjectsleadsto facialflush,thereleaseof vonWillebrandfactor,coagulationfactors(factorVIIIc),and tissueplasminogenactivator( Bichetetal.,1988).Incontrast,theseeffectscannotbe observedinpatientswhosufferfromX-linked nephrogenicdiabetesinsipidus,wherethe V2 vasopressinreceptorisnon-functional,suggestingthatV2vasopressinreceptors mediatetheobservedresponses( Bichetetal.,1988;Moses etal.,1995;van Lieburget al.,1995).

1.2.3TherenalphysiologyoftheV2vasopressinreceptor

Asdescribedabove,oneofthemainendocrinefunctionsofAVPisthe facilitationofwaterreabsorptionbythekidneys.Inhumans,thekidneysprocess180Lof plasma(glomerularfiltrate)perdayinordertoeliminatetoxicmetabolitesandto maintainproperwaterandelectrolytehomeostasis(reviewedbyPocock,1999). Ahealthyhumanbeingproducesbetween1.5and2Lofurineaday.The reabsorptionof80%oftheprimaryfiltratetakesplacesintheproximaltubuleofthe kidneynephrons,mostlythroughactivere-uptakeofions,glucose,andaminoacids, whichpassivelycarriesanobligatoryamountofwater.Another15%ofthe glomerular filtratearereabsorbedinthedistaltubules.Theremaining5%,correspondingtoabout9 Lofhypotonicfluid,reachthecollectingductandarepassivelytakenupunderthe controlofAVP.AVPisreleasedintothebloodstreaminresponsetostimulisuchas increasesinplasmaosmolarity(assmallas1%)orvolumedepletionby>10%.Itexerts itsphysiologicalrolethroughbindingtoandactivationofV2 vasopressinreceptors, whicharealmostexclusivelyexpressedatthebasolateralsurfaceoftheprincipalcellsof thecollectingduct.WithinoneminuteofAVPrelease,insertionofspecificwater channels,aquaporins(AQP),intothe luminalsideofthecollectingductcellscanbe observedwhichfacilitatesthereabsorptionofwater(reviewbyBirnbaumer,1999).

22 1.IntroductionandAimoftheThesis

ActivationofrenalV2receptorsleadstothestimulationofG s,whichinturn interactswithandactivatesadenylyl cyclase.Theresultingincreasein cAMPand subsequentcAMP-dependentphosphorylationofprotein kinaseA(PKA)allowsthe fusionofAQP2-containingvesicleswiththe luminalmembraneofcorticalcollecting ductcells(Snyder etal.,1992;Nielsen etal.,1993;Nishimoto etal.,1999).PKAand cAMPalsoseemtoinfluencetheproductionandreleaseofAQP2inamorelong-term mannerbytranscriptonalupregulationofAQP2geneexpressionviaacAMP-responsive structuralelementintheAQP2promoter( Hozawa,1996;Yasui,1997).Apparently,V2 receptoractivationthroughAVPmodulatesbothshort-termandlong-termmechanisms thatassureproperwaterhomeostasis(diGiovanni,1994). InsertionofAQP2intotheapicalmembraneofthecollectingductcellsmarkedly increasestheirwaterpermeability.Asaresult,waterispassivelydrawnintothe collectingductcellsduetotheexistingosmoticgradientbetweentheinterstitiumandthe filtrate.AQP3( Ecelbarger etal. ,1995)andAQP4( Terris etal. ,1995),whichare constitutivelyexpressedatthe basolateralsurfaceofthecollectingductcellsallowthe watertoexitandre-enterthebloodstream.Fig.1.5illustratesthisprocessinasimplified scheme.

1.2.4NephrogenicDiabetesInsipidus(NDI)andtreatments

1.2.4.1NDI:generalimplicationsandclinicalpicture

Nephrogenicdiabetes insipidus(NDI)isadiseasethatischaracterizedbythe inabilityofthekidneytoconcentrateurine.NDIpatientsexcretelargevolumesofdilute urine(~9Ldaily)(polyuria)andsufferfromexcessivethirst(polydypsia).NDIcaneither beacquiredorinherited(congenitalNDI).AcquiredNDIismostlycausedbydrugs (orasstandardtreatmentofbipolarpsychosis),metabolic disorders(hypokalemia, hypercalcemia),orrenaldiseases.Twodifferentformsof congenitalNDIareknown:autosomalNDIandX-linkedNDI,which accountsfor95% ofthecases.CongenitalNDIisararedisease(estimatedprevalence:1per250,000

23 1.IntroductionandAimoftheThesis

Principal cell Interstitial fluid

AVP V2 receptor Adenyly cyclase Lumen of the collecting duct

αs βγ AQ2 AQ4 αs PKA H O 2

ATP cAMP AQ2 AQ3

AQ2

AQ4

Interstitial AQ2 H 2O fluid

AQ2 AQ3

H O 2

AQ3 AQ4 AQ3 AQ4 AQ3

Basolateral surface

Fig.1.5.Diagramoftheprincipalcellofthekidneycollectingduct. AquaporinsAQ3andAQ4are constitutivelyexpressedandlocatedonthe basolateralsurfaceoftheprincipalcell.StimulationoftheV2 vasopressinreceptorbyAVPleadstoactivationof adenylylcyclaseandsubsequentincreasesin intracellularcAMPconcentrationstimulatePKA,whichinturnleadstotheinsertionofAQ2intotheapical surfaceoftheprincipalcell(modifiedfromBirnbaumer,1999).

males)(Bichetetal. ,1992)butifnotdetectedearlyinnewborns,NDImayresultin mentalretardationordeathduetoseverehypernatremia(Knoers,1992). AutosomalNDIiscausedbyinactivatingmutationsintheAQP2gene( Deenet al.,1994).Incontrast,asfirstshownbyRosenthal etal.(1992),X-linked nephrogenic diabetesinsipidus(XNDI)iscausedbyinactivatingV2vasopressinreceptormutations.

24 1.IntroductionandAimoftheThesis

Todate,morethan150differentmutationshavebeenidentified(Yun etal.,2000).The V2receptorgeneislocatedattheveryendofthelongarm(q28-qter)oftheX chromosome(Seiboldetal.,1992),whichseemstomakeitparticularlysusceptibleforde novomutations.Also,itslocationontheXchromosomeaccountsforthefactthatXNDI mostlyaffectsmales. AnalysisofthedifferentV2receptormutations,whichencompass missense, nonsense,deletion,insertion,andframeshiftmutations,revealedthatgeneticalterations occurthroughoutthecodingregionwithnopreferenceforso-calledhotspots,even thoughtevidenceexiststhatmutationsoccurpreferablyat CpGdinucleotides( Bichet 1998,1999).FunctionalanalysisofNDI-causingV2mutantreceptorshasshownthatthe inactivatingmutationscaninterferewithproperreceptorfunctionatvariousdifferent steps.Theseincludeincorrectreceptorfolding(Sadeghietal.,1997c),defectivetransport (Tsukaguchietal.,1995),reducedcellsurfaceexpression( Birnbaumer etal. ,1994; Sadeghietal.,1997a),reducedorabolishedbindingofAVP(Pan etal.,1994),orlossof theabilitytostimulateGs(Rosenthaletal.,1993;Birnbaumeretal.,1994;Sadeghietal., 1997a).90%ofinactivatingreceptormutationsresultinmutantV2receptorsthatare retainedwithintheendoplasmaticreticulum(Yun etal.,2000).AnalysisofNDI-causing mutantV2receptorshasprovidedvaluableinformationaboutthesynthesis,processing andregulationofthereceptor. Anotherformofdiabetes insipidusiscausedbyadefectinthesynthesisand/or processingofAVPandisthereforecalledcentraldiabetesinsipidus(CDI).Patients sufferingfromCDIdisplaythesameclinicalphenotypeasNDIpatientsbutcanbe treatedwiththeAVPanaloguedesmopressin(dDAVP),whichisadministereddailyvia nasalapplications(Singer,1997).

1.2.4.2TreatmentofNDI

ThemoststraightforwardtreatmentofNDIistheadministrationoflargeamounts ofwatertocompensatefortheincreasedlossofurine,combinedwithadietthatislowin sodium.Pharmacologicaltherapiesencompasstheuseofthiazidediuretics,whichblock

25 1.IntroductionandAimoftheThesis theactiveuptakeofNaClinthedistaltubule.Thislossofsodiumleadstoanincreased passiveuptakeof NaClintheproximaltubule,whichisaccompaniedbyanobligatory volumeofwater( Schnermann,1998).Thevolumeofurinecanthusbereducedupto 50%.Oftenthiazidesareadministeredincombinationwith amiloride,apotassium- sparingdiuretic,topreventhypokalemia,whichisatypicalsideeffectofthiazides( Alon etal.,1985).AnotherclassofdrugsthatarebeingusedinthetreatmentofNDIanddrug- induced polyuriaare cyclo-oxygenaseinhibitorssuchasindomethacin.Prostaglandin (PG)E2abatestheformationofcAMPincollectingductcells.Thus,inhibitionofPGE2 productionleadstomorepronouncedincreasesin cAMPfollowingactivationofthe AVP/V2receptorsignalingcascade. FuturetherapiesofXNDImayincludegenetherapystrategies.InCOS7-cells,co- expressionofNDI-causingmutantV2receptorswithpeptidescomprisingV2domains thatcomplementtruncatedormutatedV2receptorsyieldedfunctionalreceptorunitsthat wereabletostimulateadenylylcyclaseinthepresenceofAVP(Schönebergetal.,1996). Itremainstobeseenwhetherthisapproachisalsofeasibleinvivo.

1.3Structuralfeaturesofvasopressinreceptors

Thethree vasopressinreceptorsubtypeshavebeenclonedfrommanyspecies, withtheearliestbeingtheratandhumantheV1a(Morel etal.,1992;Thibonnieretal., 1994),theratandhumanV1b(Lolaitetal.,1995;Sugimotoetal.,1994;deKeyzer etal.,1994),andtheratandhumanV2receptors( Lolaitetal.,1992;Birnbaumeretal., 1992).Thegenesencodingthevarioussubtypesareinterruptedbyeitherone(V1aand V1b)ortwointrons(V2),withone intronbeinglocatedatthesamelocusinallthree members,interruptingthecodingsequenceimmediatelyaftertheregionencodingTM VI.TheV2receptorhasasecond intronsituatedintheregioncodingfortheN-terminal domain.Theresultingreceptorproteinsvaryinlength,with371aminoacidsforthe humanV2(Birnbaumeretal.,1992),418aminoacidsforthehumanV1a(Thibonnier et al.,1994),and424forthehumanV1breceptors(Sugimotoetal.,1994;deKeyzeretal., 1994).

26 1.IntroductionandAimoftheThesis

N S N

e e1 2 e3 C Extracellular I II III IV V VI VII C P F P D A P N P N W W L Y Y D R C Intracellular Y

i1 i2 i4 i3

C

Fig.1.6Schematictwo-dimensionalstructuralrepresentationofaclassIGPCR. Thecharacteristic seventransmembranedomains(I-VII)arejoinedbythreeextracellular(e1-e3)andthreeintracellularloops (i1-i3).TheN-terminusisextracellularwhiletheC-terminusisintracellular. Palmitoylationofoneormore cysteineresidueslocatedwithinthecarboxylterminusleadstotheformationofafourthintracellularloop

(i4).Encircledaminoacidresiduesareconservedinmostrhodopsin-likeGPCRsandareimportantfor receptorfoldingandfunction.Thetwoinvariant cysteineresiduesatthee1loop/TMIIIjunctionandthee2 looparelinkedviaadisulfidebond(solidline),aninteractionthatiscrucialforreceptorfunctionand surfacelocalization.

Thethreevasopressinreceptorsubtypesdisplaythetypicalstructuralhallmarks characteristicofmost rhodopsin-likeGPCRs(seeFig.1.6,alsoseeFig.1.7):consensus sitesforN-glycosylation(N-X-S/T)intheextracellulardomain,anasparagineinTMI,a leucine,alanine,andaspartate(L-X2-A-D)inTMII,andtheDRY-motifatthejunction ofTMIII/i2loop.Additionalconservedresiduesencompasstwocysteinesatthee1 loop/TMIIIjunctionandinthee2loopformingadisulfidebond,oneormorecysteine

27 1.IntroductionandAimoftheThesis

residuesintheC-terminaltail,andadditionalconservedmotifsinTMIV(W-X 8/9-P),TM

V(F-X2-P-X7-Y),andTMVI(W-X-P). TheconservedarginineresiduewithintheDRY-motifinTMIIIhasbeenshown tobecrucialforGproteincouplingformany GPCRs(Moroetal.,1993;Scheeretal., 1996;Van RheeandJacobson,1996).Interestingly,ithasbeendemonstratedthatthe NDI-causingArg137HismutationintheV2receptor(whichispartoftheDRY-motif) doesnotcompletelyabolishGproteinactivationaspreviouslyassumed(Rosenthaletal., 1993)butleadstoligand-independentreceptorphosphorylationandconstitutivearrestin- mediateddesensitization( Barak etal. ,2001).Theglutamateprecedingthehighly conservedarginineisthoughttoplayaroleinconstrainingtheadjacentarginineside chain,thuspreventingtheargininefrominteractingwiththeGproteinintherestingstate (Arnisetal.,1994;Palczewskietal.,2000).Consistentwiththisconcept,aconstitutively activeV2receptorhasbeendescribedbyMorin etal. (1998)whichharborsan

Asp136Alamutation.ThehighlyconservedN-P-X 2-YmotifinTMVIIappearstobe involvedinreceptoractivation,sequestrationandsignaling( Baraketal.,1994;Mitchell etal.,1998).Thesehighlyconservedresiduesandmotifsseemtobecriticalforproper receptorfoldingandfunctionofrhodopsin-like GPCRs(Wess,1998; Palczewskietal., 2000).AminoacidsthatareconservedonlyinspecificGPCRsubfamiliesaccountfor structuralfeaturesthatareuniquetoonlythissubclassofreceptors,suchasligand bindingandsignaling(Attwood etal. ,1991).Residuesformingtheligandbinding domainaswellasthestructuralfeaturesregulating vasopressinreceptorexpressionand functionwillbediscussedinthefollowingchapter.

1.3.1Ligandbindingdomains

1.3.1.1Agonistbindingdomain

Theligandbindingdomainsofrhodopsin(Hendersonetal.,1990),adrenoceptors (Dohlmanetal.,1991)andmuscarinicreceptors(Wess,1996)werethefirsttobestudied extensively.Recently,adetailedthree-dimensionalmodeloftheratV1areceptor/AVP

28 1.IntroductionandAimoftheThesis complexwasdevelopedandvalidatedbysite-directed mutagenesisstudies(Mouillac et al.,1995)(Figs.1.7,1.8).Inanalogytothe agonistbindingdomainofbiogenicamine neurotransmitterreceptors(Strader etal.,1987),thehydrophobicpocketformingthe AVPbindingsiteisdeeplyburiedintheTMbundleat15-20Åfromtheextracellular surface,involvingseveralTMs(mainlyTMIItoVII).AVPbindingseemstoinvolvean intricatenetworkofhydrogenbondinteractionsbetweenmanydifferentreceptorresidues andthepeptideligand.Interestingly,theresiduesthoughttobeinvolvedinAVPbinding arehighlyconservedamongallvasopressinreceptorsubtypes,suggestingthatthereisa commonagonist-bindingsiteforthedifferentmembersoftheAVP/OTreceptorfamily. Indeed,molecularmodelingoftheV2(Czaplewski etal. ,1998)andthevasotocin (Hausmannetal,1996)receptorsandidentificationoftheirhormonebindingdomain confirmedthatthekeyresiduesinvolvedinhormonebindingcorrespondtotheones alreadyidentifiedintheV1areceptor(Fig.1.7).Specifically,aseriesofconservedGln residuesinTMII,III,IV,andVI,anda LysinTMIIIhavebeendemonstratedtobe intimatelyinvolvedinagonistbindingbytheV1areceptor(Mouillac etal.,1995)(Figs. 1.7,1.8).Interestingly,mutationoftheseresiduesaffectedtheaffinityofstructurally diverseagonistsinaverysimilarfashion,whereas antagonistbindingaffinitiesremained unaltered(Barberisetal.,1998). Inaddition,twoaromaticresidues,Phe225(TMV)andTyr300(TMVI),atthe bottomofthebindingpocket,havebeenreportedtomodulateagonistefficacyattheV1a receptor(Chinietal.,1996).Molecularmodelingstudiessuggestthatresidues2and3of AVPinteractwiththesearomaticaminoacids(Hibert etal.,1999)(Fig.1.7).Indeed, mutationsoftheanalogousresiduesintheoxytocinreceptor,atwhichAVPactsonlyasa partialagonist,toeither ortyrosinerestoredfullAVPactivityofthe vasopressinhormone(Hibertetal.,1999). Furthermore,studieswithsyntheticpeptides(Howland Wheatley,1996;Mendre etal.,1997), photoaffinitylabelingexperiments( Kojro etal.,1993),hybridreceptor approaches(Postina etal. ,1998),and mutagenesisstudieshaveshownthatthe extracellulardomainsofthevasopressinreceptorsalsocontributetoAVPbinding.For instance,syntheticpeptidescorrespondingtothee1loop(HowlandWheatley,1996)and

29 N-glycosylation site G H P 10 P S V L P A cleavage disulfide bond S E R S Q P site S extracellular T L L P S S 30 D e1 T 20 N T 103 R S D F e2 R T A R 200 e3 D P W A A E G 300 M G F E A O-glycosylation sites P K 100 C R L P A S G G P P L G R W E D M D W L L A V T V W A A C F A R L 110 D T 190 Y NH2 N 295 A G 304 E Q L C R V 206 40 92 180 A R A P L P A Q T W W W F A L V K A I L V Y I F A L V Q V L L Q L L F L S I F Q F M M V L M L F V P F L F A V Q V A L V A V G M L P A W A V A L Y S P C Y S A 50 D A L T L L L N L A S L G V S N S L S L I V Y C C Y S A A V T N G L M A F V P V L H I W C Q I W palmitoylation L I G L A V V I A F A V L T L Y A V M V L I T A L H L T F M S site A D R 63 R P R V C C 63 I R H 158 A K F S A 74 II R 158 VII R R A I V E R L I P N V 269 S S 138 I 230 G R C W V L L 340 A IV H A S R G III H A 330 S E S W R A T R S R H P A S VI helix 8 G P V 70 M G L S i4 P L V P H E D G S Q S i1 G S A P A H P E L 350 intracellular Y R G C G G 260 150 G T T P T L A K R 360 S S 240 S D i2 R A S E G 250 T R S R S 370 P R G G R phosphorylation site COOH i3 1.IntroductionandAimoftheThesis thee2loopoftheV1areceptor( Mendreetal.,1997)inhibited[ 3H]AVPbindingtothe V1areceptor.Inphotoaffinitylabelingstudies, Kojroetal.(1993)identifiedthee1loop oftheV2receptortobeimportantforagonist-binding.Interestingly,Hawtinetal.(2000) recentlyreportedthatan11aminoacidsubdomainoftheN-terminusoftheV1areceptor wasrequiredforhighaffinityagonistbindingbutnotforantagonistbinding.Substitution ofthis subdomainbyhomologousoxytocinreceptorsequencerecoveredhighaffinity agonistbinding,indicatingthatthisreceptordomainisrequiredforagonistbindingperse butdoesnotinfluencesubtypespecificagonistrecognition(Hawtin etal.,2000).Site- directedmutagenesishasidentifiedaseriesofsingleresiduesthatdirectlymodulate agonistbindingselectivity.Forinstance,substitutionofthreonineinposition204(e2 loop)intheV2receptorwith asparagineaffectsagonistbindingselectively,resultingin AVPbeing50foldmorepotentthantheselectiveV2agonist dDAVP(theratioforthe wildtype(wt)receptoris2.3)(Postinaetal.,2000).Also,replacementofTyr115present inthee1loopoftheV1areceptorwithaspartate(theanalogousresidueintheV2 receptor)orphenylalanine(thecorrespondingaminoacidinthe oxytocinreceptor)leads toapronouncedincreaseindDAVPor oxytocinagonist-bindingaffinities(Chini etal., 1995).Likewise,site-directedmutagenesisofbovineandporcineV2

______

Fig.1.8 TransmembranetopologyoftheV2 vasopressinreceptorshowingfunctionallyimportant residues.Encircledaminoacidresiduesonwhitebackgroundareconservedamongmostrhodopsin-like receptors(alsoseeFig.1.6): N-terminus:Asn22, TMI :Asn55, TMII :Leu81,Ala84Asp85, TMIII: Cys112,Asp136,Arg137,His178, TMIV:Trp164,Pro173, e2:Cys192, TMV:Phe214,Pro217, TMVI: Trp284,Pro286, TMVII :Asn321,Pro322,Tyr325, C-terminaltail :Cys341,Cys342.Aminoacids highlightedinblackcirclescorrespondtotheV1areceptorresiduesthathavebeenshowntobecritically involvedinagonistbinding(Mouillac etal.,1995);thoseinclude: TMII:Gln92,Gln96, e1:Asp103,TM III:Lys116,Gln119, TMIV:Gln174,TMVI:Gln291.Asp103isresponsibleforhighaffinityV2selective agonist(dDAVP)binding( Ufer etal. ,1995). Aminoacidsin greysquarescorrespondtoV1areceptor residuesthatinteractwithresidue2and3ofAVP( Chinietal.,1996;Hibertetal.,1999),thoseinwhite squarescorrespondtotheV1areceptorresiduesthatareinvolvedin vasopressinantagonistbinding (Phalipouetal. ,1999;Cotte etal. ,2000).Ligand-induced proteolyticcleavageoccurswithinthe FQVLPQL-consensussequence(TMII)betweenGln92andVal93(Kojro etal.,1999).Aminoacidsin blacktrianglesindicatepotentialO-glycosylationsites(Sadeghi etal.,1997),thoseinwhitetriangles representphosphorylationsites( Innamoratietal.,1998a;Oakley etal.,1999).TheN- glycosylationsite (Asn22),theputativedisulfidebondformedbycysteinesatthee1/TMIIIjunction(Cys112)ande2loop (Cys192),andthepalmitoylationsitesintheC-terminaltail(Cys341,Cys342)areindicated.Thesingle letteraminoacidcodeisused,aminoacidsandnumbersrefertopositionsinthehumanV2 vasopressin receptor(Birnbaumeretal.,1992).

31 1.IntroductionandAimoftheThesis

TM II TM IV 115 Y 108 TM III Q 104 185 Q 131 Q Q 128 R K G Q P NH2 N C S S F C

Y TM I TM VII

TM V Q131

TM VI

Fig.1.8Schematicrepresentationoftheinteractionsofvasopressinwiththemembranespanning domainsofthe vasopressinV1areceptor. HelicalwheelmodeloftheV1areceptor,asviewedfromthe surfaceoftheplasmamembrane.AminoacidspredictedtobeinvolvedintheinteractionbetweenAVPand theV1areceptorareindicated( Mouillacetal.,1995)(seetextfordetails).ModifiedfromBarberis etal. (1998).

receptorsidentifiedAsp103inthee1loopofV2receptorstoberesponsibleforhigh affinitybindingof dDAVP(Ufer etal.,1995)(Fig.1.7).Furthermore, mutagenesis studiessuggestedthatTyr115oftheV1areceptor isindirectcontactwiththesidechain ofArg-8inAVP( Chinietal.,1995).Recently,aseriesofresidues(Arg202,Gly304, Leu100)hasbeenreportedtoberesponsibleforthedifferencesin agonistbinding

32 1.IntroductionandAimoftheThesis propertiesbetweentheratandhumanV2receptors( Cotteetal.,1998).Interestingly, theseaminoacidsdonotcontributetothebindingofnon-selective ligands(Cotteetal., 1998).Moreoever,twooftheseresidues(Arg202andGly304)wereshowntofully accountforthespeciesselectivityofcertainpeptideantagonists. NaturaloccurringmutationsintheV2receptoralsouncoveredsinglepoint mutationsthataffectagonistbinding,suchasanArg113Trpmutation.Arg113islocated rightnexttotheconserved cysteineatthee1loop/TMIIIjunctionandmutationto tryptophaneresultsinamutantvasopressinreceptorwithreducedagonist-bindingaffinity (Bichetetal.,1993;Birnbaumeretal.,1994).Likewise,deletionofArg202locatedinthe e2loopcriticallyaffectshighaffinityAVPbinding(Alaetal.,1998).

1.3.1.2Antagonistbindingdomain

Molecularmodelingand mutagenesisstudieshaveprovidedconsiderableinsight intothestructuralfeaturesformingtheagonistbindingpocketofthe neurohypophyseal hormonereceptors(theAVP/OTreceptorfamily),yetthestructuraldeterminants definingtheantagonistbindingdomainsremainratherelusive. Mutagenesisstudiesinitiallyshowedthatantagonistbindingremainedlargely unaffectedbymutationsthataltered agonistbindingaffinities( Mouillacetal.,1995). However,arecentstudycombiningphotoaffinitylabeling,molecularmodelingandsite- directedmutagenesissuggestedthattheagonist-andantagonist-bindingpocketmight overlap(Phalipouetal.,1999).Thedevelopmentofiodinatedphotosensitiveantagonist ligandswithhighaffinityfortheV1areceptorsubtype(Carnazzi etal.,1994,1997) allowedthecovalentlabelingofspecificreceptor subdomains.Employingtwodifferent linearpeptideV1areceptorantagoniststhatwerelabeledatdifferentpositionsallowed theidentificationofarestrictedregionspanningthee1loop( Phalipouetal.,1999)and domainspanningTMVIIandthemembrane-proximalportionoftheC-terminaltail (Ni4)(Phalipou etal.,1997).Mutagenesisstudiesalsoidentifiedanumberofaromatic residuesinTMVIoftheV1areceptor(Trp304,Phe307,Phe308)thatwhenmutatedled

33 1.IntroductionandAimoftheThesis toareductioninantagonistbindingaffinities(Phalipou etal.,1997;Cotteetal.,2000) (Fig.1.7). Molecularmodelingandsite-directed mutagenesisstudiesoftheV1areceptor alsoidentifiedaseriesofaminoacidsthatarealsoinvolvedinhighaffinity agonist binding,suchasLeu128(TMIII)andGln185(TMIV)(Phalipou etal.,1999;Cotte et al.,2000).Moreover,Tyr115inthee1loopthatplaysakeyroleinmodulatingagonist selectivityalsoappearstobeinvolvedinantagonistbinding( Phalipouetal. ,1999). Interestingly,modelingstudiessuggestthatthelinearpeptideantagonists,whichdiffer fromAVPinfiveoutofnineaminoacids,adoptapseudocyclicconformationsimilarto thatofthecyclicAVP( Phalipou etal. ,1999).Theseantagonistscouldenterthe transmembranecoreandoccupyasimilarbindingpocket,establishingtheirownnetwork ofinteractions(Phalipouetal.,1999). Takentogether,thesedatasuggestthatthe vasopressinantagonistbindingsite significantlyoverlapswiththatofAVP.Theconceptthat agonistsandantagonists occupysimilarbindingpocketshasalsobeenproposedforotherpeptidereceptors,such asthecholecystokinin(CCK)-Areceptor(Dongetal.,1999).

1.3.2Regulationofreceptorexpressionandfunction

1.3.2.1Receptorglycosylation

AlargebodyofevidencesuggeststhattheN-terminaldomainofmostGPCRsis glycosylated.TheN-terminusoftheV2receptorharborsonesiteforN-linked glycosylation(Asn22)(consensussequence:Asn-X-Ser/Thr)(Innamoratietal.,1996)and severalsitesforO-linkedglycosylation( Sadeghietal.,1999)(Fig.1.7).ThematureV2 receptorproteinhasanapparentmolecularmassofaround45 kDaasdeterminedby Westernblotanalysis(ZhuandWess,1998).TostudytheimportanceofN-linked glycosylation,Innamorati etal.(1996a)eliminatedthe glycosylationsitebyreplacing Asn22withGln,andinvestigatedthefunctionalpropertiesoftheresultingV2(Asn22Glu) receptor.Interestingly,theligandbindingaffinities(K D),receptorexpressionlevels

34 1.IntroductionandAimoftheThesis

(Bmax),andGproteincouplingproperties(EmaxandEC50)ofthenon-glycosylatedreceptor werevirtuallyidenticaltothoseofthewtV2receptor( Innamoratietal.,1996a).TheN- terminaldomainalsocontainsseveralandthreoninesthatcouldserveaspotential sitesforO-glycosylation(Fig.1.7).Asite-directedmutagenesisstudyconfirmedthatthe V2receptorisindeedsubjectedtoO-glycosylation(Sadeghietal.,1999).Removalofall serinesandthreoninesintheN-terminaldomainyieldedamutantV2receptorthatwas devoidofO-glycosylation.Interestingly,thelackofO-glycosylationhadnoeffectonV2 receptorfunction(Sadeghietal.,1999). TheV1areceptorcontainsfourpotentialN-glycosylationsitesbasedonthe Asn- X-Ser/Thrconsensussequence:twointheN-terminalregion,oneinthee2andoneinthe e3loop.Hawtin etal.(1997)demonstratedthatthreeoutofthesefourpotentialsites indeedundergoglycosylation(thee3loopisnotglycosylated).Removalofthe glycosylationsiteinthee2loopbyamutationoftheasparaginetoglutaminedidnotalter ligandaffinity,expressionlevelsorfunctionalcouplingoftheresultingmutantreceptor, ascomparedtothewtprotein(Hawtinetal.,1997).TheroleofN-terminalglycosylation inV1areceptorfunctionhasnotbeeninvestigatedyet. IthasbeenspeculatedthatGPCRglycosylationmayincreaseproteinstabilityand prolongthelifetimeofcellsurfacereceptors.However,thepotentialroleofV1aandV2 receptorglycosylationremainselusiveatpresent.

1.3.2.2Disulfide-linkageofextracellulardomainsandreceptorpalmitoylation

ClassIGPCRscontainhighlyconservedcysteineresiduesatthee1loop/TMIII junction,withinthee2loopandwithintheC-terminaltail. Affinitylabelingand mutagenesisstudies(Curtis etal.,1989;CookandEidne ,1997; Ehrlichetal.,1998; Hoffmannetal.,1999;SchollandWells,2000; Ellingetal.,2000)havesuggestedthat thetwocysteinesatthee1loop/TMIIIjunctionande2loopareengagedinadisulfide bridge,whichhasnowbeenconfirmedbytheX-rayanalysisofbovinerhodopsin (Palczewski etal. ,2000).Likewise,allmembersofthevasopressinreceptorfamily harborthetwoconservedcysteines,whicharepredictedtoformadisulfidebond

35 1.IntroductionandAimoftheThesis

(Gopalakrishnanetal. ,1988;Schülein etal. ,2000;Schulz etal. ,2000)(Fig.1.7). Interestingly,someGPCRsappeartocontainanadditionaldisulfidebond.Forinstance,

theβ2-adrenergicreceptorseemstohaveaseconddisulfidebondbetweentwo cysteines inthee2loopnexttothehighlyconservedonebetweenTMIIIandthee2loop(Noda et al.,1994).Also, mutagenesisstudiespredictthepresenceofaseconddisulfidebond formedbetweentwo cysteinesattheN-terminaldomainandthee3loopintheP2Y 1 receptor(Hoffmannetal.,1999). Theconserveddisulfidebondispredictedtobeimportantforbothprotein processing/foldingandtraffickingtotheplasmamembraneaswellasfor ligandbinding andfunctionalactivity.Forinstance,thelackofthedisulfidebondintheGnRHreceptor doesnotimpaircorrectinsertionintotheplasmamembranebutabolishes ligandbinding andsecondmessengerproduction(CookandEidne,1997).Davidson etal.(1994) demonstratedapivotalroleofthedisulfidebondinformationofthelight-activated metarhodopsinIIstate.Tworecentstudiesexaminedthefunctionalroleoftheconserved disulfidelinkageintheV2 vasopressinreceptor( Schüleinetal.,2000;Schulz etal., 2000).Exchangingeitheroneofthetwocysteinesagainst alanineor strongly impairedreceptortransporttothecellsurface.BothElisastudies(Schulz etal.,2000) and[ 3H]AVP(Schülein etal.,2000)bindingstudiesdemonstrateddrasticallyreduced numbersofcellsurfacereceptors,eventhoughtotalcellularexpressionlevelsremained unaffected.LossofthedisulfidebridgedidnotabolishtheabilityofthemutantV2

receptorstoactivateGs,albeittheresultingAVPEC50valuesweresignificantlyshiftedto higherconcentrations. Theroleofthetwoconserved cysteinesintheC-terminaltailoftheV2receptor hasbeenstudiedindetail( Sadeghietal.,1997b;Schüleinetal.,1996).Both cysteines arethoughttoactasacceptorsitesforfattyacidmodificationandtobelinkedtothe plasmamembraneviapalmitoylation(Fig.1.7).Tostudytheimportanceofthesetwo residues,singlepointmutations(Cys341SerandCys342Ser)aswellasadoublemutation wereintroducedintothewtV2receptorandthethreeresultingmutantreceptorswere characterizedinfunctionalassays(Schülein etal.,1996).Interestingly,thesinglepoint mutationsfailedtoproducealterationsinreceptorexpressionlevels,receptoraffinityfor

36 1.IntroductionandAimoftheThesis

AVP,andreceptorfunction.Thedoublemutantdisplayedareductioninprotein expressionlevels,butshowedwt-like ligandbindingandcouplingproperties.These observationswereconfirmedby Sadeghietal.(1997b)whoalsodemonstratedthatboth C-terminalcysteinescanbepalmitoylatedindependentlyofeachotherandthatone palmitoylationsiteissufficienttoresultinnormallevelsofreceptorexpression. EliminationofbothcysteinesledtoareductionofAVPbindingsitesonthecellsurface byabout50%,suggestingthatpalmitoylationpromotesretentionoftheproperlytargeted receptorsintheplasmamembrane(Sadeghietal.,1997b).

1.3.2.3Receptorphosphorylationanddesensitization

GPCR-mediatedresponsesaresubjecttoregulatorymechanismsinorderto preventexcessivestimulationinthepresenceofligand.Physiologically,thisphenomenon canbeseeninagradualattenuationoftheintensityofreceptorsignalingdespitethe continuouspresenceofagonist.Thisprocessofcellulardesensitizationinvolvesseveral molecularmechanisms.DependingontheamountoftimeaGPCRisexposedtoagonist, theeffectofdesensitizationcanbedividedintoashort-termcomponent(receptor internalization/sequestration,whichisthedisappearanceofreceptorsfromthecell surfacewithoutachangeintotalreceptornumber)andalong-term(receptordown- regulation)one(Hardmanetal.,1996;Böhmetal.,1997). Thefirststepinreceptordesensitizationistheuncouplingofthereceptorfromits Gprotein,whichoccurswithinsecondstominutesafterreceptoractivationduetoagonist stimulation.Phosphorylationbyvariousprotein kinaseshasbeenshowntobeimportant incausingtheuncouplingresponse(seebelow).Theligand-occupiedandphosphorylated receptorisremovedfromtheplasmamembraneandinternalizedinto endocyticvesicles thatprovidethecorrectpHtoallowremovaloftheligandand dephosphorylationsothat thereceptoreventuallycanberecycledtotheplasmamembrane(Pitcher etal.,1998; Krupnickand Benovic,1998).ManyGPCRsundergointernalizationin an arrestin- mediatedfashion(Baraketal.,1997;Zhangetal.,1999;Baraketal.,1999;Oakleyetal.,

37 1.IntroductionandAimoftheThesis

2000),butarrestin-independentpathwaysalsoplayaroleinreceptordesensitization(Lee etal.,1998). WhenGPCRsareexposedto agonistforaprolongedtime(minutestohours),a reductionintotalreceptornumbercanbeobserved.Thisphenomenoniscalleddown- regulationandinvolvesthedegradationofreceptors(Klein etal.,1979;Doss etal.,

1981).Moreover,itwasshownfortheM 1 muscarinicreceptorthatprolonged agonist exposureleadstoadecreasedreceptor mRNAproduction(Lee etal.,1994).Whether receptorinternalizationisaprerequisiteforreceptordown-regulationisstillasubjectof controversy. Asalreadyindicatedabove,GPCRphosphorylationrepresentsamajor mechanisminthereceptordesensitizationresponse.MostGPCRshavebeenshownto containsitesthatarerecognizedbybothsecondmessengerdependent kinases(for instance,proteinkinaseA(PKA)orprotein kinaseC(PKC))andspecific serine/threoninekinases(GPCRkinases:GRK1-GRK6)(Pitcher etal.,1998;Krupnick and Benovic,1998).PKAandPKCseemtophosphorylate GPCRsinanagonist independentmannerandarethoughttobeinvolvedin heterologousreceptor desensitization,whereasGRKsstrictly phosphorylatetheactivatedreceptorprotein (Pitcheretal.,1998;KrupnickandBenovic,1998).Generally,phosphorylationoccursin thei3loopandC-terminaltail,whicharerichinserinesand threonines(Watsonand Arkinstall,1994;Pitcheretal.,1998;KrupnickandBenovic,1998). TheV1areceptorundergoeshomologousaswellasheterologousdesensitization (Innamoratietal.,1998b;Ancellinetal.,1999)andharborsvariousPKCconsensussites forphosphorylation(Moreletal.,1992).Uponligandstimulation,theV1areceptoris phosphorylatedandinternalizedveryrapidly.Followingremovaloftheagonist,itisthen quicklyrecycledtothecellsurface(Innamoratietal.,1998b).Incontrast,theV2receptor undergoessolelyhomologousdesensitizationcatalyzedbyGRKs,despitethepresenceof aputativePKC phosphoylationsiteinthei3loop(Kennelly etal.,1991).ThePKCsite appearsnottobeaccessiblebecausestimulationofPKCeitherindirectlybyGq/11-coupled receptorsordirectlybyphorbolestersdidnotleadtophosphorylationoftheV2receptor (Innamorati etal. ,1997).Studiesconductedtoelucidatemechanismsinvolving

38 1.IntroductionandAimoftheThesis homologousdesensitizationoftheV2receptorhaverevealedclustersofserinesand threoninesattheC-terminusasacceptorsitesforphosphorylation( Innamorati etal., 1997,1998a)(Fig.1.7).Removalofthelast14( Innamoratietal.,1997)or10(Oakleyet al.,1999)aminoacidsoftheV2receptorwassufficienttoabolishligand-induced phosphorylationwithoutaffectingreceptorexpressionorcoupling.Inparticular,acluster ofthree serines(Ser362,Ser363,Ser364)presentattheC-terminusoftheV2receptor couldbeidentifiedasacceptorsitesfor phosphorylation(Fig.1.7)(Innamorati etal., 1998a,Oakleyetal.,1999).IncontrasttotheV1areceptor,thewtV2receptordoesnot recycletotheplasmamembraneforhoursbutisretainedin endocyticvesiclesdespite removalofthe agonist(Innamoratietal.,1997).Interestingly,aclusterofserinesatthe C-terminusseemstoplayakeyroleinpreventingtheV2receptorfromrecyclingtothe cellsurface(Fig.1.7).Substitutionofindividualormultipleserinesbyalaninesprevented phosphorylationandallowedrecyclingofthefull-lengthV2receptortotheplasma membrane(Innamoratietal.,1998a).IthasalsobeenshownthatmutantV2receptors, whichcouldnolongerbephosphorylated,failedtoassociatewitharrestins(Oakleyetal., 1999).Moreover,the phosphorylation-defectivemutantreceptorswereabletoundergo ligand-inducedinternalization,albeitatmuchslowerratethanthewtV2receptor (Innamoratietal.,1996a). Interestingly,Kojro etal .(1995)reportedevidencefora metalloproteinase- catalyzedproteolyticcleavageoftheV2receptorupon agoniststimulation,whichcould representanadditionalmechanismtoregulatereceptorfunction.Thestructural requirementsforthisphenomenonwereinvestigatedfurtherrecently(Kojroetal.,1999). ThevasopressinandoxytocinreceptorscontaintheFQVLPQL-consensussequenceatthe junctionofTMII/e1loop(Fig.1.8).However,onlymembersofthe vasopressinfamily aresubjectto ligand-inducedproteolyticcleavage,whereastheoxytocinreceptorisnot sensitive(Kojro etal.,1999).Thisobservationprompted Kojroetal.(1999)tocreate hybridV2/oxytocinreceptorsandtostudythe agonist-dependentcleavageofthevarious chimericreceptorconstructsinphotoaffinitylabelingexperiments.Thisanalysisrevealed thatstructuralelementsintheN-terminaldomainandthee1loopoftheV2receptorplay akeyroleindefiningtheconformationthatisnecessarytoallowaccessofthe

39 1.IntroductionandAimoftheThesis metalloproteinasetothecleavagesite.Moreover,Asp103inthee1loop,whichhad formerlybeenidentifiedasasitethatcriticallyinfluences agonistspecificity(Uferetal., 1995)(Fig.1.7),isofpivotalimportanceinregulating proteolyticcleavageoftheV2 receptor.Itseemslikelythatfullagonistactivityisneededtoinduceexposureofthe cleavagesite(Kojro etal.,1999).Interestingly,the tworeceptorfragmentsthatresult fromagonist-inducedV2receptorcleavagearenotabletobindAVP. Toinvestigatetheeffectofmetalloproteinase-catalyzedV2receptorcleavageon desensitization,achimericV2/oxytocinreceptorthatwaslargelyresistantto agonist- induced proteolyticcleavagewasstudiedforitsabilitytoactivateadenylyl cyclase. Activationofthisreceptorledtosignificantlyhigheragonist-inducedcAMPlevelsand impaireddesensitization(Kojroetal.,1999).TherelativecontributionsofV2receptor cleavageandphosphorylationtoV2receptordesensitizationremaintobeelucidated.

1.3.3Gproteincouplingdomains

Asdescribedearlier,theantidiureticeffectsofAVParecausedbycouplingofV2 receptorstothestimulatoryGprotein,G s,whichactivatesadenylylcyclase,thusleading toanincreaseinintracellularcAMPconcentrations( Birnbaumer,1999).Incontrast,the twoV 1receptorsubtypes,V1aandV1b,mediatetheactivationof isoformsof phopholipaseCβ,whichcatalyzethebreakdownofphosphatidylinositol-4,5-bisphophate

(PIP2)intoinositol-1,4,5-trisphosphate(IP 3)anddiacylglycerol(DAG)( Michelletal.,

1979).TheseactionsaremediatedthroughreceptorinteractionswithGproteinsoftheG q family(Fig.1.4).Singleaminoacidsanddistinctsequencemotifshavebeenfoundtobe criticalfortherecognitionandactivationofGproteinsbyboththeV1aandV2receptors. MutationalanalysisconfirmedanimportantroleoftheconservedAsp97inTMIIofthe V1areceptorinGproteincoupling(Mouillac etal.,1995),ashasbeendescribedfor manyother GPCRs(SavareseandFraser,1992).Anaturaloccurringmutationofthe analogousAspintheV2receptor(Asp85Asn)causesX-linkedNDI( Sadeghietal.,

1997a).CouplingofthismutantV2receptortoG swascharacterizedbya20-fold decreaseinAVPpotencyandapronouncedreductioninmaximalresponseascompared

40 1.IntroductionandAimoftheThesis tothewtreceptorprotein(Sadeghi etal. ,1997a).DetailedstudieswithmutantV2 receptorsthatcauseX-linkedNDIhaverevealedthreemoresinglepointmutationsthat leadtoreducedcouplingefficiencytoG s:aTyr205Cysmutationinthee2loop (Yokoyama etal. ,1996),twomutationsoftheconserved prolineinTMVII, Pro322Ser(Alaetal.,1998)orPro322His(Tajima etal.,1996),andamutationinthe highlyconservedDRY-motifatthejunctionofTMIII/i2loop,Arg137His(Rosenthal et al.,1993).ThekeyroleoftheconservedTMVIIprolineresidueinGproteincoupling hasalsobeenshownfortheM3muscarinicreceptor(Wessetal.,1993;alsoseechapter

V2 V2i2 V2i3 AC ++++ ++++ + PI + ++++ +

V1a V1i2 V1i3 AC - - +++ PI ++++ + ++++

Fig.1.9.StructureandfunctionalprofileofwtandmutantV1a/V2 vasopressinreceptors. The functionalpropertiesofthevariousreceptorsaresummarizedunderneaththereceptorstructures( PI, stimulationofPIhydrolysis ;AC,stimulationof adenylylcyclase).Thesymbolsaredefinedasthe percentageofmaximumPIand cAMPresponsesinducedbythewtV1aandV2receptor,respectively: ++++,90-100%;+++,80-90%;+,10-30%;-,nosignificantresponse.Thefollowingsequenceswere exchangedbetweentheratV1a(Morel etal.,1992)andhumanV2( Birnbaumer etal.,1992)receptor (aminoacidnumbersinparentheses): V2i2,V2(138-160)->V1a(150-171);V2i3,V2(225-279)->V1a(237- 305);V1i2,V1a(152-172)->V2(140-161);V1i3,V1a(237-303)->V2(225-277)(adaptedandmodifiedfrom LiuandWess,1996).

41 1.IntroductionandAimoftheThesis

1.3).Also,theimportanceoftheconservedarginineresidue(partoftheDRY-motif)for Gproteincouplinghasbeendemonstratedformanyother GPCRs(SavareseandFraser, 1992). Tofurtherinvestigatethestructuralelementsthatdetermine vasopressin receptor/Gproteincouplingselectivity,LiuandWess(1996)createdaseriesofV1a/V2 hybridreceptorsinwhichindividualintracellularloopsweresystematicallyexchanged betweenthetwowtreceptors.Biochemicalandfunctionalstudiesrevealedthatthei2 loopoftheV1areceptorfullyaccountsfortheG q/11couplingpreference,whereas selectivecouplingoftheV2receptortoG slargelydeterminedbyitsi3loop(Fig.1.9). Thechimericreceptorsthatcontainedthei2loopoftheV1areceptorandthei3loopof theV2receptor(V1i3andV2i2)gainedtheabilitytorecognizebothG q/11 andG swith highefficacy.Thesedatademonstratedthat,despitetheirstructuralsimilarity,the couplingpreferenceoftheV1aandV2receptorsisdeterminedbydifferentintracellular receptordomains(LiuandWess,1996).

1.4Structuralbasisofreceptor/Gproteincouplingselectivity

Asmentionedearlier,mostGPCRscaninteractwithandactivateonlyalimited setofGproteinsexpressedbyatypicalmammaliancell(SavareseandFraser,1992; Gudermannetal.,1996,1997;Wess,1997).Toelucidatethestructuralbasisunderlying thiscouplingselectivityhasbecomearesearchfocusofagreatnumberoflaboratories. Overthepastdecade,theGproteincouplingprofilesofmany GPRCshavebeenstudied ingreatdetail.Thedifferentapproachesthatwereappliedtoinvestigatereceptor/G proteininteractionsencompass electrophysiologicaland/orbiochemicalstudies, receptor/Gproteinco-expressionexperiments,reconstitutionexperiments,studieswith syntheticpeptides,hybridreceptorexperiments,site-directedmutagenesis,geneknockout studiesandseveralotherapproaches(reviewedbyWess,1998).

MostGPCRspreferentiallycoupletoGs,Gq/11,orGi/o-typeGproteins.Itshouldbe notedthoughthatcouplingselectivityhastobeunderstoodmoreasarelativethanan absoluteterm.Dependingondifferentfactorssuchasthechoiceofexpressionsystem,

42 1.IntroductionandAimoftheThesis

expressionlevelsof GPCRsand/orGproteins,andligandconcentration,manyGPCRs canrecognizemorethanoneclassofGproteins(reviewedbyGudermann etal.,1996,

1997).Forinstance,variousG i/o-linkedα2-adrenergicreceptors(Easonetal.,1992)and

theM 4 muscarinic(Jones etal.,1991; MigeonandNathanson ,1994)arealsoableto

activatethestimulatoryG sprotein,atleastundercertainexperimentalconditions,an

effectthatbecomesmoreevidentunderconditionswhere Gi/oisinactivated(e.g.by

pretreatmentwithPTX).Arecentstudyemployeda β2-adrenoceptor/Gαsubunitfusion

proteinapproachtostudytheinteractionofthe β2-adrenergicreceptorwithvariousG

proteins(Wenzel-SeifertandSeifert,2000).Inthissystem,the β2-adrenoceptordidnot

onlyrecognizeG sbutalsoGiandG o.Likewise,Offermannsetal.(1994b)reportedthat

theM 1muscarinicreceptor,whichisaprototypicalG q/11-coupledreceptor,canactivate

Gi/oproteinsundercertainassayconditions(e.g.inthepresenceofhigh agonist

concentrations).M 1receptorcouplingtoG shasalsobeenreported(Migeonand Nathanson,1994; BurfordandNahorski,1996).Itremainstobedeterminedthough whetherthis“promiscuous”couplingbehaviorisofphysiologicalrelevance.Themost promiscuousGPCRseemstobetheTSHreceptor,whichiscapableofactivatingG proteinsofallfourclasses( Laugwitzetal.,1996).Interestinglynoreceptorshavebeen identifiedthatsolelyrecognizeGproteinsoftheG12/13class. Usually,GPCRsareabletocoupletoallmemberswithintheirpreferredGprotein family,althoughoftenwithvaryingefficiencies(Milligan,1995;Raymond,1995).For

instance,itappearsthatallG q-coupledGPCRsefficientlyinteractwithG 11,G14,G15,and

G16(Milligan,1995; Gudermann,1996). Amatruda etal.(1993)and Wuetal.(1993)

reportedthattheGi/o-linkedC5aandIL-8receptors,respectively,areabletodiscriminate

betweenmembersoftheG q/11class:bothGPCRsdonotinteractwithG αqandGα11but

arecapableofcouplingtoG 14,G15,orG16.Interestingly,G15andG16,whichrepresentthe murineandhumanforms,respectively,ofthesameGprotein,havebeenshownto displaycouplingpromiscuity,asindicatedbytheirabilitytobeactivatedbymostGPCRs (OffermannsandSimon,1995).Themolecularmechanismunderlyingthiscoupling profilestillremainstobedetermined.

43 1.IntroductionandAimoftheThesis

Inrecentyears,theideaemergedthatdifferentactivereceptorconformations mayexistforagivenGPCRdependingontheligandthatmakescontactwiththereceptor

protein.Thishypothesisissupportedbyvariousfindings.Theα1badrenergicreceptor,for instance,couplestoboththestimulationofphospholipaseCand phopholipaseA2.A

pointmutationinTMIII,however,leadstoamutant α1breceptorwhichconstitutively activatesexclusivelythe phopholipaseCpathway(Perez etal.,1996).Likewise,the humanTSHreceptorthatisknowntocoupletoallfourGproteinfamilieslosesitsability

toactivateG qinthepresenceofasinglepointmutationinTMV(Biebermann etal., 1998).SimilarresultshadalsobeenobtainedearlierbySuprenant etal. (1992)and Gilchrist etal. (1996).Recently, Stanasila etal.(2000)expressedhuman µ-opioid

receptor( hMOR)fusionproteins( hMOR-Gαo1andhMOR-G αi2)in E. coli.Inthis system,various agonistsdisplayeddifferentaffinitiesforthehuman µ-opioidreceptor dependingonthelinkedG α subunitsupportingthehypothesisoftheexistenceof multiplereceptorconformationalstates.Otherlaboratoriesstudyingthe β2-adrenoceptor (Zusciketal.,1998;Wenzel-Seifertetal.,2000)havereportedsimilarfindings(reviewed byStrange,1999). Physiologically,receptor/Gproteincouplingselectivitycanalsobeachieved throughcompartmentalization(co-expressionofcertainreceptorsandGproteinswithina cellordomainsoftheplasmamembrane).Moreoever,actualreceptorand/orGprotein expressionratiosmayaffecttheobservedcouplingselectivityinspecificcellsortissues (Neubig,1994;Raymond,1995; Gudermannetal.,1996,1997;Remmers etal.,2000; Ostrometal.2000). Mutagenesisstudieshaveshownthatresiduesthatarecriticallyinvolvedin determiningthecouplingprofileofaspecificmemberofagivenGPCRfamilyare usuallynotwellconservedamong GPCRsthatdisplaysimilarGproteincoupling preferences(Hedinetal.,1993;Hornetal.,2000).Likewise,differentclassesofGPCRs recognizethesamearrayofGproteinsdespitethefactthattheysharelittlesequence homology.ThereforeitisdifficulttopredicttheGproteincouplingprofileofaGPCR simplybasedonitsprimarysequence.However,sincethethree-dimensionalfoldofall

44 1.IntroductionandAimoftheThesis

GPCRsandallGproteinsisthoughttobesimilar,itislikelythatallreceptor/Gprotein complexesgenerallydisplaythesameoverallgeometry.

1.4.1IdentificationofGproteincouplingdomains

Differentexperimentalapproachessuchasfunctionalanalysisofhybridreceptors, site-directedmutagenesis,andstudieswithsyntheticpeptideshavehelpedtoidentify receptordomainsthatplaykeyrolesinGproteinrecognition. Considerableinsightinto thestructuralbasisofreceptor/Gproteincouplingselectivityhasbeenprovidedby detailedmutationalanalysisofbiogenicaminereceptorssuchasthe muscarinic acetylcholine(Wess,1996)andadrenergicreceptors(Dohlmanetal.,1991;Straderetal., 1994;Cotecchiaetal.,1998),whichwereamongthefirstGPCRstobecloned.These studieshaveshownthatthemostcriticalsitesforGproteinrecognitionaretobefoundin thei2andi3loops,inparticularintheirmembrane-proximalportions(Wess,1997). Manyreportsindicatethatbothreceptorregionsactinaconcertedfashiontoachieve optimalandefficientGproteinactivation(Wongetal.,1990;Pinetal.,1994;Blinetal., 1995;Gomezaetal.,1996a;Thompsonetal.,1998;Ulloa-Aguirreetal.,1998;Cypress etal. ,1999).SeveralmutagenesisstudiesalsosuggestaninvolvementofNi4and residueswithinthei1loopinmodulatingtheefficiencyofGproteincoupling(O’Dowd etal.,1988;Liggettetal.,1991;Nussenzweigetal.,1994;Gomezaetal.,1996a;Wuet al.,1997).Syntheticpeptidescorrespondingtovariousintracellularreceptordomains wereabletoeitherinterferewithreceptor/Gproteininteractionsbyuncouplingthe receptororactivateGproteinsinareceptor-likefashion(Koenigetal.,1989;Palmetal., 1989;Cheungetal.,1991;Muenchetal.,1991;Vossetal.,1993;Merkourisetal.,1996; AbellandSegaloff,1997;Thompsonetal.,1998;Ortizetal.,2000).Consistentwiththe mutagenesisstudiesdescribedabove,thisapproachhasimplicatedthei2loop,the membrane-proximalpartsofthei3loop,andtheNi4segmentasdomainscriticalforG proteincoupling.

45 1.IntroductionandAimoftheThesis

1.4.2InvolvementoftheintracellularloopsofGPCRsinGproteincoupling selectivity

1.4.2.1Firstintracellular(i1)loop

Todate,onlyrelativelyfewstudiesexaminedtheroleofthei1loopinGprotein recognitionandcoupling.Nevertheless,recentdataindicatethati1loopsequencesare abletomodulatetheselectivityofreceptor/Gproteininteractions. Forinstance, experimentswiththecholecystokinin(CCK)-Aand–Breceptors,whicharebothcoupled toGproteinsoftheG q/11class,revealedthattheabilityoftheCCK-Areceptortoalso stimulateGswascriticallydependingonthepresenceofa5-amino-acidssequenceinthe i1loop(Wuetal.,1997).InsertionoftheseresiduesintotheCCK-Breceptorenabledthe resultingmutantCCK-BreceptortointeractwithG sinafashionsimilartotheCCK-A receptor.SimilarresultswereobtainedbyNussenzweig etal.(1994)examiningtwo isofomsofthe calcitoninreceptor.Also,inthemurine GnRHreceptor,residueswithin thei1looparenecessaryforstimulatingthecAMPpathway,whereasthei1loopisnot involvedinactivatingthePIsignalingcascade(Arora etal.,1998).Interestingly,a naturallyoccurringsinglepointmutationinthei1loopofthe melanocyte-stimulating hormone(MSH)receptor(Ser69Leu)leadstoconstitutivereceptoractivation(Robbinset al.,1993).Severalloss-of-functionstudiesunderlinetheimportanceofthestructural integrityofthei1loopforoptimalreceptor/Gproteincoupling( O’Dowdetal.,1988(β2- adrenergicreceptor);Moroetal.,1994(M 1muscarinicreceptor);Amatrudaetal.,1995 (fMLPreceptor)).Itremainstobeelucidated,however,whetherthei1loopisindirect contactwiththeGproteintrimerorwhethermutationsinthei1loopcanaffectthe conformationsofotherreceptorregionswhichareknowntointeractdirectlywiththeG protein(suchasthei2andi3loops).

46 1.IntroductionandAimoftheThesis

1.4.2.2Secondintracellular(i2)loop

Asmentionedinchapter1.3(seeFig.1.6),thei2loopcontainssequencesthat playamajorroleinGproteinactivationandproperfolding.Thehighlyconservedtriplet E/D-R-Y(correspondingtoAsp136-Arg137-His138inthewtV2receptor(Fig.1.8))is locatedatthejunctionbetweenTMIIIandthei2loop(seechapter1.3fortheroleofthe DRY-motif). Manystudiesindicatethatthei2loopalsoplaysacrucialroleinregulating receptor/Gproteincouplingselectivity,eitheraloneorincombinationwithother cytoplasmicdomainssuchasthei3looporthei4region.Asdiscussedinchapter1.3.3, theselectivecouplingoftheV1areceptortoGproteinsofthe Gqfamilycritically dependsonthestructuralintegrityofthei2loop.Analogousresultswereobtainedby

Näsmanetal. (1997)inthe adrenergicreceptorsystem.The α2-adrenergicreceptors generallycoupletoGi/obutundercertainconditionsthe α2Breceptorsubtype,butnotthe

α2A,isabletoalsoactivateG s.Ahybridreceptorapproachwasemployedtostudythe molecularbasisunderlyingthisselectivity.Thisanalysisrevealedthatamutant α2A- adrenergicreceptor,inwhichthei2loopwasreplacedbyhomologous α2B-adrenergic receptorsequence,gainedproductivecouplingtoG s(Näsmanetal.,1997).Moreover,a recentstudydescribedthefunctionalpropertiesofhybridreceptorsmadeupof structurallydissimilarGPCRssuchasthethrombinreceptor(whichactivatesseveral classesofGproteinsincludingG q/11proteins)andtheG s-linkedβ2-adrenergicandD2 dopaminereceptors(Verrall etal.,1997).Substitutionofthei2loopofthethrombin receptorintobothG s-coupledGPCRsconferredonthe β2-adrenergicandD2dopamine receptorsGq-likecouplingproperties.Wang etal.(2000)describedaseriesofnaturally occurringsplicevariantsofthe5-HT2CreceptorthataregeneratedbymRNAediting.The variousisoformsdifferonlyintheiri2loopsbutdisplaysignificantlyalteredGprotein couplingefficacies,suggestingthatmRNAeditingcanmodulatetheefficiencyof receptor/Gproteininteractions.StudieswithM1(orM2)muscarinic/β1-adrenergic(Wong etal.,1990;WongandRoss,1994)andmGluR1/mGluR3glutamatehybridreceptors

(Pinetal.,1994;Gomezaetal.,1996b),AT1a(Thompsonetal.,1998),GnRHreceptors

47 1.IntroductionandAimoftheThesis

(Ulloa-Aguirreetal.,1998),andglucagonreceptors(Cypress etal.,1999)indicatethat thei2loopactsinconcertwithotherintracellulardomains,suchasthei3andi4loops,to regulatereceptor/Gproteincouplingselectivity. Adetailedanalysisoffunctionallyimportanti2loopresidueswasconductedby Blinetal.(1995).Biochemicalstudiesrevealedthatasetoffouraminoacidsresiding withinthei2loopoftheG q/11-coupledM3muscarinicreceptormakeamajorcontribution tothecouplingpreferenceofthisreceptorsubtype.Substitutingthesefouraminoacids intotheG i/o-linkedM2muscarinicreceptorresultedinamutantreceptorthatgainedthe abilitytoactivateG q/11(Blinetal.,1995).Anotherstudyinvestigatedtheabilityofthe metabotropicglutamatereceptor1α(mGluR1α)tocoupletobothGqandGs(Francesconi andDuvoisin,1998).Introductionofsinglepointmutationsintothei2loopidentified threespecificresidueswithinthei2loopthatareselectivelyinvolvedintheinteraction withGqclassproteins,whereasapointmutationanddeletionmutationatdifferentsites withinthei2loopaffectedGscoupling.Incombinationwithresiduesinthei3loop,these differentsetsofaminoacidsaccountfortheabilityofthemGlu1αRtocoupletodifferent setsofGproteins(FrancesconiandDuvoisin,1998).

1.4.2.3Thirdintracellular(i3)loop

Mutationalanalysishasprovidedstrongevidencethatthei3loopplaysakeyrole inregulatingtheGproteincouplingpreferenceofthemajorityof GPCRs,asinitially demonstratedinstudieswith biogenicaminereceptorssuchasthemuscarinic(Wess, 1996)andadrenergicreceptors(reviewedbyDohlmanetal.,1991;Kobilka,1992).More recentstudieswithmanyotherclassesofGPCRshavecorroboratedthesefindings.For instance,functionalanalysisofhybridV1a/V2 vasopressinreceptorsshowedthat insertionofthei3loopoftheV2receptorintotheV1areceptorconferredontheresulting mutantreceptortheabilitytoefficientlyactivateG s(Liuand Wess,1996).Likewise,

Takagi etal.(1995)demonstratedthattheabilityoftheendothelinET Breceptorto interactwithGiislargelydependingonsequenceswithinitsi3loop.Inanotherstudy,the i3loopwasexchangedbetweenthe monocytechemoattractantprotein-1(MCP-1)

48 1.IntroductionandAimoftheThesis

receptor(whichcouplestoseveralGproteinsincluding Gq)andtheIL-8 chemokine receptor,whichdoesnotrecognize Gq.Functionalstudiesshowedthattheresulting mutantIL-8receptorgainedtheabilitytoactivate Gq(AraiandCharo,1996).These findingsare confirmedbystudiesemployingsyntheticpeptidesderivedfromdifferent intracellularreceptordomainstoinhibitreceptor/Gproteincoupling.Koenigetal.(1989) coulddemonstratethatsyntheticpeptidescorrespondingtothei2andi3loopsandtothe Ni4segmentofrhodopsincouldeffectivelycompetewithmetarhodopsinIIforbindingto

Gt.Georgoussi etal.(1997)studiedtheeffectofvariouspeptidescorrespondingto specificµ-opioidreceptorsequenceonagonist-stimulatedGproteinactivationand[ 3H] agonistbindingtotheµ-opioidreceptor.Thisstudyfoundthatpeptidesderivedfromthe N-terminalportionofthei3loopandtheC-terminaltailhadthemostpronounced inhibitoryeffect.Similarly,astudyusingsyntheticpeptidesderivedfromthei3loopof theG q-coupledoxytocinreceptordescribedpeptide-inducedinhibitionofPIhydrolysis

(Qianetal.,1998).Thei3loopderivedfromthe α1B-adrenergicreceptor,whichalso activatesG q/11,wasalsoabletointerferewith oxytocin-stimulatedphosphoinositide breakdown,whereasco-expressionofthei3loopoftheG s-linkeddopamine1Areceptor hadnoeffectoxytocinreceptorfunction( Qianetal.,1998).Anotherstudyinvestigated theeffectofdifferentpeptidesderivedfromindividualintracellularloopsofthe galanin

35 type1receptor(Gal1R)on[ S]-GTPγSbindingtoGi 1α1β2(Rezaeietal.,2000).Itcould bedemonstratedthatpeptidescorrespondingtothei1andi2loopshadnoeffecton[ 35S]- GTPγSbinding,whereasi3looppeptides,especiallypeptidesderivedfromtheN-

35 terminus,wereabletoincreasebindingof[ S]-GTPγStoGi1α1β2. Althoughexchangeofthei3loopbetweenreceptorsubtypeswithdifferentG proteincouplingprofilesusuallyleadstoalteredGproteincouplingproperties,the resultingmutantreceptorsgenerallycouplewithreducedpotencyand/orefficiency comparedtothewtreceptor(Kobilkaetal.,1988;Wessetal.,1989,1990b;Olah,1997). Theseobservationsareconsistentwiththeconceptthatthei3loopactsincooperation withotherreceptorregionstoachievemaximumcouplingefficiencyandselectivity. Incontrasttothei2loop,thelengthofthei3loopvariesconsiderablyamong

GPCRsandcanrangefrom15(N-formylpeptidereceptor)to240aminoacids(M 3

49 1.IntroductionandAimoftheThesis

muscarinicreceptor).Interestingly,deletionofmajorportionsinthecentralpartofthei3 loopofmanyGPCRsdoesnotinterferewithefficientcouplingtoGproteins( Maggioet al.,1996;Buck etal.,2000),confirmingthattheN-andC-terminaldomainsofthei3 loop(inthefollowingreferredtoasNi3andCi3,respectively)aremostcriticalforG proteinactivation.ExtensivemutagenesisstudiesrevealedthattheN-andC-terminal eightto15aminoacidscontainkeystructuralinformationrequiredforefficient interactionwithGproteins(reviewedby Straderetal.,1994;Wess,1996).However,the relativecontributionoftheNi3andCi3regionstocouplingselectivitycanvaryamong differentclassesofGPCRs,evenamongstructurallycloselyrelatedreceptorsubtypes (Wess,1998). ExamplesforwhichtheN-terminalportionofthei3looplargelydeterminesthe Gproteincouplingselectivityincludevariousmuscarinic( Wess etal.,1989,1990b; Lechleiteretal.,1990), adrenergic(Cotecchiaetal.,1992), opioid(Georgoussi etal., 1997),adenosine(Olah,1997),and galanin(Rezaeietal.,2000)receptors.Biochemical

analysisofthe angiotensinIIAT 1(whichcouplestoG q/11)andAT 2(whichislinkedto

Gi/o)receptorsrevealedthattheNi3regionoftheAT 1 receptorisofpivotalimportance

foractivationofG q/11butthataminoacidswithintheCi3segmentenhanceAT 1

receptor/Gq/11-couplingselectivity(Wangetal.,1995).ThiscooperativemechanismofG

proteinactivationwasalsodescribedbyEasonandLigget(1996)whonotedthattheα2A- adrenergicreceptorrequiresthepresenceofbothNi3andCi3sequencestoefficiently

stimulateGs. Manystudiessuggestthatthei3loopresiduesdictatingreceptor/Gprotein couplingselectivityareprimarilyhydrophobicornon-charged.Thisnotionissupported bybothgain-andloss-of-functionstudieswithdifferentmuscarinicreceptorsubtypes (Blümletal.,1994a; Blinetal.,1995;Liu etal.,1995;Hill- Eubanksetal.,1996)and variousotherGPCRs,includingthe β2-adrenergic(Cheungetal.,1992),thyrotropin

(Kosugietal.,1993),thromboxaneA 2(D’Angeloetal.,1996),rhodopsin(Yangetal., 1996b),glucagon-likepeptide-1(Mathietal.,1997),andthe GnRHreceptors(Chunget al.,1999).ThecriticalresiduespredictedtobeintimatelyinvolvedinGprotein recognitionappeartobelocatedonthehydrophobicfaceofamphiphilichelicaldomains.

50 1.IntroductionandAimoftheThesis

LiketheNi3segment,theCi3domaincontributestoselectiveGprotein recognition(Wess,1998).TheimportanceoftheCi3domaininreceptoractivationis furtherunderlinedbytheobservationthatsinglepointmutations(Shenker,1995,1997; Zuscik etal.,1998;Abadji etal.,1999;Arseven etal.,2000)ordeletionmutations (Schulz etal.,1999)withinthisregioncanleadtoconstitutivereceptoractivation. Interestingly,MalmbergandStrange(2000)reportedasinglepointmutationintheCi3 regionofthe5-HT 1areceptor,Val344Glu,whichaltersthereceptor/Gproteincoupling preference,allowinginteractionwithG sinadditionto Gi/o.Analogousmutationsatthis positionhaveformerlybeenreportedtofrequentlyleadtoconstitutiveactivity. Manymutagenesisstudieshavedemonstratedthatasetofchargedaminoacidsin theCi3regionarealsoimportantfortheactivationofGproteins( KunkelandPeralta, 1993;Hoeggeretal.,1995;Leeetal.,1996;Obosietal.,1997;Wang,1997;Bursteinet al.,1998;Wadeetal.,1999;Buck etal.,2000;Zhangetal.,2000).Mutationofmostly basicaminoacidstohydrophobicornon-chargedresiduessignificantlyreducedor abolishedGproteincoupling.Manyofthesestudiesreportthatmutationalmodification ofthemostC-terminalresidueinthisstretchofaminoacidshadthemostpronounced effectonreceptorfunction(Hoeggeretal.,1995;Leeetal.,1996;Obosietal.,1997). TofurtherelucidatetheroleoftheCi3segmentinGproteincouplingselectivity, differentmuscarinicreceptorsubtypesweresubjectedtosystematicmutagenesisstudies (reviewedbyWess,1996).Blinetal.(1995)hasidentifiedfourhydrophobicaminoacids attheC-terminusoftheM 3receptor,whichactinaconcertedfashionwithresidues presentinthei2loopandNi3domainindictatingG q/11couplingselectivity.Thefour correspondingresiduespresentatthesamepositionintheG i/o-linkedM 2 muscarinic receptortakeonasimilarroleindeterminingselectiveactivationof Gi/oproteins(Liuet al.,1995;Kostenisetal.,1997a). ThefunctionallycriticalresiduesatboththeN-andC-terminusofthei3loopof themuscarinicreceptorsubtypesseemtoformtwohydrophobicsurfaces,whichplaya keyroleinGproteinrecognition( Wess,1998).Intheinactivereceptorstate,these receptordomainsarepredictedtobedeeplyburied,projectingintothereceptorprotein core(Baldwinetal.,1997).Thecurrentmodelofreceptoractivationsuggestsanoutward

51 1.IntroductionandAimoftheThesis movementofthei3/TMVIjunctionaccompaniedbyaclock-wiserotation(about30 °) (Farrens etal.,1996;AbellandSegaloff,1997),aspartofthere-orientationofthe transmembranehelices.Itisconceivablethatthere-arrangementofthehelicalbundle leadstoanopeningoftheintracellularreceptorsurface,thusexposingfunctionally importantreceptorsites.ThismayallowtheGproteintoaccessfunctionallyimportant residuesatthemembrane-proximalportionsofthei3loop,resultinginproductive receptor/Gproteincoupling.

1.4.2.4Fourthintracellular(i4)loop

The cytoplasmictailofmost GPCRsischaracterizedbyashortmembrane- proximalsegment(Ni4),whichisgenerallylinkedtotheplasmamembranevia palmitoylationor myristoylationoftwohighlyconserved cysteineresidues,andaC- terminal(Ci4)segmentofvaryinglengths.Thehigh-resolutioncrystalstructureof rhodopsin( Palczewski etal. ,2000)indicatesthattheNi4segmentis α-helically arranged.ThenotionthatNi4contributestotheGproteinactivationprocessisalso supportedbybiochemicalstudiesemployingshortsyntheticNi4peptidesderivedfrom manydifferentGPCRs(Koenigetal.,1989;Muenchetal.,1991;Schreiberetal.,1994; Shiraietal.,1995;Merkouris etal.,1996;Georgoussietal.,1997)andvariousloss-of- functionmutagenesisstudies(Huangetal.,1995;Sanoetal.,1997;Hoareetal.,1999). DifferentlaboratorieshavestudiedtheroleoftheNi4domaininregulating receptor/Gproteincouplingselectivity.Hybridreceptorapproachesusing α2A/β2- adrenergic(Liggettetal.,1991)andmGluR 1/mGluR3(Pin etal.,1994; Gomezaetal. 1996a)receptorshavedemonstratedthattheNi4segmentcancontributetoregulatingG proteincouplingselectivityatleastincertainGPCRsubfamilies.However,this contributionbecameevidentonlyinthepresenceofotherreceptorregions(suchasthei2 ori3loop)knowntoplaykeyrolesinregulatingtheselectivityofGproteinrecognition. Usually,exchangeoftheNi4regionalonebetweenfunctionallydistinctreceptor subtypesdoesnotleadtohybridmutantreceptorswithreversedGproteincoupling

52 1.IntroductionandAimoftheThesis profiles(Wessetal.,1990a;Takagietal.,1995;Wangetal.,1995;LiuandWess,1996; Olahetal.,1997). ReceptortruncationstudieshaveshownthatcompleteorpartialremovaloftheC- terminaltailleadstoinactivereceptorsthatareretained intracellularly(Segaloffand Ascoli,1993;Huangetal.,1995;Sadeghietal.,1997c;Hukovicetal.,1998;Schüleinet al.,1998).Ontheotherhand,deletionoftheCi4regionaloneusuallyhaslittleeffecton properGPCRfunction( Lattionetal.,1994;Alblas etal.,1995;Hipkin etal.,1995; Huang etal.,1995;Hermans etal.,1996;Unson etal.,1995;Ancellin etal.,1997; Innamoratietal.,1997).Insomecases,Ci4-truncatedGPCRs(ParkerandRoss,1991; Matus-Leibovitchetal.,1995;Hasegawaetal.,1996)displayedelevatedbasalactivities orimprovedcouplingefficiency(ParkerandRoss,1991; Alblasetal.,1995;Hipkinet al.,1995;Iida-Klein etal.,1995).TheCi4regionoftencontainssitesforreceptor phosphorylationrequiredforreceptordesensitization.Removalofsuchphosphorylation sitesbyreceptortruncationsmayexplainthattheresultingmutant GPCRsoftendisplay increasedbasalactivitiesandcouplingefficiencies.

1.4.3Gproteindomainsdeterminingcouplingselectivity

Asdetailedinchapter1.1.3,theC-terminal45aminoacidsofG αharborkey residuesthatareessentialforreceptor/Gproteinactivationingeneral.Mutationalstudies indicatedthatthelastfiveaminoacidsoftheG α-subunitscontainkeystructural informationthatdeterminesthespecificityofreceptor/Gproteincoupling.Forinstance,

Conklinetal.(1993)createda chimericGαq-subunit,inwhichthelastfiveaminoacids werereplacedbyeitherhomologousG αiorG αo sequence.Infunctionalassays,this mutantGproteinwasabletolinkreceptors,whicharenormallyexclusivelycoupledto

Gi/o,tothePIpathway,indicatingthatthereceptorsareabletorecognizethemutantG proteinviatheC-terminalfiveaminoacids(Conklin etal. ,1993;Liu etal.,1995;

Gomezaetal.,1996b;Kostenis etal.,1997a).Likewise,theG q/11-linkedM3muscarinic andV1a vasopressinreceptorswereshowntobeabletostimulate adenylylcyclase throughinteractionwithamutantG αs-subunit,inwhichthelastfiveaminoacidswere

53 1.IntroductionandAimoftheThesis

exchangedagainsthomologousG αqsequence( Conklin etal.1996; Kostenis etal., 1997c).Thisstrategywassuccessfullyappliedtomanyotherreceptor/Gproteinsystems (reviewedbyWess,1998). MoredetailedmutationalstudiesidentifiedspecificresiduesamongtheC- terminalfiveaminoacidsofG αthatplaykeyrolesindeterminingreceptor/Gprotein couplingselectivity.Gain-of-functionstudiesshowedthattwosingleaminoacidsof αi, evenwhenindividuallysubstitutedinto αq,couldalterthereceptorselectivityofthe recipientGα-subunit(Kostenisetal.,1997a).Thetwocrucialresidueswereacysteinein position–4andaglycineat–3(Fig.1.10).Consistentwiththisfinding,mutationaland biochemicalanalysisofG αt( transducin)haddemonstratedearlierthatthesetwo residues,aswellasahydrophobicaminoacidat–1,areessentialforproductive rhodopsin/Gαtcoupling(Garcia etal.,1995;OsawaandWeiss,1995;Martin etal., 1996).Interestingly,the–4cysteineand–3 glycineresiduesareconservedonlyamong

G i/oclassGproteins,reflectingtheirimportanceinregulatingreceptor/G i/oprotein couplingselectivity(Fig.1.10).

Kostenisetal.(1997c)alsoidentifiedresiduesattheC-terminusofG αqthatare requiredforactivationofG qby Gq-linkedreceptors.Tothisgoal,individualG αqamino acidsweresubstitutedintoGαsandtheresultingmutantGproteinswereassayedfortheir abilitytobeactivatedbytheG q/11-coupledM3muscarinicandV1avasopressinreceptors.

TwosinglepointmutantswereidentifiedthatallowedGproteinactivationbytheG q/11- linkedreceptors.The twoαqresiduesthatmediatedthisinteractionwereaglutamateat position–5andan asparagineat–3(Fig.1.10).Again,thesetworesiduesarehighly conservedonlyamongmembersoftheG q/11family.ItislikelythatthedistalC-terminus ofGαadaptsdifferentspatialarrangementsthatcontributetothespecificitywithwhich receptorsrecognizeGproteins(Dratzetal.,1993). Anotherinterestingmechanismbywhichreceptor/Gproteincouplingcanbe regulatedwasdescribedbyKostenis etal. (1997b).TheG qandG 11proteinsare characterizedbyasixaminoacidextensionattheirN-terminus,whichisattachedtothe plasmamembraneviafattyacidmodifications.Interestingly,thisshortstretchofamino acidsappearstocontributetotheselectivityofreceptor/Gq/11coupling.RemovaloftheN-

54 1.IntroductionandAimoftheThesis

terminalsixaminoacidsyieldedamutantG qprotein,whichcouldbeactivatedbymany

Gi/o-orGs-linkedreceptorsthatnormallydonotrecognizewtG q(Kostenisetal.,1997b).

Possibly,theN-terminalextensionrepresentsastericalhindrancepreventingGi/o-andGs- coupledreceptorsfromaccessingfunctionallyimportant αqresidues.Alternatively,the

N-terminusofG αqmaymodulatetheconformationofotherG αqdomainsthatare involvedinreceptorcoupling.

-7 -6 -5 -4 -3 -2 -1 α s - L R Q Y E L L α olf - L K Q Y E L L

α q, 11 - L K E Y N L V α 14 - L R E F N L V α 15, 16 - L D E I N L L

α i1, 2 - L K D C G L F α i3 - L K E C G L Y α o1, 2 - L R G C G L Y α t1, 2 - L K D C G L F α z - L K Y I G L C α gust - L K D C G L F

α 12 - L K D I M L Q α 13 - L K Q L M L Q

Fig.1.10ComparisonoftheC-terminal7aminoacidsofdifferentclassesofGprotein α-subunits.

Theαq/11and αi1/2residueshighlightedinblackareknowntobeintimatelyinvolvedindeterminingthe selectivityofreceptor/Gproteininteractions,asdemonstratedingain-of-functionmutagenesisstudies (Conklin etal.,1993,1996;Liu etal.,1995; Kostenisetal.,1997b,c).Theboxedleucineresiduesat position–2and–7areconservedamongallmammalian α-subunitsandhavebeenshowntobeessentialfor receptor/Gproteincoupling(Garcia etal.,1995; OsawaandWeiss,1995;Martin etal.,1996).Adapted fromWess,1998.

55 1.IntroductionandAimoftheThesis

1.5Aimofthethesis

GPCRsformoneofthelargestproteinfamilyinnatureregulatingmany fundamentalphysiologicalprocesses(Balwin,1994;Straderetal.,1994;Gudermann et al.,1995).Despitethediversityoftheiractivatingligands,GPCRsrecognizeandinteract onlywithalimitedsetofthemanydifferentGproteinsthatareexpressedwithinacell (Hedin etal.,1993;Conklinand Bourne,1993).Thespectrumofcellularresponses triggeredbyactivationofaspecificGPCRislargelydeterminedbythetypeofGproteins recognizedbytheactivatedreceptor(Dohlman etal. ,1991;Strader etal. ,1994; Gudermann etal. ,1996; Wess,1998).Therefore,elucidatingthemolecularbasis governingtheselectivityofreceptor/Gproteininteractionsisoffundamentalimportance forunderstandingcellularsignaltransduction. Asdiscussedinchapter1.4,multipleintracellulardomainsareinvolvedin receptor/Gproteincouplingselectivity( Strosberg,1991; SavareseandFraser,1992; Hedinetal.,1993).TheGproteincouplingdomainsofbiogenicaminereceptorssuchas themuscarinicacetylcholine(Wess,1993)and adrenergicreceptors(Dohlman etal., 1991;Straderetal.,1994)havebeenanalyzedingreatdetail.Incontrast,onlylittleis knownaboutthemolecularmechanismsunderlyingthecouplingselectivityof GPCRs thatareactivatedbypeptideligands.However,peptidereceptorsconstituteoneofthe largestGPCRsubfamilycomprisingmorethan60differentreceptors(Watsonand Arkinstall,1994).PeptideGPCRsplaykeyrolesinregulatingmanyfundamental physiologicalprocesses.StudiesaimedatelucidatingthestructuralbasisoftheGprotein couplingselectivitydisplayedbythesereceptorshavebeenimpededbythefactthatmost membersofagivenpeptidereceptorsubfamilycoupletosimilarGproteins.AllCCK, endothelin,neurokinin,andbombesinreceptors,forexample,arepreferentiallycoupled toGproteinsoftheG q/11class,whereasvariousopioidandsomatostatinreceptorsareall selectivelylinkedtoGproteinsoftheG i/oclass(Watsonand Arkinstall,1994).This patternhasimpairedinvestigationsintoreceptor/Gproteincouplingselectivitybytheuse ofhybridreceptorapproaches.

56 1.IntroductionandAimoftheThesis

Thevasopressinreceptorfamily,however,differsfromvirtuallyallotherpeptide receptorsubfamiliesinthatitsmembersclearlydifferintheirGproteincouplingprofile. Therefore,thevasopressinreceptorsubtypesconstituteanattractivemodelsystemto studypeptidereceptordomainsthatarecriticalforGproteinrecognition.TheV1aand

V1breceptorsareselectivelylinkedtoGproteinoftheG q/11class(Laszloetal.,1991), whichmediatetheactivationofdistinctisoformsof phospholipaseCβ,resultinginthe breakdownofPIlipids.Incontrast,theV2receptorpreferentiallycouplestotheG

proteinG s(Laszloetal.,1991),whichresultsintheactivationofadenylyl cyclaseand subsequentelevationofintracellularcAMPlevels. Inaformerstudy,LiuandWess(1996)usedahybridreceptorapproachto broadlymapthereceptordomainsthatregulatethecouplingselectivityoftheV1aand V2receptors.Theyfoundthatthecouplingprofileofthetworeceptorsubtypesis determinedbydifferentsinglereceptordomains.ThepresenceofV1areceptorsequence inthei2loopwascriticalforefficientcouplingofthewtV1aor chimericV1a/V2 receptorstoGq/11,whereasefficientinteractionofthewtV2andhybridV1a/V2receptors

toGsrequiredthepresenceofV2receptorsequenceinthei3loop(LiuandWess,1996). Thegoalofthispresentthesiswastoanalyze vasopressinreceptor/Gprotein couplingselectivityingreaterstructuraldetail,specificallytoidentifyindividualamino acidsthatplaykeyrolesinthecouplingprocess.Tothisgoal,classical mutagenesis strategieswereemployedinthefirstpartandyeastexpressiontechnologyinthesecond partofthisthesis.

StructuralbasisofV2vasopressinreceptor/Gscouplingselectivity

Theexperimentsdescribedinthefirstpartofthisthesisweredesignedto elucidatewhichreceptorsubdomainsandparticularlywhichspecificresiduesdetermine

theabilityoftheV2vasopressinreceptortoselectivelyactivateGs. ThisworkinvolvedtheexpressionofhybridV1a/V2receptorconstructsin mammaliancellsandtheirsubsequentpharmacologicalcharacterizationinradioligand bindingstudiesandfunctionalassays.TheinitialgoalwastomapshortV2receptor

57 1.IntroductionandAimoftheThesis

domainsthatconferontheV1areceptortheabilitytocoupletoG s(gain-of-function). Subsequently,moredetailedstructuralinformationwasobtainedbyreplacingoneora combinationofindividualaminoacidsintheV1areceptorwiththecorrespondingV2 receptorresidues.Toassesstheimportanceofspecificresidues,deletionand alanine scanningmutagenesiswasalsoemployed.

ScreeningformutantV2 vasopressinreceptorswithalteredGproteincoupling propertiesemployingyeastexpressiontechnology

Thestudiesdescribedinthesecondpartofthisthesisweredesignedtoidentify mutantV2receptorsthatwouldgaintheabilitytoproductivelycoupletoG q/11proteins. Tofacilitatesuchstudies,anexperimentalsystemwasestablishedthatallowedthequick andefficientfunctionalanalysisofalargenumberofmutantreceptors.Specifically,yeast expressiontechnology( Pausch,1997;SommersandDumont,1999;Reiländer etal. , 2000)wasemployedtoco-expresstheV2receptorandvariouschimeric yeast/mammalianGαproteinsinyeast.Theyeaststrainsemployedinthisstudywere geneticallyengineered,suchthattheyrequiredligand-activatedreceptor/Gprotein couplingforcellgrowth(Pausch etal.,1998).Additionally,thethreeG q/11-coupled muscarinicreceptors(M 1,M 3,andM 5)werealsoexpressedinyeasttofurther characterizetheyeastexpressionsystem. Specifically,thei2loopoftheV2 vasopressinreceptorwassubjectedtorandom mutagenesis,followedbyayeastgeneticscreenthatallowedtheidentificationofmutant receptorswithalteredcouplingproperties.Thei2loopwaschosenastheprimarytarget forthisanalysis,becausethisdomainplaysakeyroleindeterminingtheG q/11coupling selectivityoftheV1areceptor(LiuandWess,1996).

58 2.MaterialsandMethods 2.MaterialsandMethods

2.1Materials

2.1.1Commerciallyavailablecompoundsandmaterials

Compounds

Agar(Sigma,St.Louis,MO,USA) Aminoacids(various)(Bio101,nowQbiogene,Carlsbad,CA,USA) 3-Amino-1,2,4-triazole[AT](Sigma,St.Louis,MO,USA) Ammoniumsulfate(Sigma,St.Louis,MO,USA) 8Arginine-vasopressin[AVP](Calbiochem,SanDiego,CA,USA) Atropinesulfate(Sigma,St.Louis,MO,USA) Bacitracin(activity:70U/mg)(AmershamLifescience,Piscataway,NJ,USA) Bovineserumalbumine[BSA](Sigma,St.Louis,MO,USA) Carbamoylcholinechloride[carbachol](Sigma,St.Louis,MO,USA) Chloroquine(Sigma,St.Louis,MO,USA) Dithiothreitol[DTT](Sigma,St.Louis,MO,USA) Dropoutpowder:completesupplementmixture[CSM]minusaminoacidsusedfor selection(Bio101,nowQbiogene,Carlsbad,CA,USA) Gelatin(porcineskin)(Sigma,St.Louis,MO,USA) 3-Isobutyl-1-methylxanthin[IBMX](Sigma,St.Louis,MO,USA) Phenylmethylsulfonylfluoride[PMSF](Sigma,St.Louis,MO,USA) V2receptorantagonist(non-peptide):SR121463(1-[4-(N-tert-butylcarbamoyl)-2- methoxybenzenesulfonyl]-5-ethoxy-3-spiro-[4-(2-morpholinoethoxy)-cyclohexane]- indol-2-one,monophosphatesalt)wassynthesizedatSanofi-Synthelabo,Toulouse, France Yeastnitrogenbase[YNB](Bio101,nowQbiogene,Carlsbad,CA,USA)

AllotherreagentsusedwerepurchasedfromSigma(St.Louis,MO,USA),unless otherwisenoted.

60 2.MaterialsandMethods

Solutions

Dulbecco’smodifiedEagle’smedium[DMEM](withglucose:4.5g/l)(Biofluids, Rockville,MD,USA) Ethylenediaminetetraacetate[EDTA](0.5M)(QualityBiologicalInc.,Gaithersburg, MD,USA) Fetalcalfserum[FCS](GeminiBioProducts,Woodland,CA,USA) Hank’sbalancedsaltsolution[HBSS](Biofluids,Rockville,MD,USA)

MgCl2(2M)(QualityBiologicalInc.,Gaithersburg,MD,USA) Phosphate-bufferedsaline[PBS](withorwithoutCa2+/Mg2+)(Biofluids,Rockville,MD, USA) Tris-HCl(1M,pH7.4)(QualityBiologicalInc.,Gaithersburg,MD,USA) PenicillinG/Streptomycin/Glutamine(100X)(GibcoBRL,GrandIsland,NY,USA) Trypsin(0.05%)/Versene(0.02%)(Biofluids,Rockville,MD,USA)

Radioactivecompounds

[3H]-Adenine(18Ci/mmol)(AmericanRadiolabeledChemicalsInc.,St.Louis,MO, USA) [3H]-Arg-vasopressin([3H]AVP:81Ci/mmol)(NENLifeScienceProducts,Boston, MA,USA) [3H]-Myo-inositol(20-23Ci/mmol)(AmericanRadiolabeledChemicalsInc.,St.Louis, MO,USA) [3H]-N-methylscopolamine([3H]NMS;82Ci/mmol)(NENLifeScienceProducts, Boston,MA,USA) [3H]-SR121463(47.5Ci/mmol)(NENLifeScienceProducts,LesUlis,France).

61 2.MaterialsandMethods

Plasmids p416GPD(yeastexpressionplasmid)(AmericanTypeCultureCollection[ATCC], Rockville,MD,USA) p426GPD(yeastexpressionplasmid)(AmericanTypeCultureCollection[ATCC], Rockville,MD,USA)

AntibodiesforImmunoblotting

Anti-HAmonoclonalantibody(12CA5)(BoehringerMannheim,nowRoche, Indianapolis,IN,USA) Anti-mouseIgGantibodyconjugatedtohorseradishperoxidase(AmershamPharmacia Biotech,Piscataway,NJ,USA)

Othermaterials

Alumina[Al2O3](drymeshsize:60-325)(FisherChemicals,FairLawn,NJ,USA) DowexAG-1X8(drymeshsize:100-200)(Bio-RadLaboratories,Herkules,CA,USA) DowexAG50W-X8(drymeshsize:200-400)(Bio-RadLaboratories,Herkules,CA, USA) Glassbeads(425-600microns,acid-washed)(Sigma,St.Louis,MO,USA) Nitrocellulosemembranes(0.45µm)[Hybond-CExtra](AmershamPharmaciaBiotech, Piscataway,NJ,USA) Enhancedchemiluminescence[ECL]detectionkit(NENLifeSciences,Boston,MA, USA)

AllotherchemicalsandmaterialsusedforSDS-PAGEandwesternblottingwerefrom Bio-RadLaboratories,Herkules,CA,USA.

AllenzymesusedformolecularcloningwerefromNewEnglandBiolabs,Beverly,MA, USA.

62 2.MaterialsandMethods

2.1.2 Mediaandbuffersolutions

2.1.2.1Mammaliancellculturerelatedmediaandbuffersolutions

DMEM Transfectionmixture

Dulbecco’smodifiedEagle’smedium For100mmdish supplementedwith PBS(+Ca2+/Mg2+) 850µl Glucose 4.5g/l DEAE-dextran(10mg/ml) 55µl Fetalcalfserum(FCS)10% Plasmid-DNA 4µg PenicillinG 100I.U./ml For150mmdish Streptomycin 100µg/ml PBS(+Ca2+/Mg2+)2125µl Glutamine 4mM DEAE-dextran(10mg/ml)238µl Plasmid-DNA 4µg Peptidebindingbuffer$

Tris-HCl(pH7.4) 50mM

MgCl2 3mM EDTA 1mM BSA 0.1% Bacitracin 0.1mg/ml cAMPbuffers

Trichloroaceticacid(TCA)solution$

TCA 5% cAMP 1mM ATP 1mM

Regenerationbuffer(Dowexcolumns)$ Regenerationbuffer(Aluminacolumns)$

HCl 1M Tris-HCl(pH7.5)100mM

IPbuffers

Glycerolphophateelutionbuffer$ Elutionbuffer$

Sodiumborate 5mM Formicacid 0.1M Sodiumformate 60mM Ammoniumformate 0.2M

$non-sterilesolutions

63 2.MaterialsandMethods

Regenerationbuffer(Dowexcolumns)$

Formicacid 0.1M Ammoniumformate 3M

2.1.2.2Yeastrelatedmediaandbuffersolutions

YPD(YEPD)media YPD(YEPD)plates

Bacto-yeastextract 1% Bacto-yeastextract 1% Bacto-peptone 2% Bacto-peptone 2% Dextrose 2% Dextrose 2% Bacto-agar 2%

Syntheticcomplete(SC)anddrop-outmedia SCanddrop-outplates

Yeastnitrogenbase(YNB)0.67% Yeastnitrogenbase(YNB)0.67% w/oaminoacids w/oaminoacids Ammoniumsulfate 0.5% Ammoniumsulfate 0.5% Dextrose 2% Dextrose 2% Drop-outmix* 0.2% Drop-outmix* 0.2% Bacto-agar 2%

*Drop-outmix: Drop-outmixisacombinationofthefollowingingredientsminustheappropriate supplement.Itshouldbemixedverythoroughlybyturningend-over-endforatleast15 minutes;addingacoupleofcleanmarbleshelps.

Adenine 0.5g Leucine 10g Alanine 2g Lysine 2g Arginine 2g Methionine 2g Asparagine 2g para-Aminobenzoicacid 0.2g Asparticacid 2g Phenylalanine 2g Cysteine 2g Proline 2g Glutamine 2g Serine 2g Glutamicacid 2g Threonine 2g Glycine 2g Tryptophane 2g Histidine 2g Tyrosine 2g Inositol 2g Uracil 2g 2g Valine 2g

64 2.MaterialsandMethods

SEsolution Lysisbuffer

Sorbitol 1M Tris-HCl 50mM EDTA 100mM EDTA 1mM pH7.5 PMSF 0.1mM forstorageofyeastmembranesalsoadd Glycerol 10%

PEGmixturefortransformation Lämmlisamplebuffer

PEG3550 40% Tris-HCl,pH6.8 125mM Lithiumacetate 0.1M Glycerol 20% Dithiotreitol(DTT)100mM SDS 4% Bromphenolblue 0.01%

Yeastpeptidebindingbuffer$Yeastphosphatebindingbuffer$

Tris-HCl,pH8.1 50mM Sodiumphosphate 25mM

MgCl2 2mM MgCl2 5mM EDTA 1mM pH7.4 BSA 0.1% Bacitracin 0.1%

Allmedia,buffers,andsolutionsweremadefromcommerciallyavailablechemicalsof analyticalgradepurityandpurifiedwater(MilliporeMilli-Qplus)ordoubledistilled water.Reactionbufferformodificationandelution/storagebuffersforsamplesofDNA werepreparedfromultrapurewater.Unlessotherwisenoted,mediaandbuffersolutions wereeitherautoclavedorsterilefiltered.

$non-sterilesolutions

65 2.MaterialsandMethods

2.1.3Gifts

ThemammalianexpressionratV1a-pcD-SP6/T7waskindlyprovidedbyMichael Brownstein,LaboratoryofCellBiology,NationalInstituteofMentalHealth,Bethesda, Maryland20892,U.S.A.

Theyeaststrainsusedinthisstudy(seechapter2.2.2.5)werekindlyprovidedbyMark Pausch,MolecularGeneticScreenDesign,Wyeth-AyerstResearch,Princeton,NJ08543- 8000,U.S.A.

66 2.MaterialsandMethods

2.2Methods

2.2.1Mammalianexpressiontechnologies

2.2.1.1Geneticengineering

2.2.1.1.1MammalianexpressionplasmidpcD

ThecodingsequencesoftheratV1aandhumanV2 vasopressinreceptorswere insertedintoapcD-basedexpressionvector(OkayamaandBerg,1983),resultinginV1a- pcD-SP6/T7(Moreletal.,1992)andV2pcD/PS( Schönebergetal.,1996),respectively. ThepcDvectorsaremammalianexpressionvectorsthatcontainaSimianvirus40 (SV40)originofreplication,anSV40promoterandanSV40polyadenylationsequence. ThebindingoftheSV40largeT-antigentotheSV40originofreplicationdrives replicationoftheplasmid.Therefore,thepcDvectorcanreplicatetohighcopynumberin mammaliancelllinesthatconstitutivelyexpresstheSV40largeT-antigen.Thus,thepcD vectorproduceshighlevelsoftransientexpressionofreceptorgenesinCOS-7cells,a mammaliancelllinethathasbeenSV40transformed. ThepcDvectoralsocontainsapBR322originofreplicationandan ampicillin- resistancegene.Thesetwofeaturesallowthepropagationoftheplasmidin E.coliand selectionoftheplasmidbythepresenceofampicillin.

2.2.1.1.2Constructionofmammalianexpressionplasmids

TheconstructionofthevariouschimericV1a/V2andmutant vasopressin receptorsexpressedfromthemammalianpcDvectorisdescribedinchapter3.1.2(the preciseaminoacidcompositionoftheindividualV1a/V2hybridreceptorsisgivenin Table3.1andFig.3.1,chapter3.1).Standardmolecularbiologytechniques(Sambrooket al.,1989)wereusedforgeneratingcDNAconstructsinmammalianexpressionvectors. EnzymesthatwereusedforgeneticengineeringofplasmidDNAwerepurchasedfrom NewEnglandBiolabs(Beverly,MA,USA)orBRL(Gaithersburg,MD,USA).The oligonucleotideswereobtainedfrom Gibco-BRL(GrandIsland,NY,USA).

67 2.MaterialsandMethods

Oligonucleotideslongerthan50baseswerepurifiedona6% polyacrylamidegelas describedby Sambrooketal.(1989).DNAfragmentsgeneratedbypolymerase-chain- reaction(PCR)ordigestionwithrestrictionenzymesweregel-purified(0.7-1.0%agarose gel)for subcloningpurposesandextractedusingthe GenecleanRIIgelpurificationkit fromBio101(Vista,CA,USA).ForcDNAcloning,DNAfragmentswereligatedandthe resultingligationmixturewastransformedintocompetentDH5 αcellspreparedbythe

CaCl2method(accordingtoInoue etal. ,1990). PlasmidDNAwaspurifiedfrom bacterialculturesbyusingtheQiagenMinipreporMaxiprepkit(Chatsworth,CA,USA). TheidentityofallmutantconstructsandthecorrectnessofallPCR-derivedcoding sequenceswereverifiedbydideoxysequencingofthemutantplasmids(Sanger etal., 1977)andrestrictionenzymeanalysis.

2.2.1.2Cellculture

ExpressionplasmidscodingforthewtV1a,wtV2andmutantV2receptorswere individuallyexpressedinCOS-7cells,whichlackendogenousvasopressinreceptors,as determinedinradioligandbindingstudiesconductedwithCOS-7cells transfectedwith theemptypcDvector(alsoseechapter2.2.1.5) COS-7cellswereobtainedfromtheAmericanTypeCulturecollection (Rockville,MD,USA).COS-7isafibroblast-likecelllinederivedfromCV-1simian cells(Africangreenmonkeykidney;ATCCCCL70)transformedbyanorigin-defective mutantofSV40whichcodesforthewtTantigen.Cellsweregrownasmonolayersin Dulbecco’smodifiedEagle’smedium(DMEM)supplementedwith10%fetalcalfserum, 100I.U./mlpenicillinG,100 µg/mlstreptomycin,and4mMglutamineat37 °Cina humidified5%CO2incubator.

2.2.1.3TransientexpressionofclonedreceptorsinCOS-7cells

Fortransfections,1x106cellswereseededinto100mmdishes.About24hlater, cellsweretransfectedwiththevarious vasopressinreceptorconstructs(4µgofplasmid

68 2.MaterialsandMethods

DNAperdish)byadiethylaminoethyl -(DEAE)-dextranmethod(Cullen,1987).Plasmid DNAwasmixedwith850 µl PBS(+Ca2+/Mg2+)and55 µlDEAE-dextran(10mg/ml). Priorto transfection,culturedisheswererinsedtwicewithPBS(+Ca 2+/Mg2+).After aspiratingthewashingbuffer,thetransfectionmixturewasadded dropwisetotheculture dishes.Duringasubsequent3-hrincubation,thedishesweregentlyshakenin10-min intervalstopreventthecellsfromdryingout.Then,7mlofmediumsupplementedwith 80µlchloroquine(Sigma,St.Louis,MO,USA)wereaddedandthecellswereincubated foranother4hrsat37 °C(5%CO 2).Eventually,theincubationmixwasaspiratedand freshmediumwasadded.Cellswereharvestedabout48or72hrsafter transfectiontobe usedforfunctionalexperimentsorradioligandbindingstudies,respectively(seebelow).

2.2.1.4Preparationofmembranehomogenates

TransfectedcellswerewashedoncewithPBS(w/oCa 2+/Mg2+)andoncewithice- coldpeptidebindingbuffer(50mMTris(pH7.4),3 mMMgCl2,1 mMEDTA,0.1% bovineserumalbumin,and0.1mg/mlbacitracin).Then,cellswerescrapedinto5mlof ice-coldbindingbufferandhomogenizedfor30sec(setting:5)usingaBrinkmann Homogenizer(BrinkmannInstruments, Westbury,NY,USA).Proteinconcentrations weredeterminedaccordingtoBradford(1976)usingaBio-Rad(Richmond,CA,USA) proteinassaykit.Membraneswereusedfreshforradioligandbindingassays.

2.2.1.5Radioligandbindingassays

Forradioligandbindingstudies,COS-7cellswereharvestedapproximately70-72 hrsafter transfections,andmembranehomogenateswerepreparedasdescribedabove.

Bindingbufferconsistedof50 mMTris(pH7.4),3mMMgCl 2,1 mMEDTA,0.1% bovineserumalbumin,and0.1mg/mlbacitracin.Assayswereconductedinduplicatein thepresenceofthe radioligand,[ 3H]-8-argininevasopressin([ 3H]AVP,59Ci/mmol; DupontNEN),ina0.5mlvolume.Forsaturationbindingstudies,sixdifferent concentrationsof[ 3H]AVP(0.125-4 nM)wereused.Insomecases,membrane

69 2.MaterialsandMethods homogenateswereincubatedwithonlytwosaturatingconcentrationsof[ 3H]AVP,4and 8nM.Sincethetwoconcentrationsdetectedsimilarnumbersof[ 3H]AVPbindingsites foreachindividualmutantreceptor,bindingactivitiesobtainedwith8nM[ 3H]AVP couldbeconsideredapproximationsof Bmaxvalues.Specificbindingwasdefinedasthe differencein[3H]AVPbindingdeterminedintheabsence(=totalbinding)andpresence of5 µMAVP(nonspecificbinding).Nospecific[ 3H]AVPbindingactivitycouldbe detectedwithmembranespreparedfromvector-transfectedCOS-7cells. Incubationswerecarriedoutfor1hratroomtemperature(22°C).Binding reactionswereterminatedbyrapidfiltrationthrougha Brandelcellharvesteronto WhatmanGF/Cfilters(Brandel,Gaithersburg,MD, USA).Membraneswerewashed threetimeswith5mlofice-coldbindingbuffer,dried,transferredto7mlofscintillation fluid( BiosafeII R,RPI,MountProspect,IL,USA),andcountedinanLKBliquid scintillationcounter( Pharmacia,Gaithersburg,MD,USA)atacountingefficiencyof 59%. Datafromsaturationbindingstudieswereanalyzedaccordingtotheone-site modelofbinding:

K1 L+RóLR

K2

R=receptor;L=ligand;K1=associationrateconstant;K2=dissociationrateconstant

Accordingtothelawofmassaction,atequilibrium:K2[RL]=K1[L]·[R] andwithK2/K1=KD=equilibriumdissociationconstant(molarunits) -1 K1/K2=KA=equilibriumassociationconstant(unitsofmolar )

[RL]=KA[R]·[L]

Definitions:[R]=concentrationofunoccupiedreceptors [L]=freeligandconcentration,laterdenotedasF [RL]=concentrationofligand-receptorcomplex.Sincethis,bydefinition, isequaltotheconcentrationofligandboundtoR,[RL]islater denotedasB

[RTOT]=totalreceptorconcentration=Bmax

70 2.MaterialsandMethods

Theconcentrationofoccupiedreceptor[RL]canbecalculatedfromtheequation:

[RTOT]=[R]+[RL] Rearrangementgives:

[RL]=[RTOT]·KA·[L] 1+KA[L] orwithKA=1/KD

[RL]=[RTOT]·[L] KD+[L]

KDistheconcentrationofligandthathalf-maximallyoccupiesthereceptor

[RL]=[RTOT]/2.

Scatchardplot

Rearrangementandtransformationoftheequationabovetoalinearexpressiony=mx+ bgives:

B/F=-1/KD·B+Bmax/KD

Consequently,whenasingleligandisinteractingwithasinglepopulationofreceptors possessingasingleaffinityforthe ligand,aplotof B/Fversus Bisastraightlineand possessesaslopeof-1/KD.Thexintercept(y=0)isanestimateofBmax. ThecomputerprogramLIGAND(MunsonandRodbard)wasusedtocalculate thedissociationconstant KDandthebindingcapacity Bmax,fittingthespecificandnon- specificbindingasdeterminedfromsaturationexperiments.

2.2.1.6cAMPAssays

Approximately20-24hrsafter transfections,COS-7cellsweretransferredinto six-wellplates(about0.3-0.4x106cells/well),and2µCi/mlof[3H]adenine(18Ci/mmol; American RadiolabeledChemicalsInc.)wereaddedtothegrowthmedium.

71 2.MaterialsandMethods

DeterminationofadenylylcyclaseactivitywasthenperformedaccordingtoSalomon et al.(1974).Aftera24-hrlabelingperiod,cellswerepreincubatedinHanks’balancedsalt solutioncontaining20mMHepesand1mM3-isobutyl-1-methylxanthine(IBMX)for20 min(37°C).IBMXservesascompetitiveinhibitorofnucleotidephophodiesterasesand preventsdegradationofcAMP.Afterthe20-minincubation,thecellswerestimulated with1mMAVPfor30minat37 °C(totalvolumeperwell:1ml).Theincubationtime wasshowntobewithinthelinearrangeofcAMPaccumulation(LiuandWess, unpublishedresults).Togeneratecompleteconcentration-responsecurves,seven differentconcentrationsofAVP(rangingfrom10 -13to10 -6M)wereused.Incubations wereterminatedbyaspirationofmediumandadditionof1mlice-cold5%trichloroacetic aciddenaturingallproteinscontaining1mMATPand1mM cAMP.Increasesin intracellular[3H]cAMPlevelswerethendeterminedbyanionexchangechromatography. Theaqueousphasewasaddedtocolumnscontaining1mlAG50W-X8resin(drymesh size:200-400).Thecolumnswerewashedwith3mldH 2O,placedoverasetofcolumns containing1mlalumina(Al 2O3,drymeshsize:60-325)andelutedwith10mldH 2O. Finally,[3H]cAMPwaselutedfromthealuminacolumnswithtwice3mlTris-HCl(100 mM,pH7.5)intoscintillationvials,mixedwith13ml Hydrofluor(NationalDiagnostics, Atlanta,GA,USA)andcountedinanLKBliquidscintillationcounter(Pharmacia, Gaithersburg,MD,USA)atacountingefficiencyof59%.

2.2.1.7PIAssays

About20-24hrsafter transfections,cellsweresplitintosix-welldishes (approximately0.3-0.4x10 6cells/well)andlabeledwith3 µCi/ml[3H]myo-inositol(20 Ci/mmol;AmericanRadiolabeledChemicalsInc.).Aftera20-24-hrlabelingperiod,cells werepreincubatedfor20minatroomtemperaturewith2mlofHanks’balancedsalt solutioncontaining20mMHepesand10mMLiCl,whichinhibitstheactionof inositol monophophatases(Berridgeetal.,1982),thuspreventingtherecyclingofinositol.Cells werethenstimulatedwith1mMAVPfor1hrat37°C(totalvolumeperwell:1ml).The incubationtimewasshowntobewithinthelinearrangeoftheassay(LiuandWess,

72 2.MaterialsandMethods unpublishedresults).Incubationswereterminatedbyaspirationofmedium. Cellswere lysedbyadditionof750 µlice-coldformicacid(20 mM),followedbya35-min incubationat4 °C.Theincubationmixturewasneutralizedbyadditionof250 µlof amoniumhydroxide(60mM)andincreasesinintracellularinositol monophosphate(IP1) levelsweredeterminedbyanionexchangechromatography(Berridge etal.,1982)using columnscontaining1mlofDowexAG-1X8resin(drymeshsize:100-200).After

3 washingthecolumnswith glycerolephophateelutionbuffer,[ H]IP1waselutedwith twice2mlofIP 1-elutionbuffer(0.1Mformicacid,0.2Mammonium formate),mixed with15mlHydrofluor(NationalDiagnostics,Atlanta,GA,USA)andcountedinanLKB liquidscintillationcounter(Pharmacia,Gaithersburg,MD,USA)atacountingefficiency of59%.

2.2.2 Yeastexpressiontechnologies

2.2.2.1Geneticengineering

2.2.2.1.1Yeastexpressionplasmidp416GPD

Theyeastexpressionplasmidp416GPDisbasedonthepRS4XXvectorseriesof standardyeastexpressionplasmids(Sikorskiand Hieter,1989).Basically,thepRS4XX vectorscontaineithernoreplicationelement(=integratingplasmid,pRS4 0X)ora replicationelementforsinglecopy(CEN:pRS4 1X)ormulticopy(2 µ:pRS4 2X) propagationinyeast.Furthermore,theycontainselectablemarkersthatallow maintenanceoftheyeastexpressionplasmidsinyeaststrainsthatareauxotrophicfor thesemarkers:HIS3(pRS4X3),TRP1(pRS4X4),LEU2(pRS4X5),orURA3(pRS4X6). Theyeastexpressionplasmidp416GPDcontainsthepowerfulyeast GPDpromoter (GPD:geneencodingglyceraldehyde-3-phosphate dehydrogenase)andthe CYC1 terminator(CYC:geneencoding cytochrome-coxidase),whichareinsertedintothe polylinkerregionbetween KpnIandXhoI(GPDpromoter)and XbaIandSacI(CYC1 terminator)(Mumbergetal.,1995)(Fig.2.1).

73 2.MaterialsandMethods

CEN/ARS

URA3

Amp R

p416GPD-XX*

CYC1 terminator

GPD promoter

Receptor insert

Fig.2.1Featuresoftheexpressionplasmid,p416GPD,usedforthe heterologousexpressionofmuscarinic receptorsinyeast( S.cerevisiae ).Thep416GPDwasdevelopedbyMumbergetal.(1995)basedon pRS416(Christiansonetal.,1992).ItisasinglecopyplasmidcontainingtheCEN/ARSelement,the URA3 geneasselectablemarkerformaintenanceinyeast,andthe Ampgeneforpropagationin E.coli.TheGPD promoterandthe CYC1terminatorflankthereceptorinsert.Different muscarinicreceptorsequenceswere clonedintothepolylinkerofp416GPDasindicatedunder"MaterialsandMethods".*XX:receptorinsert.

ToallowpropagationinE.coli,thepRS-basedyeastexpressionplasmidscontain theAmpresistancegene.Sinceminipreppreparationsmadedirectlyfromyeastyieldonly minuteamountsofDNAandtransformationinto E.coliisanindispensablestepto recoveryeastvectorsforfurthermanipulationssuchas subcloning,sequencing,and

74 2.MaterialsandMethods transformationofyeaststrains.Sincetheseexpression plasmidscanbepropagatedboth inyeastandE.coli,theyarealsocalled“shuttlevectors”.

2.2.2.1.2ConstructionofwtV2andmutantV1a/V2vasopressinreceptorplasmids

Thep416GPD-basedyeastexpression plasmidcodingforthehumanV2 vasopressinreceptorwasconstructedusingstandardmolecularbiologicaltechniques.A 1.26kbEcoRI-XhoIfragmentcontainingthehumanV2receptorcodingsequencewascut outfromthemammalianexpressionplasmid,hV2-pcD( Schönebergetal.,1996),and clonedintothecorrespondingsitesinthepolylinkeroftheyeastexpressionplasmid, p416GPD(Fig.2.1),resultinginhV2-p416GPD.ThefinalV2receptorexpression construct,hV2-p416GPD,contained6basepairs( bp)of5'untranslatedsequence (CCCACC)followingthe EcoRIcloningsite.Thetranslationstartcodonwasfollowed bya 27 bpsequencecodingforthe hemagglutinin(HA)epitopetag(YPYDVPDYA) (Schönebergetal.,1996).PreviousstudiesshowedthatthepresenceoftheHAtagdid notaffecttheligand-bindingandGprotein-couplingpropertiesoftheV2 vasopressin receptor(Schönebergetal.,1996,LiuandWess,1996). The hV2-p416GPDconstruct alsocontained125bpof3'untranslatedsequencefollowedbytheXhoIcloningsite. MutantV2receptorgeneswereconstructedemployingthe“gap-repair”method byRaymondetal.(1998)asdescribedbelow(chapter2.2.2.2).Thepreciseaminoacid compositionoftheindividualV2receptormutantsisgiveninTable3.6 ,chapter3.2.The identityofallreceptorconstructswasconfirmedbyrestrictionenzymeanalysis,andthe correctnessofallPCR-derivedsequenceswasverifiedbydideoxysequencing.

2.2.2.1.3Constructionofwtandmutantmuscarinicreceptorplasmids

Allmuscarinicreceptorcodingsequenceswereclonedintothe polylinkerofthe yeastexpressionplasmid,p416GPD(Fig.2.1). Specifically,thehumanM 1,ratM 3,and humanM5muscarinicreceptorcodingsequenceswerecutoutfromHm1pcD( Bonneret al.,1988;Dörje etal.,1991),Rm3pcD-N-HA(Bonneretal.,1997;Schöneberg etal.,

75 2.MaterialsandMethods

1995),andHm5pcDp2( Bonner etal .,1988)andinsertedintothe polylinkerof p416GPD,yieldingpJW36(p416GPD-M 1),pMP289(p416GPD-M 3),andpJW38

(p416GPD-M5),respectively.Thefollowingcloningsitespresentinthep416GPD polylinkerwereusedforcloningpurposes:M 1andM 5, SpeIandSmaI;M 3, SpeIand BamHI. Toimprovetheefficiencyoftranslationinitiationinyeast(Price etal.,1995, 1996),the5'flankingsequencesofallreceptorinsertswereremovedandreplacedwitha AAAtripletbyusingstandardPCR mutagenesistechniques(Higuchi,1989).The receptorinsertsstillcontained3'flankingsequencesofdifferinglengths(M 1,32bp;M3,

437bp;M5,187bp).TheM3receptorconstructcontainedanine-aminoacidHA epitope tag(YPYDVPDYA)insertedaftertheinitiating methioninecodon(Schöneberg etal., 1995).PreviousstudieshaveshownthatthepresenceoftheHAtaghasnoeffectonthe ligand-bindingandGprotein-couplingpropertiesoftheM 3 muscarinicreceptor (Schönebergetal.,1995).

AnadditionalsetofyeastexpressionconstructsweregeneratedthatencodedM 1,

M3,andM 5 muscarinicreceptorsinwhichmajorportionsoftheiri3loopshadbeen deletedbystandardPCRmutagenesistechniques(Higuchi,1989).Theresulting expressionplasmidsarereferredtoaspJW37(p416GPD-M 1∆i3),pMP290(p416GPD-

M3∆i3),andpJW39(p416GPD-M 5∆i3).Theencodedreceptorproteinsaredesignated

M1∆i3,M 3∆i3,andM 5∆i3,respectively.Specifically,thefollowingreceptorsegments wereremovedinthedifferentdeletionconstructs(seealsoFig.3.18):M 1∆i3,Pro231-

Gly345;M3∆i3,Ala274-Lys469;M5∆i3,Thr237-Pro413.Exceptforthei3loopdeletions, thesequencesoftheM 1∆i3,M3∆i3,andM 5∆i3yeastexpressionplasmidswereidentical tothosecodingfortheirfull-lengthreceptorcounterparts.Theidentityofallreceptor constructswasconfirmedbyrestrictionenzymeanalysis,andthecorrectnessofallPCR- derivedsequenceswasverifiedbydideoxysequencing.

76 2.MaterialsandMethods

2.2.2.2Manipulationofyeastexpressionplasmidsemployingthe“gap-repair” method

Mutationswereintroducedintoyeastexpressionplasmidsbyusingthe“gap- repair”method(Raymondetal.,1999),takingadvantageofthehighrateofhomologous recombinationoccurringinyeast.Whenayeastexpressionislinearized(“gapped”) withintheregiontargetformutagenesisandco-transformedintoyeastwitha mutagenizedPCRfragmentthatcontainsateithersideatleast30 bp unmutagenized sequencehomologoustovectorsequence,thePCRfragmentreplacesthecorresponding ormissingregionoftheplasmidviahomologousrecombination(Fig.2.2).This recombinationishighlyefficientwithatleast80-90%oftherecoveredcircularplasmids containingthedesiredPCRfragment( SommersandDumont,1999; Raymond etal., 1999).Theuseoflinearizedvectorsrequiresonlyonerestrictionsiteaslongasthecut lieswellwithinthesequenceofthePCRproduct(SommersandDumont,1999; Raymond etal. ,1999).Cloningofyeastexpressionplasmidsusinghomologous recombinationcanalsobedoneusinguncutvectorandPCRfragment(Raymond etal., 1999).Inthiscase,homologousrecombinationissomewhatlessefficientthanwiththe useofcutplasmids,yetthismethodallowscloningindependentofrestrictionsites. Linearized(“gapped”)plasmidDNAwas dephosphorylatedandgelpurifiedto diminishre-circularizationofthevectorbackbone.Also,priortotransformationthe mutagenizedPCRfragmentwaspurifiedusingthe QiagenPCRpurificationkit (Chatsworth,CA,USA).Forcloningpurposes0.1 µgofbothplasmidDNAandPCR fragmentwereusedforco-transformationexperiments.Fordetailsabouttheapplication ofthismethodforgeneratingmutantV2receptorlibrariesemployingrandom mutagenesistechniques,seechapter2.2.2.6. Afterco-transformationandsubsequenthomologousrecombinationof linearized plasmidandPCRfragmentinyeast,thecircularyeastexpression plasmidswere recovered(fordetails,seechapter2.2.2.3)andtransformedintocompetentDH5 αcells. PlasmidDNAwaspurifiedfrombacterialculturesbyusingtheQiagenMiniprepkit

77 2.MaterialsandMethods restriction enzymes

A

+ PCR fragment B

C

homologous recombination

Fig.2.2Manipulationofyeastexpressionplasmidsemployingthe“gap-repair”method(Raymond et al.,1999). A,Ayeastexpressionplasmidis linearized(cutwithonerestrictionenzyme)or“gapped”(cut withtworestrictionenzymes).Theprocedureworkswithsingle-cut plasmidaslongasthecutlieswell withinthesequenceofthePCRproduct.Whenuncutvectorisused,therecombinationefficiencytendsto belower. B,Linearizedvectorisco-transformedwithaPCRfragmentthatcontainsthedesiredmutational alterations(X)byemployingthelithiummethoddescribedby GietzandWood(1994).ThePCRfragment tobeincorporatedintothevectorshouldcontainatleast30bphomologousvectorsequenceateitherside. C,Inyeast,thePCRfragmentreplacesthecorrespondingormissingregionoftheplasmidviahomologous recombination.Thismethodcanbeappliedfor subcloningpurposesaswellasforcreatinglibrariesof mutantproteinsgeneratedbyrandomPCRmutagenesis.

(Chatsworth,CA,USA).Theidentityofallmutantconstructsandthecorrectnessofall PCR-derivedcodingsequenceswereverifiedbydideoxysequencingofthemutant plasmids(Sangeretal.,1977).

78 2.MaterialsandMethods

2.2.2.3Transformationofyeaststrains

DNA-mediatedyeasttransformationwascarriedoutusingalithiumacetate (LiAc)method(GietzandWoods,1994).Fortransformation,yeastcellsweregrownin richmedium(YPDmediumcontaining yeastextract, peptone,and dextrose)and harvestedduringthelogarithmicgrowthphase(OD:0.5-1 ;1-2x107cells/ml).Cellswere spundown,washedoncewithdH 20andresuspendedin0.1MLiActoaconcentrationof 2x10 9cellsperml.Incubationofthiscellsuspensionina30 °Cwaterbathfor15min yieldedcompetentyeastcells.10 µlofthecellsuspensionwasmixedwithp416GPD- basedreceptorexpressionconstructsand/orPCRfragmentstobetransformedanda freshlypreparedPEGmixture(1mlPEGmixturecontains:800 µl50%PEG3550,100

µl1MLiAc,100µldH20)wasaddedataratioof1:6(µgcDNA:µlPEGmixture).This suspensionwasincubatedat30 °Cfor30minandthen heatshockedat42°Cfor10min. Forbetterrecovery,cellswerespundownaftertheincubation,thetransformation solutionwasaspirated,andcellswereresuspendedinsyntheticcompletemedium(SC) lackinguracil.Finally,thecellsuspensionwasplatedontoSCplateslacking uracil. Followinga72-hrincubationat30 °Cindividual transformantswereisolated.Three individualtransformantsfromeachtransformationwerechosenforfurtheranalysis.

2.2.2.4Yeastminiprep

Yeaststrainsweregrownin10mloftheappropriateSCmediumthatallowed maintenanceoftheyeastexpressionplasmidtobeextracted,toadensityof10 7cells/ml (OD:0.5).Cellswereharvestedbycentrifugationat4000gfor5min,washedtwicewith dH20andresuspendedin1mlofSE(1Msorbitol,100mMEDTA,pH7.5).Inorderto generatespheroblasts,10Uoflyticase,anenzymethatremovesthecellwall,wasadded. Thecellsuspensionwasincubatedat37 °Cfor1to2hrsuntilatleast70%oftheyeast cellsweretransformedintospheroblastsasconfirmedbymicroscopy. Spheroblastswere thencarefullyspundown(3,000xgfor1min),theaqueouslayerwasaspirated,andthe cellpelletwasprocessedusinga QiagenMiniprepkit(Chatsworth,CA,USA)according

79 2.MaterialsandMethods tothemanufacturer’sinstructions.0.5 µlofthefinalyeastminiprepweretransformed into150 µlofcompetentDH5 αcells. Plasmidswererecoveredfrombacterialcultures usingtheQiagenMiniprepkit(Chatsworth,CA,USA).

2.2.2.5Yeaststrainsusedinthisstudy

Thegenotypesoftheyeast( S.cerevisiae)strainsusedinthisstudy(MPy578fc, MPy578q5,andMPy578s5)aresummarizedinTable2.1.Thesestrainsarederivedfrom atypicallaboratoryyeaststrain,whichwasgeneticallyengineeredinordertoestablisha sensitivebioassaytostudymammalian GPCRsinyeast.Akeyfeatureofthisstrainis thatyeastgrowthrequiresactivationoftheyeastpheromonepathway.Specifically,the followinggeneticmodificationswereintroducedintoatypicallaboratoryyeaststrain (Table2.1,alsoseeFig.3.13,chapter3.2):

3 Cellcyclearrestinresponsetopheromoneismediatedbytheproductofthe FAR1 gene.Deletionofthisgenethereforeallowsforcontinuedgrowthand transcriptionalinductionofpheromone-responsivegenesinthepresenceofan activatedmatingpathway.

4 TheSst2pproteinisinvolvedinmediatingdesensitizationoftheactivatedyeast pheromonepathway.Therefore,deletionofthe SST2generesultsin hypersensitivitytothepresenceofpheromoneandinabilitytorecoverfrom pheromone-inducedcellcyclearrest.

5 TheFUS1gene,whichencodesapheromone-induciblemembraneprotein,was replacedwithareportergeneconstructmadebyfusingtheFUS1promotertoHIS3 codingsequence,therebyplacingexpressionofHis3punderthecontrolofthe pheromonepathway.Thus,receptorstimulationbyanagonistleadstoactivationof thepheromoneresponsecascade,inductionofthe FUS1promoter,andincreased His3pexpression,permittinggrowthofauxotrophic(his3)yeaststrainsonmedium lackinghistidine(Priceetal.,1995,1996).

80 2.MaterialsandMethods

6 TheendogenousyeastGPCRgene(STE2)wasdeleted,makingitpossibletostudy thefunctionof heterologouslyexpressedmammalian GPCRsina‘clean’ background.

TheconstructionofMPy578fchasbeendescribedpreviously( Pauschetal.,1998). MPy578q5andMPy578s5werederivedfromMPy578fcbyusingstandardyeast mutagenesistechniques(seebelow).Allthreestrainsareisogenicexceptforthe GPA1 genecodingfortheyeastGprotein αsubunit.MPy578fccontainsthewt GPA1gene, whereasMPy578q5andMPy578s5harbor genomicallyintegratedmutantversions codingforhybridGpa1proteinsinwhichthelastfiveaminoacidsofGpa1p(KIGII) werereplacedwiththehomologousmammalianG αq(EYNLV)andG αs(QYELL) sequences,respectively(HadcockandPausch,manuscriptinpreparation).

Table2.1Genotypesofyeaststrainsusedinthisstudy

______StrainGenotype______

MPy578fc MATaGPA1far1::LYS2fus1::FUS1-HIS3sst2::SST2-G418r ste2::LEU2fus2::FUS2-CAN1ura3lys2ade2his3leu2trp1can1

MPy578s5 sameasMPy578fc,withgpa1::Gs5a

MPy578q5 sameasMPy578fc,withgpa1::Gq5a ______aThestructureoftheencodedmutantGpa1proteinsareshowninFig.3.14.

81 2.MaterialsandMethods

Atwo-stepintegrativereplacementstrategy( Rothstein,1991)wasemployedto generatestrainsMPy578q5andMPy578s5.A2.6kb EcoRI-SalIfragmentofthe GPA1 genewasclonedintothecorrespondingsitesintheURA3-containingintegratingplasmid, YIp5(Rothstein,1991).SequencescodingforthefiveC-terminalaminoacidsofGpa1p werereplacedwiththecorrespondingsequencesfromG αsandGαqby oligonucleotide- mediatedmutagenesis.TheresultingplasmidswereusedtotransformMpy578fctoura prototrophyunderconditionsinwhichtheplasmidsshouldintegrateintotheGPA1locus. ChromosomalDNAisolatedfromresultingura+ transformantswasexaminedfor integrationoftheplasmidsattheGPA1locusbyPCR.Positivestrainswerepatchedonto 5-fluorooroticacidplatestoselectforlossofthe URA3gene(Rothstein,1991). ChromosomalDNAwasisolatedfromtheresulting ura-revertantsandcheckedfrom replacementoftheC-terminalcodingsequencesbyPCR. Theuseof chimericG α-subunitsprovedadvantageoussinceyeaststrains transformedwithwtmammalianG α subunitswerecharacterizedbyexcessive backgroundgrowth(growthevenintheabsenceofligand).Apossibleexplanationfor thisobservationisthatmammalianG α-subunitsshowreducedaffinitytotheyeast βγ- complexes(Pauschetal.,1998),leadingtoconstitutiveactivationoftheyeastpheromone pathwayduetothepresenceoffreeβγ-complexes(fordetails,seechapter3.2.2).

2.2.2.6Randommutagenesisstrategyandcreationofmutantreceptorlibrary

2.2.2.6.1Libraryconstruction

ToconstructamutantV2receptorlibrary,the“gap-repair”methodbyRaymond etal. (1998)wasapplied(Fig.2.2).hV2-p416GPPwasdigestedwith BstXI,which removeda52bpfragment fragmentcorrespondinginsequencetomostofthei2loop fromthehV2-p416GPDconstruct.ThePCRfragmentwasgeneratedbyan oligonucleotide-directedrandommutagenesisapproachwasemployedwhichintroduced mutationsintotheV2receptorregioncodingforthei2loop. Thefollowing oligonucleotidecodingforV2receptorresidues138-160wasused(Genemed , S.San Francisco,CA;underlinesdenotebasesdopedwith10%non-wtnucleotides):ACGCTG

82 2.MaterialsandMethods

GACCGCCACCGTGCCATCTGCCGTCCCATGCTGGCGTACCGCCAT GGAAGTGGGGCTCACTGGAACCGGCCGGTA CTAGTGGCTTGG.The underlinedmutagenizedsequencecodesforaminoacidsHis138toVal160.This oligonucleotidewasusedasaprimerforPCRamplificationtogetherwitholigonucleotide ON2(5'-GGCCCAGCAGTCAGTGACCCCGCTGCCACCTTCCACGTTGCG CTG-3';correspondinginsequencetoaminoacidcodons180-194)asanti-senseprimer andhV2-p416GPDasatemplate.Theresulting183bpPCRfragmentwasthenusedasa templateforasecondroundofPCRusingasenseprimerthatoverlappedwiththefirst12 nucleotidesofthemutagenic oligonucleotide(ON30;5'-CAGATGGTGGGCATG TATGCCTCC TCCTACATGATCCTGGCCATGACGCTGGACCGC-3'; correspondinginsequencetoaminoacidcodons 119-137)andON2astheantisense primer.Theresulting228bpPCRfragmentcontained57bpofwtsequence5'and102bp ofwtsequence3'ofthemutagenizedsequence,respectively. Forconstructionofthemutantreceptorlibrary0.2 µgof linearizedhV2- p416GPDwasco-transformedwith0.2µgofPCRproductintoMPy578q5followingthe transformationprotocoldescribedinchapter2.2.2.3.Followingtransformationintoyeast, theendsofthemutagenizedPCR fragmentrecombinedwiththehomologousendsofthe gappedreceptorplasmidtoregeneratecircularreceptorexpressionplasmids( Muhlradet al,1992;StaplesandDiekman,1992)(Fig.2.2). ToassessthequalityofthemutantV2receptorlibrary,the plasmidsof15 randomlypickedcolonieswererecovered.Sequencingofthemutagenizedregion resultedina mutagenesisrateof9%,whichwasingoodagreementwiththepredicted rate(10%).Themutationswereevenlydistributed,suggestingthatnobiasoccurred withinthetargetedreceptorregion.

2.2.2.6.2Receptorselection

InordertoscreenformutantV2receptorswithalteredGproteincoupling preferences,conditionswereestablishedthatallowedV2receptor/Gs5co-expressing yeaststrainstogrowinanAVP-dependentfashiononSD-ura-hisplates,butdidnot

83 2.MaterialsandMethods allowahormone-dependentgrowthresponseofV2receptor/Gq5co-expressingstrains. First,tosuppressbackgroundgrowth,variousconcentrationsof3-amino-1,2,4-triazol (AT)weretested.ATisacompetitiveinhibitorofthe HIS3geneproduct,imidazole glycerolphosphatedehydratase,whichisbeingproducedatlowlevelduetolowbasal constitutiveactivityofthe FUS1promoter.Thepresenceof10 mMATprovedto efficientlysuppressbackgroundgrowth.Yeaststraincarryingtheemptyvector (p416GPD)wereunabletogrowinthepresenceof10mMAT(Fig.2.3,firstrow). Moreover,variousconcentrationsofAVPweretestedtoassessaconcentrationof hormonethatallowedgrowthofV2receptor/Gs5co-expressingyeaststrainsbutnotof theV2receptorandtheGq5chimericGprotein.Aconcentrationof4x10 -7MAVPwas sufficienttostimulategrowthofV2receptor/Gs5co-expressingyeastcells.No backgroundgrowthcouldbeobservedintheabsenceofligand.Also,underidentical conditions,V2receptor/Gq5co-expressingyeastcellswereunabletogrow(Fig.2.3 , secondrow).Thus,replicaplatingofGq5-expressingyeastcoloniestransformedwitha randomlymutagenizedV2receptorlibraryundertheconditionsdescribedaboveallowed screeningformutantV2receptorsthatwouldbeabletoactivateGq5. Specifically,theMPy578q5-basedyeastexpressionlibrarycodingformutantV2 vasopressinreceptorswasplatedontouracil-deficientSCmedium toselectfor ura+ (plasmid-containing)transformants.Tofacilitatereplicaplatingandsubsequentisolation ofpositivecolonies,thetransformationmixwasplatedatadensityof200-300colonies per100mmplate. Afterincubationofplatesforthreedaysat30 oC,ura+colonieswere transferred,viareplicaplating,ontoplatescontainingSCmediumlackingbothuraciland histidine,butcontaining10mMATand0.4 µMofthe agonist,AVP(anAVPstock solutionwasspreadovertheplatesaftertheagarhadcooledandhardened).Forcontrol purposes,theprimaryura+transformantswerealsoreplica-platedontoplatescontaining theidenticalselectionmediumbutlackingAVP. Atotalofapproximately30,000yeastclonesexpressingmutantV2receptors werescreened.Plasmidswereisolatedfromcoloniesthatwereabletogrow,inanAVP- dependentfashion,onhistidine-deficientmedium,amplifiedinE.coli,andretransformed

84 2.MaterialsandMethods

Fig.2.3ConditionsusedforscreeningarandommutantV2receptorlibrary. Yeaststrainsexpressing eitherGs5orGq5weretransformedwithemptyvectorp416GPD( row1)orwithhV2-p416GPD(row2).5 µlofyeastcellsuspensions(OD:0.1)weredottedontoSD- ura-hisplates.Tosuppressbackgroundgrowth theplatesweresupplementedwith10 mMAT,acompetitiveinhibitorofthe HIS3geneproduct(seetext fordetails).TheSD- ura-hisplatescontainedeithernohormone(-AVP)or4x10 -7MAVP(+AVP).Plates wereincubatedat30°Cfor3days.

intoMPy578q5toconfirmthattheobservedgrowthphenotypewasindeeddueto plasmid-borneV2receptormutations.Mutantreceptorplasmidswerethensequenced and,atleastinsomecases,re-createdthroughsite-directed mutagenesistobeusedfor furtherstudies.

2.2.2.7Liquidbioassays

YeaststrainswereculturedovernightinSCmediumlackinguracil.Cellswere thenwashedinPBSanddilutedtoaconcentrationof10 5cells/mlin3mlSCmedium lackinguraciland histidine(pH6.9).Tosuppressbasalyeastgrowth,different concentrationsofAT,acompetitiveinhibitorofthe HIS3geneproduct( imidazole glycerolphosphatedehydratase),wasaddedtothegrowthmedium(8 mMATinthecase oftheV2vasopressinreceptor-expressingstrains,9mMinthecaseofmuscarinic receptor-expressingMPy578fcandMPy578q5strains,and18mMinthecaseof muscarinicreceptor-expressingMPy578s5strains).Subsequently,aliquotsofyeastcell

85 2.MaterialsandMethods suspensions(180 µl)weredispensedintowellsofsterile96-well microtiterdishes containing20 µlofseriallydilutedsamples ofAVPor carbachol,respectively(final concentrations:10-4–10-13M).Theplateswereincubatedat25°Cfor3daysundergentle agitation.Growthwasmonitoredbyrecordingincreasesinabsorbanceat630nmusinga microplatereader.Assayswereconductedintriplicate,usingthreeindependent transformants.Growthratemeasurementswereobtainedduringthelogarithmicphaseof yeastcellgrowth.AVPandcarbacholconcentration-responsecurveswereanalyzedusing thecomputerprogramKaleidagraph(SynergySoftware).

2.2.2.8Isolationofyeastmembranes

Yeastcellsfromaoneliterovernightculture(OD:0.5–1;1–2x10 7cells/ml)were collectedbycentrifugation(4,000xgat4 oCfor10min).Allsubsequentmanipulations wereconductedonice.Cellswerewashedinwaterandrecentrifuged.Thecellpelletwas thenweighedandresuspendedinice-coldlysisbuffer(1.6timesthevolumeofthepellet weight)containing50 mMTris-HCl,1 mMEDTA,and0.1 mMPMSF.Glassbeads (Mesh400–600)wereaddedtothesuspensiontoafinalvolumeof70%,andthecells werebrokenbyvigorousvortexing.Tominimizeproteindenaturation,thesamplewas putonicefor1minaftereach1minof vortexing.Thisprocedurewasrepeatedfour times.Thehomogenatewasthendilutedwithlysisbuffer(1.6timesthevolumeofthe pellet,seeabove)andextracted. Thisprocedurewasrepeatedfivetimes.Theextracted sampleswerecombinedandcentrifugedat5,000xg(4 oC)for10min.Subsequently, membraneswerepelletedbycentrifugationat40,000xg(4 oC)for40min.Theresulting membranepelletwasresuspendedinthesamevolumeoflysisbuffer(containing10% glycerol)thatwasusedtorespuspendthecellpellet(seeabove)andhomogenizedusinga Douncetissuegrinder.ProteinconcentrationsweredeterminedusingthePierceBCAkit withBSAasastandard.

86 2.MaterialsandMethods

2.2.2.9 Radioligandbindingassayswithyeastmembranesexpressingwtand mutantvasopressinreceptors

Radioligandbindingstudieswerecarriedoutwithmembranehomogenates(100- 200µgproteinpersample)preparedasdescribedabovefromyeaststrainsexpressing differentvasopressinreceptors.Incubationswerecarriedoutina50mMTris-HClbuffer, pH8.1,containing2mMMgCl 2,1 mMEDTA,0.1%BSA,0.1% bacitracinand increasingconcentrations(0.1-15 nM)oftheradioligand,[ 3H]-SR121463,aselective V2receptorantagonist( Serradeil-LeGal etal.,1996,2000).Bindingreactionswere startedbytheadditionofyeastmembranes(100-200µgprotein/assaytube)andallowed toproceedfor45minat25 oC.In[ 3H]-SR121643saturationbindingexperiments,eight differentradioligandconcentrations(0.1–15nM)wereused.Boundandfree ligand wereseparatedbyrapidfiltrationoverWhatmanGF/Bfilters(presoakedin0.3% polyethyleneimine)usinga Brandelcellharvester.Afterseveralwasheswithice-cold bindingbuffer,radioactivityboundtothefilterswasdeterminedbyliquidscintillation counting.Non-specificbindingwasdeterminedinthepresenceof1µMSR121463.Data forequilibriumbinding(apparentequilibriumdissociationconstant( Kd),maximum bindingdensity(Bmax))wereanalyzedbynonlinearleast-squarescurve-fittingprocedures usingtheprogramLIGAND(MunsonandRodbard,1980).

2.2.2.10 Radioligandbindingassayswithyeastmembranesexpressingwtand mutantmuscarinicreceptors

Radioligandbindingstudieswerecarriedoutwithmembranehomogenates(250- 500µgproteinpersample)preparedasdescribedabovefromyeaststrainsexpressing differentmuscarinicreceptors.Incubationswerecarriedoutfor3hat22 °Cina25mM

3 sodiumphosphatebuffer(pH7.4)containing5mMMgCl 2. In[ H]NMSsaturation bindingexperiments,sevendifferent radioligandconcentrations(0.03–3.2 nM)were used.BoundandfreeligandwereseparatedbyrapidfiltrationoverWhatmanGF/Bfilters (presoakedin0.3% polyethyleneimine)usinga Brandelcellharvester.Afterseveral

87 2.MaterialsandMethods washeswithice-coldbindingbuffer,radioactivityboundtothefilterswasdeterminedby liquidscintillationcounting.Nonspecificbindingwasassessedinthepresenceof 10µM atropine.Bindingdatawereanalyzedbynonlinearleast-squarescurve-fittingprocedures usingGraphPADPrism(GraphPADSoftware).

2.2.2.11Westernblottinganalysis

Forimmunoblottingstudies,yeastmembraneswereisolatedasdescribedabove. Membranepreparations(10µgproteinpersample)weremixedwithanequalvolumeof 2-foldconcentratedLaemmlisamplebuffer(125mM Tris-HCl(pH6.8),20%glycerol, 100mMDTT,4%SDSand0.01%bromphenolblue)andincubatedatroomtemperature for30min.Subsequently,proteinswereseparatedona4-20%gradientSDS- polyacrylamidegel.Proteinswerethentransferredontonitrocellulosemembranesvia electroblotting.Membraneswereblockedwith0.1%gelatininPBScontaining0.1%of Tween20(PBS-T/gelatin;1hratroomtemperature)andthenincubatedwiththemouse 12CA5(anti-HA)monoclonalantibody(dilution1:16,000inPBS–T/gelatin;1hratroom temperature).Boundantibodywasdetectedbyincubationwithasecondaryanti-mouse antibodyconjugatedtohorseradishperoxidase(1:5,000dilutioninPBS-T/gelatin;1hrat roomtemperature).AfterextensivewashingofblotswithPBS-T/gelatin,proteinswere visualizedusinganECLdetectionkit.

88 3.ResultsandDiscussion 3.ResultsandDiscussion

3.1StructuralbasisofV2vasopressinreceptor/Gscouplingselectivity

3.1.1Aimofthestudy

Duringthepastdecade, biogenicamineGPCRs,includingthe muscarinic acetylcholine(Wess,1996)andadrenergicreceptors(Dohlmanetal.,1991;Savareseand Fraser,1992;Strader etal.,1994),havebeensubjectedtosystematicstructure-function studies.Thisanalysishasledtoadetailedinsightintothestructuralelementsthatcontrol theGproteincouplingselectivityofthisclassofreceptors.Incontrast,themolecular mechanismsdeterminingthecouplingselectivityof GPCRsactivatedbypeptideligands arenotwellunderstood.Toshedlightonthisissue,theG q/11-linkedV1aandtheG s- coupledV2vasopressinpeptidereceptorswereusedasmodelsystems.Inaformerstudy (LiuandWess,1996),ahybridreceptorstrategywasemployedtobroadlymapV1aand V2receptordomainsdeterminingthecouplingpropertiesofthesetwovasopressin receptorsubtypes.Biochemicalandfunctionalanalysisrevealedthatefficientcouplingto

GsbythewtV2or chimericV1a/V2receptorswaslargelydependentonthepresenceof V2receptorsequenceinthei3loop.Toexplorethestructuralbasisunderlyingtheability oftheV2receptortoselectivelyrecognizeG singreatermoleculardetail,again-of- functionstudywasemployed.DistinctV2 receptorsegmentsorsingleaminoacidswere systematicallysubstitutedintotheV1areceptor.Theresultingmutantvasopressin receptorswerethenstudiedfortheirabilitytomediatehormone-dependent cAMP production.ThisstrategyappearedparticularlyattractivesincethewtV1areceptor essentiallyoffereda“nullbackground”,inthatstimulationofthisreceptorsubtypehas virtuallynoeffectonintracellularcAMPlevels(LiuandWess,1996).

90 3.ResultsandDiscussion

Table3.1AminoacidcompositionofV1a/V2hybridvasopressinreceptorsusedinthis study

Chimeric V1areceptorresiduesreplaced Receptor withV2receptorsequencea

CR1 V1a(Tyr238-Phe300)->V2(Glu225-Leu274) CR2 V1a(Val153-Ala172)->V2(Ile141-Leu161)andV1a(Tyr238-Phe300)->V2(Glu225-Leu274) CR3 V1a(Tyr238-Phe300)->V2(Glu225-Leu274)andV1a(Cys349-Thr424)->V2(Thr320-Ser371) CR4 V1a(Cys349-Thr424)->V2(Thr320-Ser371) CR5 V1a(Cys349-Pro370)->V2(Thr320-Leu340) CR6 V1a(Phe369-Thr424)->V2(Leu339-Ser371) CR7 V1a(Tyr238-Phe300)->V2(Glu225-Leu274)andV1a(Cys349-Pro370)->V2(Thr320-Leu340)

CR8 V1a(Tyr238-Val278)->V2(Glu225-Gly254) CR9 V1a(Lys252-Phe300)->V2(Gly239-Leu274) CR10 V1a(Ser284-Phe300)->V2(Pro256-Leu274) CR11 V1a(Tyr238-Ser255)->V2(Glu225-Gln242) CR12 V1a(Tyr238-Ile249)->V2(Glu225-Leu236) CR13 V1a(Tyr238-Val278)->V2(Glu225-Gly254)andV1a(Cys349-Thr424)->V2(Thr320-Ser371) CR14 V1a(Ser284-Thr424)->V2(Pro256-Ser371)

CR15 V1a(Tyr238-Gly239)->V2(Glu225-Val226) CR16 V1a(Cys242-His244)->V2(Phe229-Gln231) CR17 V1a(Trp246-Asn248)->V2(His233-Ser235) CR18 V1a(Tyr238-Gly239)->V2(Glu225-Val226)andV1a(Lys252-Phe300)->V2(Gly239-Leu274) CR19 V1a(Cys242-His244)->V2(Phe229-Gln231)andV1a(Lys252-Phe300)->V2(Gly239-Leu274) CR20 V1a(Trp246-Asn248)->V2(His233-Ser235)andV1a(Lys252-Phe300)->V2(Gly239-Leu274)

CR22 V1a(Gly239-Val278)->V2(Val226-Gly254) CR23 V1a(Tyr238)->V2(Glu225)andV1a(Phe240-Val278)->V2(Leu227-Gly254) CR24 V1a(Tyr238-Phe240)->V2(Glu225-Leu227)andV1a(Tyr243-Val278)->V2(Arg230-Gly254) CR25 V1a(Tyr238-Cys242)->V2(Glu225-Phe229)andV1a(His244-Val278)->V2(Gln231-Gly254) CR26 V1a(Tyr238-Tyr243)->V2(Glu225-Arg230)andV1a(Trp246-Val278)->V2(His233-Gly254)

CR27 V1a(Tyr238-Ile249)->V2(Glu225-Leu236)andV1a(His258-Val278)->V2(Gly245-Gly254) CR28 V1a(Tyr238-Ile249)->V2(Glu225-Leu236)andV1a(His258-Val278)->GGAAAGRRTG CR29 V1a(Tyr238-Ile249)->V2(Glu225-Leu236)andV1a(His258-Val278)->GGRRRGAATG CR30 V1a(Tyr238-Ile249)->V2(Glu225-Leu236)andV1a(His258-Val278)->AARRRARRAA CR31 V1a(Tyr238-Ile249)->V2(Glu225-Leu236)andV1a(His258-Val278)->AAAAAAAAAA CR32 V1a(Tyr258-Val278)->V2(Gly245-Gly254) CR33 V1a(Tyr238-Ser255)->V2(Glu225-Gln242)andV1a(Thr279-Phe300)->V2(Ser255-Leu274) aNumbersrefertoaminoacidpositionsintheratV1a(Moreletal.,1992;Innamoratietal.,1996)andhumanV2(Birnbaumer etal.,1992)vasopressinreceptors

91 3.ResultsandDiscussion

3.1.2ConstructionofmutantV1a/V2vasopressinreceptors

TogeneratehybridV1a/V2 vasopressinreceptorconstructs,expressionplasmids codingfortheratV1areceptor,V1apcD-SP6/T7(Morel etal.,1992),andthehumanV2 receptor,V2pcD-PS(Schönebergetal.,1996),wereused.ThewtV2receptorconstruct containedanine-aminoacidHAtag(YPYDVPDYA)insertedaftertheinitiating methioninecodon.TofacilitatetheconstructionofV1a/V2mutantreceptors,the followingsilentrestrictionsiteswereintroducedintotheV1areceptorexpression plasmid:SpeI(codons173/174), BspEI(codons224/225), KpnI(codons235/236),and Eco47III(codons304/305).ChimericV1a/V2receptorgeneswereconstructedbyusing standardPCR mutagenesistechniques(Higuchi etal.,1989).Thepreciseaminoacid compositionoftheindividualV1a/V2hybridreceptorsisgiveninTable3.1(seealsoFig. 3.1).Thecorrectnessofall polymerasechainreaction-derivedsequenceswasconfirmed bydideoxysequencingofthemutantplasmids(Sangeretal.,1977).

3.1.3Results

WhentransientlyexpressedinCOS-7cells,thewtV2vasopressinreceptor,upon stimulationwiththehormoneAVP,producedapronouncedincreaseinintracellular cAMPlevels(11±1-foldabovebasal ;EC 50=0.56±0.14nM).Incontrast,theV1a vasopressinreceptorwasunabletomediateanappreciableincreasein adenylylcyclase activity(Figs.3.2and3.3,Tables3.2and3.3).Toelucidatethestructuralbasis underlyingthisselectivity,again-of-function mutagenesisapproachwasemployed. Distinctsegments/aminoacidsofV2receptorsequenceweresubstitutedintotheV1a receptorsubtype,andtheresultinghybridreceptorswerethenexaminedfortheirability tomediateincreasesinintracellularcAMPlevels.AllstudieswerecarriedoutwithCOS- 7cellstransientlyexpressingthedifferentwtandmutantvasopressinreceptors.

92 3.ResultsandDiscussion

Table3.2Expressionlevels(Bmax)ofwtandmutantV1a/V2vasopressinreceptors

3 Bmaxvalues(fmol/mgmembraneprotein)weredeterminedin[ H]AVPbindingassays usingmembranehomogenatespreparedfrom transfectedCOS-7cellsasdescribedunder “MaterialsandMethods”.Unlessindicatedotherwise,membranehomogenateswere incubatedwithtwosaturatingconcentrationsof[ 3H]AVP,4and8nM.Sincethesetwo concentrationsdetectedsimilarnumbersof[ 3H]AVPbindingsitesforeachindividual mutantreceptor,bindingactivitiesobtainedwith8 nM[ 3H]AVPcanbeconsidered approximationsofBmaxvalues.Forseveralkeyreceptorsa(seetextfordetails),complete [3H]AVPsaturationbindingcurvesweregenerated.Meanvalues± S.E.aregiven(n=2- 4).

______

ReceptorBmax ReceptorBmax ______fmol/mg fmol/mg V1 368±45a CR15 303±30 V2 493±34a CR16 423±5 CR17 258±3 CR1 166±8a CR18 77±8 CR2 40±4a CR19 140±16a CR3 231±11a CR20 75±12 CR4 343±21 CR5243±5 CR22 318±14 CR6 353±16 CR23 227±9 CR7 197±13a CR24 202±18 CR25 217±8 CR8 316±41a CR26 297±40 CR9 120±8a CR10 91±2 CR27 374±68a CR11 280±3 CR28 537±70 CR12 424±39a CR29 451±31 CR13 305±40 CR30 377±64 CR14 222±27 CR31 492±14a CR32 465±100 CR33 173±13a ______aForthesereceptors,complete[3H]AVPsaturationbindingcurvesweregenerated(for 3 [ H]AVPKDvalues,seeTable3.3).

93 3.ResultsandDiscussion

Table3.3PharmacologicalpropertiesofhybridV1a/V2vasopressinreceptors

[3H]AVPsaturationbindingandcAMPassayswerecarriedoutusingtransfectedCOS-7 cellsasdescribedunder“MaterialsandMethods”.K Dvaluesweredeterminedusingthe programLIGAND( MunsonandRodbard,1980).EC 50andE maxvalueswereobtained fromAVPconcentration-responsecurves,usingthecomputerprogram Kaleidagraph (SynergySoftware).Dataaregivenasmeans± S.E.of2-4(bindingassays)or3-9 (cAMPassays)independentexperiments,eachcarriedoutinduplicate(bindingassays) ortriplicate(cAMPassays),respectively.

[3H]AVPbindinga cAMPproduction Receptor

KD Maximumincreasein AVP cAMPabovebasal EC50

nM % nM

V1a 0.38±0.02 3±1 ndb V2 0.85±0.06 100 0.56±0.14

CR1 0.19±0.01 76±2 1.1±0.2

CR2 0.22±0.07 56±7 1.2±0.4

CR3 0.50±0.01 99±1 1.2±0.2

CR7 0.41±0.04 98±2 1.1±0.2

CR8 0.55±0.07 71±2 1.2±0.1

CR9 0.18±0.01 11±1 ndb CR12 0.70±0.05 29±7 4.1±0.2

CR19 0.39±0.07 44±3 4.1±0.4

CR27 0.79±0.07 73±3 1.7±0.2

CR31 0.92±0.14 78±7 1.4±0.3

CR33 0.21±0.04 33±6 3.7±0.2

a ForBmaxvalues,seeTable3.2. bnd,notdeterminablewithsufficientaccuracy.

94 3.ResultsandDiscussion

A TM V i3 TM VI 238 244 249 252 255 258 278 284 300 V1a CYGFICYHIWRNIRGKTASSRHSKGDKGSGEAVGPFHK---GLLVTPCVSSVKSISRAKIRTVKMTFVIVSAY- * * * * * ** ** *** * V2 CQVLIFREIHASLVPGPSERPGGRRRGRRTG------SPGEGAHVSAAVAKTVRMTLVIVVVY-

225 231 236 239 242 245 254 256 274

B TM VII i4 349 369 370 424 V1a CCNPWIYMFFSGHLLQDCVQSFPCCHSMAQKFAKDDSDSMSRRQTSYSNNRSPTNSTGMWKDSPKSSKSIRFIPVST * ***** ** * ** * * * * * * V2 CTNPWIYASFSSSVSSELR-SLLCCARGRTPPSLGPQDE-SCTTASSS-LAKDTSS

320 339 340 371

Fig3.1Comparisonofaminoacidsequencesofi3andi4domainsoftheratV1aandhumanV2 vasopressinreceptors.A,i3loopsequences. B,i4domainsequences.ThecytoplasmicendsofTMV,VI, andVIIarealsoshown.Positionsatwhichbothreceptorsubtypeshaveidenticalresiduesaremarkedwith asterisks.Thetwoadjacentconserved cysteineresiduesinthei4domainare underlined.Numbersnextto individualresiduesrefertoaminoacidpositionswithintheratV1a(Morel etal.,1992; Innamoratietal., 1996b)andhumanV2( Birnbaumeretal.,1992)receptorsequences.Gapswereintroducedtoallowfor maximalsequenceidentity.

[3H]AVPbindingstudiesshowedthatmostofthemutantreceptorswereexpressedat levelscomparabletothosefoundwiththetwowtreceptors(Table3.2).Inonlyafewrare cases(e.g.CR2),Bmaxvalueswerefoundtobestronglyreduced(seebelowfordetails).

3.1.3.1Importanceofthei4domainincouplingselectivityoftheV2receptor

Inapreviousstudy,Liuand Wess(1996)demonstratedthatamutantV1a receptor(CR1)inwhichthei3loop(Tyr238-Phe300;Fig.3.1)wasreplacedwiththe correspondingV2receptorsequence(Glu225-Leu274;Fig.3.1)gainedtheabilityto

95 3.ResultsandDiscussion stimulate adenylyl cyclasewithhighefficacy(Figs.3.2and3.3,Table3.2).This observationsuggestedthatthei3loopoftheV2receptor containsmajorstructural elementsdeterminingthecouplingselectivityofthisreceptorsubtype.However,itwas alsonotedthatthemaximum cAMPresponsemediatedbyCR1wasabout25%smaller thanthatobservedwiththewtV2receptor(Figs.3.2and3.3;Table3.3),suggestingthat otherV2receptordomains,besidesthei3loop,arealsocriticalforoptimumG scoupling efficiency. Moleculargeneticandbiochemicalstudieswith biogenicaminereceptorsand otherclassesof GPCRshaveshownthatresidueswithinthei2loopandportionsofthe cytoplasmictail(i4)alsocontributetoGproteincoupling(Dohlman etal. ,1991; SavareseandFraser,1992;Strader etal.,1994;Kobilka,1992; Wess,1997).Therefore, twoadditionalmutantreceptors,CR2andCR3(Fig.3.2),werecreatedbysubstituting V2receptorsequencesintothei2loop(CR2)orthei4domain(CR3)ofCR1.Fig.3.2 showsthatmaximumcAMPresponsesmediatedbyCR2weresmallerthanthose

3 observedwithCR1(E max=56±7%comparedtowtV2).However,[ H]AVPradioligand bindingstudiesshowedthatCR2waspoorlyexpressed(B max=40 fmol/mg;Table3.2), makingtheloss-of-functiondatadifficulttointerpret.IncontrasttoCR2,CR3(whichis expressedatsimilarlevelsasCR1;Table3.2)gainedtheabilitytostimulateadenylyl cyclasewiththesameefficacyasthewtV2receptor,indicatingthatthelast52amino acidsoftheV2receptor(Thr320-Ser371;Fig.3.1)makeacriticalcontributiontoV2 receptor/Gscouplingselectivity.Consistentwiththisfinding,substitutionofthisC- terminalV2receptorsequencedirectlyintothewtV1areceptorresultedinahybrid receptor,CR4,thatgainedtheabilitytostimulate cAMPproductiontoasignificant extent(Emax=28±4%;Fig.3.2).

96 3.ResultsandDiscussion

A B Increase in cAMP (V2 = 100%) i1 i2 i4 i3 0 20 40 60 80 100 I II III IV V VI VII V1a 3±1

V2 100 50 CR 1 76±2 21 50 CR 2 56±7 50 52 CR 3 99±1 52 CR 4 28±4 21 CR 5 29±1 33 CR 6 8±2 50 21 CR 7 98±2

Fig.3.2Stimulationof cAMPproductionbyhybridV1a/V2vasopressinreceptors,CR1-CR7. A, structureoftheCR1-CR7hybridreceptors(forexactaminoacidcomposition,seeTable3.1andFig.3.1). ThepositionsofthesevenTMdomains( I-VII)andthefourintracellularreceptordomains( i1-i4)are marked.ThenumberofV2receptorresiduespresentineachconstructisindicatedabovethe filledbars. Thefactthatthetworeceptorsdifferinthesizeoftheiri3loopsisignoredinthisscheme. B,COS-7cells transientlyexpressingthevariouswtandmutantreceptorswerestimulatedwithAVP(1 µM),andthe resultingincreasesinintracellular cAMPlevels(foldstimulationabovebasal)weredeterminedasdescried under“MaterialsandMethods.”BasalcAMPlevels(no ligandadded)weresimilarforthedifferent receptorconstructs(datanotshown).InthecaseofthewtV2receptor,basallevelsamountedto780+60 cpm/well.Ineachindividualexperiment,thewtV2receptorresponsewassetequalto100%.Dataare expressedasmeans+S.E.ofthreetonineindependentexperiments,eachcarriedoutintriplicate.

Basedontheseresults,twoadditionalmutantV1areceptors,CR5andCR6,were creatednext,inwhichtheN-terminalportionofthei4domain(includingseveralresidues predictedtobelocatedatthe cytoplasmicendofTMVII)andthedistalportionofthei4 region(theregionC-terminaloftheconserved Cys-Cyspair)werereplacedwiththe correspondingV2receptorsequences(Thr320-Leu340andLeu339-Ser371,respectively; Fig.3.1).FunctionalstudiesshowedthatCR5wascapableofmediatingligand-dependent

cAMPaccumulationinafashionsimilartoCR4(E max=29±1% ;Fig.3.2).Incontrast, CR6displayedonlyresidualfunctionalactivity,similartothewtV1areceptor(Fig.3.2).

97 3.ResultsandDiscussion

WhentheV2receptorsequencepresentinCR5(Thr320-Leu340)wassubstituted intoCR1(whichcontainsV2receptorsequenceinthei3loop),theresulting chimeric receptor,CR7,showedafunctionalprofileverysimilartothatofthewtV2receptor (Figs.3.2and3.3).AsshowninFig.3.3,AVPconcentration-responsecurvesgenerated forCR7andthewtV2receptorwerealmostsuperimposable(for EmaxandEC 50values, seeTable3.3),furtherhighlightingthefunctionalimportanceoftheThr320-Leu340V2 receptorsegment.

120 V2 100 V1a CR 1 80 CR 7 of V2 = 100%)

max 60

40

20

Increase in cAMP (E 0

-14 -12 -10 -8 -6 AVP, log [M]

Fig.3.3Concentration-responsecurvesforCR1-andCR7-mediatedstimulationofadenylylcyclase. ExperimentswerecarriedoutwithtransfectedCOS-7cellsasdetailedinthelegendtoFig3.2. andunder 3 “MaterialsandMethods.”AVPEC 50andEmaxvalues(aswellasK DandBmaxvaluesdeterminedin[ H]AVP saturationbindingstudies)aregiveninTables3.2and3.3.Results(means)fromarepresentative experimentcarriedoutintriplicateareshown;twoadditionalexperimentsgavesimilarresults.

98 3.ResultsandDiscussion

3.1.3.2RoleoftheN-terminalportionofthei3loopindeterminingV2receptor/G s couplingselectivity

Thenextgoalwastoexaminewhichspecificregions/aminoacidswithinthei3 loopoftheV2 vasopressinreceptorareofprimaryimportanceforproperrecognitionof

Gs.Toaddressthisquestion,aseriesofmutantV1areceptors(CR8-CR12;Fig.3.4)were createdinwhichdistinctsegmentsofthei3loopwerereplacedwiththecorresponding V2receptorsequences.AsshowninFig.3.4,CR9andCR10,inwhichC-terminal portionsofthei3loopcontainedV2receptorsequence(residuesGly239-Leu274and Pro256-Leu274,respectively),wereunabletomediatestimulationofadenylylcyclaseto asignificantextent.

A B Increase in cAMP (V2 = 100%)

I II III IV V i3 VI VII 0 20 40 60 80 100 V1a 3±1 V2 100 50 CR 1 76±2 30 CR 8 71±2 36 CR 9 11±1 19 CR 10 3±1 18 CR 11 27±3 12 CR 12 29±2 30 52 CR 13 88±5 116 CR 14 26±5

Fig.3.4StimulationofcAMPaccumulationbyhybridV1a/V2 vasopressinreceptors,CR8-CR14.A, structureoftheCR8-CR14hybridreceptors(forexactaminoacidcomposition,seeTable3.1andFig.3.1). ThelocationsoftheTMI-VIIandthei3loopareindicated.Thefactthatthetworeceptorsdifferinthesize oftheiri3loopsisignored.ThenumberofV2receptorresiduespresentineachconstructisindicatedabove the filledbars .Forcomparison,CR1wasalsoincludedinthissetofexperiments. B,COS-7cells transientlyexpressingthevariouswtandmutantreceptorswerestimulatedwithAVP(1 µM),andthe resultingincreasesinintracellular cAMPlevels(foldstimulationabovebasal)weredeterminedas describedunder“MaterialsandMethods.”BasalcAMPlevels(no ligandadded)weresimilarforthe differentreceptorconstructs(datanotshown).Ineachexperiment,thewtV2receptorresponsewasset equalto100%.Dataaregivenasmeans +S.E.offourtoeightindependentexperiments,eachcarriedoutin triplicate.

99 3.ResultsandDiscussion

Inagreementwiththisobservation,CR14inwhichtheentireC-terminalthirdof thereceptorprotein(excludingtheN-terminalportionofthei3loop)wasderivedfrom theV2receptor(residuesPro256-Ser371)didnotdisplayanincreaseinfunctional efficacy(Emax=26±5%;Fig.3.4),ascomparedtoCR4orCR5whichcontainsmaller substitutionswithintheiri4domains(Fig.3.2). Ontheotherhand,CR8whichcontains30aminoacidsofV2receptorsequence (Glu225-Gly254)atthebeginningofthei3loop(includingseveralresiduespredictedto belocatedatthecytoplasmicendofTMV)gainedtheabilitytoefficientlystimulate ligand-dependentcAMPaccumulation(Emax=71±2%;Fig.3.4).

120 V2 V1a 100 CR 1 CR 8 80 CR 9 of V2 = 100%) CR 12 60 max CR 19 40

20

Increase in cAMP (E 0

-14 -12 -10 -8 -6 AVP, log [M]

Fig.3.5Concentration-responsecurvesforCR1-,CR8-,CR9-,CR12-,andCR19-mediated stimulationofadenylylcyclase. ExperimentswerecarriedoutwithtransfectedCOS-7cellsasdetailedin thelegendtoFig.3.4andunder“MaterialsandMethods.”AVPEC 50andE maxvalues(aswellasK Dand 3 Bmaxvaluesdeterminedin[ H]AVPsaturationbindingstudies)aregiveninTables3.2and3.3.Results (means)fromarepresentativeexperimentcarriedoutintriplicateareshown;twoadditionalexperiments gavesimilarresults.NotethatthecurvesshowninthisfigureandinFig.3.3weregeneratedinthesameset ofexperiments,explainingthatthecurvesforthe twowtreceptorsandforCR1areidenticalinthesetwo figures.Twoadditionalexperimentsgavesimilarresults.

100 3.ResultsandDiscussion

TM V i3 huV1a Y G F I C Y N I W C N V ratV1a Y G F I C Y H I W R N I 238 239 240 * 242 243 244 * 246 247 248 249 huV2 Q V L I F R E I H A S L ratV2 Q V L I F R E I H A S L

225 226 227 228 229 230 231 232 233 234 235 236

Fig.3.6ComparisonofV1aandV2vasopressinreceptorsequencespresentattheTMV/i3loop junction.Ratandhuman( hu)sequencesareshown.The boxedV2receptorresiduesclearlydifferintheir physicochemicalpropertiesfromthecorrespondingaminoacidspresentintheV1areceptor.Positionsat whichthereceptorshaveidenticalresiduesaremarkedwith asterisks.Numbersindicateaminoacid positionswithintheratV1a(Morel etal. ,1992)andhumanV2(Birnbaumer etal. ,1992)receptor sequences.Theothersequencesweretakenfrom Thibonnier etal.(1994)(humanV1a)and Lolaitetal. (1992)(ratV2).

ComparisonofcompleteAVPconcentration-responsecurvesshowedthatCR8 behavedfunctionallyverysimilartoCR1inwhichtheentirei3loopconsistsofV2 receptorsequence(Fig.3.5,Table3.3).Consistentwithresultsdescribedintheprevious section,replacementofthei4domainofCR8withthecorrespondingV2receptor sequence(Thr320-Ser371;yieldingCR13)ledtoafurtherimprovementinG scoupling efficacy(Emax=88±5%;Fig.3.4). ProgressiveshorteningoftheV2receptorsequencepresentinCR8resultedin CR11andCR12(Fig.3.4)whichcontainedonly18(Glu225-Gln242)and12(Glu225- Leu236)V2receptorresidues,respectively.Fig.3.4indicatesthatbothhybridreceptors retainedtheabilitytoactivatetheG s/adenylylcyclasesystem( Emax=27-29%),though maximumcAMPresponseswerereducedascomparedtoCR8(foracompletefunctional characterizationofCR12,seeTable3.3).

101 3.ResultsandDiscussion

3.1.3.3IdentificationofsingleresiduesattheTMV/i3loopjunctioncriticalforV2 receptor/Gscoupling

Asoutlinedintheprevioussection,CR12whichcontainsonly12aminoacidsof

V2receptorsequence(Glu225-Leu236)gainedsignificantcouplingtoG s(Fig.3.4).This shortV2receptorsequenceisshownenlargedinFig.3.6,alignedwiththecorresponding V1areceptorsegment(bothratandhumansequencesareshown).Fig.3.6indicatesthat therearethreegroupsofV2receptor receptorresidues(Glu225/Val226,Phe229-Gln231, andHis233-Ser235;boxedinFig.3.6)whichclearlydifferintheirphysicochemical propertiesfromthecorrespondingaminoacidspresentintheV1areceptor.

TotestthepotentialimportanceoftheseV2receptorresiduesforefficientG s coupling,thesethreegroupsofaminoacidsweresubstituteddirectlyintothewtV1a receptor,creatinghybridreceptorsCR15-17(Fig.3.7A).However,noneofthesemutant receptorsgainedsignificantcouplingtotheG s/adenylylcyclasesystem(Fig.3.7B).On theotherhand,whenthesamesubstitutionswereintroducedintoCR9,whichalso containedV2receptorsequenceinthecentralandC-terminalportionsofthei3loop (yieldingCR18-CR20),twomutantreceptorswereidentified,CR18andCR19,which showedclearlyimproved cAMPresponses(Fig.3.7).AsshowninFig.3.7B,CR18 (containingV2-Glu225andV2-Val226)andCR19(containingtheV2receptorresidues

Phe229/Arg230/Gln231)displayed2-and4-foldincreasesinE maxvalues,respectively,as comparedtoCR9.NosuchincreaseinmaximumcAMPresponseswasobservedfor CR20whichcontainstheV2receptortriplet,His233/Ala234/Ser235(Fig.3.7B). Next,aloss-of-function mutagenesisapproachwasemployedtoevaluatethe potentialfunctionalimportanceofGlu225,Val226,Phe229,Arg230,andGln231inmore detail.StartingfromtheCR8mutantreceptorwhichisabletoactivateG swithhigh efficacy(Fig.3.4),fivemutantreceptors(CR22-CR26)werecreatedinwhichthesefive aminoacidswereindividuallyreplacedwiththecorrespondingV1areceptorresidues (Fig.3.8A).Threeofthesemutantreceptors(CR23,CR24,andCR25 ;containing Val226->Gly,Phe229->Cys,andArg230->Tyrpointmutations,respectively)behaved functionallyverysimilartoCR8(Fig.3.8B).Incontrast,twooftheintroducedpoint

102 3.ResultsandDiscussion mutations,Glu225->TyrandGln231->His,yieldedhybridreceptors(CR22andCR26, respectively)thatshowedstrongreductions(byabout60-70%ascomparedtoCR8)in receptor-mediatedcAMPresponses(Fig.3.8B).

100 A N B 100

V1a

80 V1a C V2

V1a - - C Y G F I C Y H I W R N I - - 60 CR 15 - - C Q V F I C Y H I W R N I - - 44±3 CR 16 - - C Y G F I F R E I W R N I - - 40 CR 17 - - C Y G F I C Y H I H A S I - - 238 249 20±4 20 10±2 11±1

N 9±1 5±1 4±1 3±1 Increase in cAMP (V2 = 100%) CR 9 0

V1a V2 CR 9 C CR 15CR 16CR 17 CR 18CR 19CR 20

CR 9 - - C Y G F I C Y H I W R N I - - CR 18 - - C Q V F I C Y H I W R N I - - CR 19 - - C Y G F I F R E I W R N I - - CR 20 - - C Y G F I C Y H I H A S I - - 238 249

Fig.3.7StimulationofcAMPformationbymutantV1a/V2 vasopressinreceptors,CR15-CR20. A, structureoftheCR15-CR20mutantreceptors(forexactaminoacidscomposition,seeTable3.1andFig. 3.1).Thefactthatthetworeceptorsdifferinthesizeoftheiri3loopsisignored.CR15-CR17andCR18- CR20arederivedfromthewtV1areceptorandCR9,respectively.TheN-terminalportionofthei3loopis shownenlarged.Numbersnexttoindividualresiduesrefertoaminoacid positionswithintheratV1a receptorsequence. B,COS-7cellstransientlyexpressingthevariouswtandmutantreceptorswere stimulatedwithAVP(1 µM),andtheresultingincreasesinintracellularcAMPlevels(foldstimulation abovebasal)weredeterminedasdescribedunder“MaterialsandMethods.”Basal cAMPlevels(noligand added)weresimilarforthedifferentreceptorconstructs(datanotshown).Ineachindividualexperiment, thewtV2receptorresponsewassetequalto100%.Dataaregivenasmeans+S.E.ofthreetosix independentexperiments,eachcarriedoutintriplicate.

103 3.ResultsandDiscussion

A B 100 N 100

CR 8 80 68±7 71±2 59±8

C 56±8 60

229 230 231 CR 8 - - Q V L I F R E I - - 20 aa V2- - T G - - 40

CR 22 - - Y V L I F R E I - - 20 aa V2- - T G - - 28±3 21±1 20 CR 23 - - Q QG L I F R E I - - 20 aa V2- - T G - - 3±1 CR 24 - - Q V L I C R E I - - 20 aa V2- - T G - - Increase in cAMP (V2 = 100%)

- - Q V L I F Y E I - - 20 aa V2- - T G - - V2 CR 25 V1a CR 8 CR 22 CR 23 CR 24 CR 25 CR 26 CR 26 - - Q V L I F R H I - - 20 aa V2- - T G - -

225 226 254 V1a V2

Fig.3.8Stimulationof cAMPproductionbyhybridV1a/V2vasopressinreceptors,CR22-CR26. A, structureoftheCR22-CR26mutantreceptors(forexactaminoacidcomposition,seeTable3.1andFig. 3.1).CR22-CR26arederivedfromCR8,whichcontains30aminoacidsofV2receptorsequence(Gln225- Gly254)atthebeginningofthei3loop.Numbersnexttoindividualresiduesrefertoaminoacidpositions withinthehumanV2receptorsequence.V2receptorresiduesweresystematicallysubstitutedwiththe correspondingV1areceptorresidues.Asacontrol,CR8wasalsoincludedinthissetofexperiments. B, COS-7cellstransientlyexpressingthevariouswtandmutantreceptorswerestimulatedwithAVP(1 µM), andtheresultingincreasesinintracellularcAMPlevels(foldstimulationabovebasal)weredeterminedas describedunder“MaterialsandMethods.”BasalcAMPlevels(no ligandadded)weresimilarforthe differentreceptorconstructs(datanotshown).Ineachindividualexperiment,thewtV2receptorresponse wassetequalto100%.Dataaregivenasmeans +S.E.ofthreeindependentexperiments,eachcarriedout intriplicate.

3.1.3.4Roleofchargedaminoacidsinthecentralportionofthei3loopin regulatingreceptor/Gscouplingefficiency

AsshowninFig.3.4,CR8(whichcontains30aminoacidsofV2receptori3loop sequence)displayedan Emaxthatwasapproximately2.5-foldgreaterthanthatobserved withCR12(whichcontainsonly12aminoacidsofV2receptori3loopsequence).This observationsuggestedthatthecentralportionofthei3loopoftheV2receptor,in additiontoresiduesattheTMV/i3loopjunction,mightalsobeimportantforefficient couplingtoG s.Tofurthertestthishypothesis,ahybridreceptor,CR27(Fig.3.9A),was

104 3.ResultsandDiscussion

generated,inwhichthecentralportionofthei3loopofCR12(V1areceptorresidues His258-Val278)wasreplacedwithV2receptorresiduesGly245-Gly254(notethatthe introducedV2receptorsegmentis11aminoacidsshorterthanthereplacedV1areceptor segment,reflectingdifferencesini3loopsizesbetweenthetworeceptorsubtypes;Fig. 3.1).Interestingly,CR27gainedtheabilitytostimulate cAMPproductionwithmarkedly

increasedefficacy(Emax=73±3%),inafashionsimilartoCR8(Fig.3.9B). TheintroducedV2receptorsegment,Gly245-Gly254,containstwogroupsof arginineresidues(Fig.3.9A),suggestingthatthesepositivelychargedresiduesmightbe

importantforG scoupling.However, groupwisereplacementinCR27ofthesecharged aminoacidswithalanineresidues(resultinginCR28(Arg247/Arg248/Arg249- >AlaAlaAla)andCR29(Arg251/Arg252->AlaAla)(Fig.3.9A)didnotleadtoa reductionincAMPresponses(Fig.3.9B). Similarly,simultaneousreplacementofallfivenon-chargedresidueslocated withinGly245-Gly254(CR30)orevenreplacementofthisentiresequenceelementwith astringof10 alanineresidues(CR31)stillyieldedmutantreceptorsthatallowedvery

efficientcouplingtoG s(E max=78-95%;Fig.3.9B).Fig.3.10showsthatAVP concentration-responsecurvesgeneratedforCR27andCR31wereessentially

superimposable(forEmaxandEC 50values,seealsoTable3.3).AsshowninFig.3.1,the centralportionofthei3loopoftheV1areceptoris13aminoacidslongerthanthe correspondingV2receptorregion.ThesedatathereforesuggestthattheabilityofCR27-

CR31tocoupletoG swithclearlyimprovedefficacy(ascomparedtoCR12)isprimarily duetotheshorteningofthecentralportionofthei3loopratherthanthepresenceof specificV2receptorresidueswithinthisdomain. Tofurthertestthishypothesis,twoadditionalhybridreceptors,CR32andCR33, wereconstructed(Fig.3.9A).CR32differsfromCR27inthattheHis258-Val278(V1a sequence)->Gly245-Gly254(V2sequence)substitutionwasintroduceddirectlyintothe wtV1areceptor(ratherthanintoCR12).CR33isderivedfromCR1byreplacing Arg243-Gly254(V2sequence)withthelongerSer256-Val278(V1asequence)segment.

Fig.3.9BshowsthatCR32,incontrasttoCR27,didnotgainefficientcouplingtoG sand showedonlyresidualfunctionalactivity.Moreover,CR33provedtobeconsiderably

105 3.ResultsandDiscussion

A N V1a CR 12 V2

C

258 278 CR 12 H S K G D K G S G E A V G P F H K G L L V 245 247 251 254 CR 27 G G R R R G R R T G

CR 28 G G A A A G R R T G

CR 29 G G R R R G A A T G

CR 30 A A R R R A R R A A

CR 31 A A A A A A A A A A

N

V1a

C

258 278 V1a H S K G D K G S G E A V G P F H K G L L V 245 254 CR 32 G G R R R G R R T G

N

CR 1

C 243 254 CR1 R P G G R R R G R R T G 245 256 278 CR 33 S R H S K G D K G S G E A V G P F H K G L L V 258 Fig.3.9

106 3.ResultsandDiscussion

100 B 100 95±3 78±7 76±2 74±3

80 73±3 69±5 71±2

60

40 33±6 29±2

20 8±2 Increase in cAMP (V2 = 100%) 3±1 0 V2 V1a CR 8 CR 1 CR 12 CR 27CR 28CR 29CR 30CR 31 CR 32 CR 33

Fig.3.9Stimulationof cAMPformationbymutantV1a/V2vasopressinreceptors,CR27-CR33. A, structureoftheCR27-CR33 chimericreceptors(forexactaminoacidcomposition,seeTable3.1andFig. 3.1).NumbersnexttoindividualresiduesrefertoaminoacidpositionswithintheratV1aandthehuman V2receptorsequences.Thecentralportionofthei3loopisshownenlarged.CR27-CR31arederivedfrom CR12,whichcontains12aminoacidsofV2receptorsequencesatthebeginningofthei3loop.InCR27, theV1areceptorsequenceHis258-Val278(21aminoacids)wasreplacedwiththeV2receptorsegment, Gly245-Gly254(10aminoacids)(seealsoFig.3.1).InCR32,thesamesubstitutionwasintroducedintothe wtV1areceptorbackground.CR33wasgeneratedbyintroducingareciprocalsubstitutionintotheCR1 hybridreceptor.PleasenotethatthesequencesthatwereexchangedinCR32andCR33slightlydifferin length,duetotechnicalreasons(presenceofusefulrestrictionsites)relatingtotheconstructionofthe hybridreceptors.Forcomparison,CR1,CR8,andCR12werealsoincludedinthissetofexperiments. B, COS-7cellstransientlyexpressingthevariouswtandmutantreceptorswerestimulatedwithAVP(1 µM), andtheresultingincreasesinintracellularcAMPlevels(foldstimulationabovebasal)weredeterminedas describedunder“MaterialsandMethods.”BasalcAMPlevels(no ligandadded)weresimilarforthe differentreceptorconstructs(datanotshown).Ineachindividualexperiment,thewtV2receptorresponse wassetequalto100%.Dataaregivenasmeans +S.E.ofthree tosevenindependentexperiments,each carriedoutintriplicate.

lessactive(reductionin Emaxbyapproximately2.5-fold)thanits“parent”receptor,CR1 (Fig.3.9B;foracompleteAVPconcentration-responsecurveofCR33,seeFig.3.10).

107 3.ResultsandDiscussion

120 V2 V1a 100 CR 12

80 CR 27

of V2 = 100%) CR 31

max 60 CR 33

40

20

Increase in cAMP (E 0

-14 -12 -10 -8 -6 AVP, log [M]

Fig.3.10Concentration-responsecurvesforCR12-,CR27-,CR31-,andCR33-mediatedstimulation ofadenylylcyclase.ExperimentswerecarriedoutwithtransfectedCOS-7cellsasdetailedinthelegendto Fig.3.8andunder“MaterialsandMethods.”AVPEC 50andEmaxvalues(aswellasK DandBmaxvalues determinedin[ 3H]AVPsaturationbindingstudies)aregiveninTables3.2and3.3.Results(means)froma representativeexperimentcarriedoutintriplicateareshown;twoadditionalexperimentsgavesimilar results.

3.1.3.5PIassayswithhybridreceptorsunabletostimulatecAMPproduction

SeveralofthehybridV1a/V2 vasopressinreceptorsanalyzedinthisstudy(e.g. CR6,CR9,CR10,CR15-18,CR20,andCR32)exhibitedonlyresidualactivityinthe cAMPassays.Toexcludethepossibilitythatthislackoffunctionalactivitywasdueto improperfoldingoftheintracellularreceptorsurface,thesereceptorswerealsotestedfor stimulatePIhydrolysis(mediatedbyGproteinsoftheG q/G11family)aslongastheiri2 loopscontainV1areceptorsequence.AsshowninFig.3.11,allexaminedmutanttheir

108 3.ResultsandDiscussion abilitytomediateAVP-dependentstimulationofPIhydrolysis.Apreviousstudy(Liu andWess,1996)demonstratedthat chimericV1a/V2receptorscanefficientlyreceptors thatcoupledtoG sinefficientlywerestillabletostimulatetheaccumulationof inositol phosphateswithhighefficacy(inthepresenceof1 µMAVP).Inallcases,maximumPI responsesweresimilartothoseobservedwiththewtV1areceptor(increaseinIP 1 production:22±2-foldabovebasal).

120

100

80

60

40

20

Increase in IP production (V1a = 100%) 0 V1a CR 6 CR 9 CR 15 CR 18 CR 20 CR 16 CR 32 CR 17 CR 10

Fig.3.11StimulationofPIhydrolysisbyhybridV1a/V2receptorspoorlycoupledto cAMP production.ThestructuresofthevarioushybridreceptorsaregiveninTable3.1andFig.3.2,3.4,3.7,and 3.9.COS-7cellstransientlyexpressingthewtV1aandtheindicatedmutantreceptorswerestimulatedwith

AVP(1 µM),andtheresultingincreasesinintracellularIP 1levels(foldstimulationabovebasal)were determinedasdescribedunder“MaterialsandMethods.”BasalIP 1levels(noligandadded)weresimilar forthedifferentreceptorconstructs(datanotshown).InthecaseofthewtV1areceptor,basalIP 1levels amountedto301 +39 cpm/well.Ineachindividualexperiment,theIP 1responsemediatedbythewtV1a receptorwassetequalto100%.Dataaregivenasmeans +S.E.andarerepresentativeofthreeindependent experiments,eachcarriedoutintriplicate.

109 3.ResultsandDiscussion

A

B

110 3.ResultsandDiscussion

3.1.4Discussion

Again-of-functionmutagenesisstrategywasemployedtoelucidatethemolecular basisunderlyingtheabilityoftheV2vasopressinreceptortoselectivelystimulatethe

Gs/adenylylcyclasesystem.IncontrasttotheV2receptorwhichmediatesarobust increaseinintracellularcAMPlevels,hormonestimulationofthestructurallyclosely relatedV1areceptorsubtypeleavesintracellularcAMPlevelsvirtuallyunaffected(Figs. 3.2and3.3).ToidentifyV2receptorresiduesdeterminingthiscouplingselectivity,we systematicallyreplaceddistinctV1areceptorsequences(orsingleaminoacids)withthe correspondingV2receptorsequencesandstudiedwhethertheresultinghybridreceptors wouldgaintheabilitytomediateligand-dependentcAMPaccumulation. Consistentwithapreviousstudy(LiuandWess,1996),wefoundthatsubstitution ofthei3loopoftheV2receptorintotheV1areceptorsubtypeyieldedamutantreceptor

(CR1)thatgainedtheabilitytoefficientlystimulate cAMPproduction(Emaxabout75%, ascomparedwiththewtV2receptor;Fig.3.2). Interestingly,amutantreceptor(CR3) thatcontainedV2receptorsequenceinboththei3andi4domainswasabletoactivate theGs/adenylylcyclasesystemwiththesamehighefficacyasthewtV2receptor( Emax= 99±1%;Fig.3.2),suggestingthatthei4domainoftheV2receptor(Thr320-Ser371)also containsresiduesthatarecriticalforefficientG sactivation.Functionalanalysisofthe CR7hybridreceptorshowedthatastretchof21aminoacidsofV2receptorsequence (Thr320-Leu340)locatedattheTMVII/i4domainjunctioncanfullymimictheeffectsof theThr320-Ser371substitution(Figs.3.2,3.3).

______

Fig.3.12Putativestructureofthetransmembranecoreof GPCRsofthe rhodopsinfamily. The arrangementdepictedhereisbasedonthe α-carbonmodelproposedbyBaldwin etal.(1997).A,Sideview ofTMI-VII.FunctionallycriticalV2 vasopressinreceptorresiduesarehighlightedinyellow(backbone α- carbons).Glu225andGln231playcriticalrolesindeterminingtheabilityoftheV2receptortoselectively coupletoGs(seetextfordetails).Arg137atthecytoplasmicendofTMIIIisfoundinvirtuallyallGPCRs oftherhodopsinfamilyandisknowntobeimportantforGproteinactivation(Rosenthal etal.,1993).B, Modeloftheintracellularsurfaceofrhodopsin-likeGPCRs,asviewedfromthecellinterior.Across- sectionthroughthe transmembranecoreofthehumanV2 vasopressinreceptor(atalevelapproximately correspondingtothemembrane/cytoplasmboundary)isshown.Pleasenotethatduetotheinclinationsof TMIIIandotherTMhelices,therelativepositionsofTMIIIandIVarepredictedtobereversedonthe cytoplasmicsideofthemembrane(Palczewskietal.,2000).

111 3.ResultsandDiscussion

SubstitutionofThr320-Leu340orThr320-Ser371directlyintothewtV1a receptorledtomutantreceptors(CR4andCR5,respectively)thatalsogainedtheability toactivatethecAMPcascade( Emaxabout30%;Fig.3.2).TheabilityofCR4(previously referredtoasV1i4;ref.Liuand Wess,1996)tomediateasmallbutsignificantcAMP responseremainedundetectedinourinitialanalysisofV1a/V2hybridreceptors(Liuand Wess,1996).Onepossibleexplanationforthisdiscrepancyisthatamodifiedtransfection procedurewasusedinthepresentstudy(lowercellplatingdensity:1x106versus2x106 cells/plate;prolongedtransfectiontime:3hrsversus1hr). TheThr320-Leu340V2receptorsequenceisfollowedbyapairof cysteine residueswhichareconservedamongallvasopressinreceptorsubtypes(Fig.3.1). Similarly,mostGPCRscontainoneormorehighlyconserved cysteineresidueswithin theirC-terminali4domains.StudieswithagreatnumberofdifferentGPCRs,including theV2vasopressinreceptor( Sadeghietal.,1997),haveshownthatthesecysteinesare modifiedbycovalentattachmentofpalmiticacid(forreviews,seeBouvier etal.,1995; Ross,1995),whichmayprovidea lipophilicmembraneanchortocreateafourth intracellularloop(i4loop).Ourdatathereforesuggestthatthisputativei4loop (correspondingtohelixVIIIintheX-raystructureofrhodopsin(Palczewskietal.,2000)) makesanimportantcontributiontoV2receptor/Gscouplingselectivity.

Studieswithhybrid α 2A/β2-adrenergic( Liggett etal. ,1991)andhybrid mGluR1/mGluR3glutamatereceptors(Pinetal.,1994;Gomezaetal.,1996)alsosuggest thatthemembrane-proximalportionofthei4domainplaysaroleinregulatingthe selectivityofGproteinrecognitioninotherGPCRfamilies.Inbothcases,however,it wasnotedthatsubstitutionofthisregionaloneofthedonorreceptorintothefunctionally differentrecipientreceptorwasnotsufficienttoconferanovelcouplingprofile,but requiredadditionalsubstitutionsinvolvingi2ori3loopsequences.Tothebestofour knowledge,thepresentstudythereforeprovidesthefirstexamplethatexchangeofthei4 loopalonebetweentwofunctionallydistinctreceptorsubtypescanleadtomutant receptorswithqualitativelydifferentGproteincouplingprofiles. Anothergoalofthisstudywastoexaminewhich subdomains/specificamino acidswithinthei3loopoftheV2receptor(Glu225-Leu274)areofprimaryimportance

112 3.ResultsandDiscussion

forefficientGsrecognitionandactivation.Toaddressthisissue,wecreatedandanalyzed aseriesofmutantV1areceptorsinwhichdistinctsegmentsofthei3loopwere systematicallyreplacedwiththecorrespondingV2receptorsequences.Thesestudies showedthattheC-terminalsegmentsofthei3loopoftheV2receptordonotmakea

significantcontributiontoG scouplingselectivityandefficiency(see,forexample,CR9

andCR10;Fig.3.4).TherelativelackofG scouplingseenwithCR9andCR10is unlikelytobeduetoimproperfoldingoftheintracellularreceptorsurface,sinceboth receptorsretainedtheabilitytomediatethestimulationofPIhydrolysiswithhigh efficacy(Fig.3.11). Incontrast,substitutionintotheV1areceptorofV2receptorsequenceslocatedat theN-terminusofthei3loop(Ni3)allowedtheresultinghybridreceptorstoactivatethe

Gs/adenylylcyclasesystem. AmutantV1areceptorcontaining30aminoacidsofV2 receptorNi3sequence(Glu225-Gly254;CR8)quantitativelymimickedthe cAMP

responsesmediatedbyCR1(E max=71-76%;AVPEC 50=1.1-1.2nM;Figs.3.4and3.5, Table3.3),suggestingthatthisshortreceptorsegmentcontainsthekeystructural

elementsoftheV2receptori3loopcriticalforGscoupling. CR12whichcontainsonly12aminoacidsofV2receptorNi3sequence(Glu225- Leu236)stillretainedtheabilitytoactivatethe cAMPpathway,thoughwithreduced

efficacy(Emaxabout30%;Fig.3.4,Table3.3).Asequencecomparisonshowed(Fig.3.6) thatthissequenceelementcontainsthreegroupsofaminoacids(Glu225/Val226, Phe229-Gln231,andHis233-Ser235)whichclearlydifferintheirphysicochemical propertiesfromthecorrespondingresiduespresentintheV1areceptor. Groupwise substitutionoftheseaminoacidpairs/tripletsintoCR9(whichcontainsV2receptor sequencesinthecentralandC-terminalportionsofthei3loop)suggestedthatresidues containedwithintheGlu225/Val226pairandthePhe229/Arg230/Gln231tripletmakean

importantcontributiontoG scouplingefficiency(Fig.3.7).UsingtheCR8mutant receptor(whichcontains30aminoacidsofV2receptorNi3sequence)asa“background” forsingleaminoacidsubstitutions,loss-of-functionmutagenesisstudiesshowedthatonly twoofthesefiveresidues,Glu225andGln231,arerequiredforefficientactivationofG s (Fig.3.8).

113 3.ResultsandDiscussion

Basedonbiochemical,moleculargenetic,andbiophysicalstudieswithother classesofGPCRs,Glu225andGln231arethoughttobelocatedinareceptorregion(TM V/i3loopjunction)predictedtobeα-helicallyarranged(Straderetal.,1994;Wess,1997; Altenbachetal.,1996).Guidedbyanimprovedlow-resolutionelectrondensitymapof frogrhodopsin(Ungeretal.,1997)andstructuralinformationgatheredfromtheanalysis ofapproximately500different GPCRs,Baldwinandcoworkers(Baldwin etal.,1997) proposedanupdatedmodelfortheα-carbonpositionsinthesevenTMhelicesofCPCRs oftherhodopsinfamily(whichincludesthevasopressinreceptors).Inthismodel,Glu225 andGln231arepredictedtoprojectintoacavityformedbyTMIII,V,andVI(Figs. 3.12Aand3.12B),consistentwiththerecentlypublishedhigh-resolutionstructureof bovine rhodopsin(Palczewski etal.,2000).Anotherfunctionallycriticalresidue projectingintothiscavityisArg137(locatedatthe cytoplasmicendofTMIII)whichis conservedinmostGPCRsofthe rhodopsinfamilyandplaysakeyroleintriggeringG proteinactivation(Dohlmanetal.,1991;SavareseandFraser,1992;Straderetal.,1994; Kobilka,1992;Wess,1997).Rosenthaletal.(1993)andBaraketal.,(2001)haveshown, forexample,thatmutationalmodificationofthisresidueintheV2vasopressinreceptor severelyimpairsV2receptor/G scoupling.Arg137,Glu225,andGln231aretherefore likelytodefineadistinctsiteontheintracellularsurfaceoftheV2receptorthatiscritical

forGsrecognitionandactivation. Inagreementwiththedatapresentedhere,studieswithotherclassesofGPCRs includingthemuscarinic(reviewedinWess,1997)andadrenergicreceptors(reviewedin Dohlmanetal.,1991; Savareseand Fraser,1992;Strader etal.,1994;Kobilka,1992) havealsodemonstratedthatresiduesattheTMV/i3loopjunctionarecriticallyinvolved inregulatingreceptor/Gproteincouplingselectivity.Thesestudieshaveshownthatthe residuesthatareofprimaryimportanceforproperGproteinrecognitionarehydrophobic ornon-charged.Interestingly,thefunctionallycriticalV2receptorresidues,Glu225and Gln231,arehighlypolarandcharged,respectively,indicatingthatthecontributionofthe Ni3regiontoreceptor/Gproteincouplingselectivityisnotlimitedtohydrophobic contacts.

114 3.ResultsandDiscussion

ComparisonofthefunctionalpropertiesofCR8(containing30aminoacidsofV2

receptorsequence;E max=71%)andCR12(containing12aminoacidsofV2receptor

sequence;Emax=29%)suggestedthatthecentralportionofthei3loopalsomakesa

contributiontoV2receptor/G scouplingefficiency.Consistentwiththisnotion, substitutionofGly245-Gly254(V2receptorsequence)intoCR12yieldedahybrid receptor(CR27)thatgainedtheabilitytostimulateintracellularcAMPlevelswiththe samehighefficacyasCR8(Fig.3.9,Table3.3).Thissequenceelement(Gly245-Gly254) isparticularlyrichinarginineandglycineresidues(Fig.3.9A).However,systematic alaninesubstitutionmutagenesisshowedthattheseresiduesarenotcriticalfortheability

ofCR27toefficientlymediateG sactivation.Moststrikingly,aCR27-derivedmutant receptorinwhichtheGly245-Gly254sequencewasreplacedwithastringof10 alanine residues(CR31)wasabletomediateAVP-dependentcAMPproductionwiththesame highefficacyandAVPpotencyasCR27(Figs.3.9and3.10,Table3.3). Fig.3.1indicatesthatthecentralportionofthei3loopoftheV1areceptoris13 aminoacidslongerthanthecorrespondingV2receptorregion.Thus,duringthe constructionofCR27(aswellasofCR28-CR31 ;Fig.3.9A),21aminoacidsofV1a receptorsequence(His258-Val278)werereplacedwithonly10V2receptorresidues (Gly245-Gly254).Thisobservation,inadditiontotheobservedfunctionalprofilesof CR27-CR31,suggestedthattherelativelengthofthecentralportionofthei3loop(rather thanthespecificaminoacidsequenceofthisregion) mayplayaroleinregulating

receptor/Gscouplingselectivity.Tofurthertestthishypothesis,twoadditionalmutant V1a/V2receptors,CR32andCR33,wereconstructedandfunctionallyanalyzed(Fig. 3.9).CR32,whichcontainstheHis258-Val278->Gly245-Gly254substitutioninthewt

V1areceptorbackground,didnotgaintheabilitytocoupletotheG s/adenylylcyclase systemtoasignificantextent.SinceCR27(whichwashighlyactiveinthe cAMPassays) differsfromCR32onlyinthepresenceof12aminoacidsofV2receptorsequenceatthe beginningofthei3loop,thisobservationsuggeststhatshorteningofthecentralportion

ofthei3loopbyitselfisnotsufficienttoallowefficientG scouplingbutrequiresthe simultaneouspresenceofV2receptorresiduesattheTMV/i3loopjunction(seeabove).

However,whenthecentralportionofthei3loopofCR1( Emax=76%)wasextendedin

115 3.ResultsandDiscussion lengthbyreplacingArg243-Gly254(V2receptorsequence)withSer256-Val278(V1a receptorsequence),theresultinghybridreceptor(CR33)displayedapronouncedlossof activityinthecAMPassays( Emax=33%)(Fig.3.9). Takentogether,theseresultsare consistentwiththenovelconceptthatthecentralportionofthei3loop,thoughpredicted nottobedirectlyinvolvedinreceptor/Gproteininteractions,canmodulatereceptor/G proteincouplingselectivitybyregulatingGproteinaccess(e.g.viasterichindrance)to functionallyimportantrecognitionsitesonthereceptorprotein(suchastheTMV/i3loop junction). Inconclusion,thestructuralelementsdeterminingtheabilityoftheV2 vasopressinpeptidereceptortoselectivelyactivateG swerestudiedinmoleculardetail. ThesefindingsindicatethatV2receptorcouplingselectivitydependsonseveraldifferent structuralfeatures,someofwhichhavenotbeenobservedpreviouslyinstudiesusing otherclassesof GPCRs.Thisworkhighlightsthediversityofmechanismsbywhich receptor/Gprotein-couplingselectivitycanbeachieved.

116 3.ResultsandDiscussion

3.2SingleaminoacidsubstitutionsthataltertheGproteincouplingpropertiesof theV2vasopressinreceptoridentifiedinyeastbyreceptorrandommutagenesis

3.2.1Aimofthestudy

Thefirstpartofthisthesiswasdesignedtoinvestigatethestructuralbasis underlyingtheabilityoftheV2receptortoselectivelyrecognizeG s.Tocomplementthis analysis,itwasofinteresttoexaminewhytheV2receptorlackedefficientcouplingto

Gq/11.Thus,thepresent mutagenesisstudyhasaimedatidentifyingmutantV2receptors thatwouldgaincouplingtoGproteinsoftheGq/11class. Tofacilitatesuchstudies,theavailabilityofanexperimentalsystemthatwould allowthequickandefficientfunctionalanalysisofalargenumberofmutantreceptors wouldbehighlydesirable.Toovercomethelimitationsofclassical mutagenesis approacheswhichusuallyallowtheanalysisofonlyarelativelysmallnumberofmutant receptors,yeastexpressiontechnologywasemployed(Pausch,1997;Sommersand Dumont,1999;Reiländeretal.,2000).Theyeastexpressionsystemofferstheattractive possibilitythatpowerfulgeneticselectiontechniquescanbeusedtoassesswithrelative easethefunctionalpropertiesofthousandsofmutantreceptors(whichcanbegenerated byrandom mutagenesis),withouthavingtorelyonspecificstructuralhypothesesor preconceivednotionsofGPCRfunction(Konopka etal.,1996;SommersandDumont, 1997;Dosiletal.,1998;Baranskietal.,1999;Sommersetal.,2000;Gevaetal.,2000). Thefirstpartofthepresentstudydealswiththefunctionalco-expressionofthe V2receptorandvariouschimericyeast/mammalianG αproteinsinyeast.Theyeast strainsweregeneticallyengineered,suchthattheyrequired ligand-activatedreceptor/G proteincouplingforcellgrowth(Pausch etal.,1998).Additionally,theG q/11-coupled muscarinicM 1,M 3,andM 5andvariousmutantvasopressinandmuscarinicreceptors werealsoexpressedinyeasttofurthervalidatetheyeastexpressionsystem. Subsequently,totakeadvantageofthepowerfulgeneticselectionproceduresthat arepossibleinyeast,randommutagenesistechniqueswereemployedtoisolatemutant V2receptorswithalteredGproteincouplingproperties.Aformerstudydemonstrated

117 3.ResultsandDiscussion thatthei2loopoftheV1areceptoristhekeycomponentindeterminingtheabilityofthe

V1areceptortoselectivelycoupletoG q/11(LiuandWess,1996).Forinstance,amutant V2receptor,inwhichthei2loopwasreplacedwiththecorrespondingV1areceptor sequence,gainedtheabilitytostimulatePIhydrolysiswithhighefficacy(LiuandWess, 1996). Basedonthesefindings,thei2loopoftheV2receptorwassubjectedtosaturation randommutagenesisandayeastlibrarywasgenerated,co-expressingindividualmutant vasopressinreceptorsandtheGq5protein,amutantGpa1p,inwhichthelastfiveamino acidswerederivedfrommammalianGαq.MutantV2receptorsthatgainedtheabilityto activateGq5wererecoveredinayeastgeneticscreen.Additional mutagenesiswerethen carriedouttofurtherdelineatethestructuralrequirementsthatallowtheG s-coupledV2 receptortogainfunctiontoGq-likeproteins.

3.2.2Yeastexpressionsystem

Thebaker’syeast,Saccharomycescerevisiae(inthefollowingsimplyreferredto asyeast),existsbothinhaploidanddiploidforms.Interestingly,haploidyeastcells, whichcanbefurtherdistinguishedintoa-and α-cells,expressonlyoneclassofGPCR thatcanbeactivatedbyyeastpheromones(a-or α-factor),thustriggeringtheyeast matingresponse(fusionofa-and α-cells).Whereasa-cellsproducea-factorandexpress theα-factorreceptor(encodedby STE2),α-cellssecretetheα-factorandexpressthea- factorreceptor(encodedby STE3).Activatedpheromonereceptorscatalyzedissociation ofayeastheterotrimericGprotein,encodedbythe GPA1(α),STE4(β),andSTE18(γ) genes.Gpa1-dependentinhibitionof βγistherebyrelieved,allowingthe βγ-complexto activateasignal transductionpathwaycomposedofelementsofamitogen-activated proteinkinase(MAPkinase)cascade.Theresultofactivationofthispathwayiscell cyclearrest(mediatedbythe FAR1geneproduct)andtranscriptionalinductionof pheromone-responsivegenes(mediatedbyFUS1,FUS3,andothergenes). Thestrikingresemblancebetweenthecomponentsoftheyeastpheromone pathwayandmammalianGPCRsignalingsystemsmakesyeastanattractivehostforthe

118 3.ResultsandDiscussion invivoreconstitutionofmammalianGPCRs,Gproteins,andrelatedsignal transduction proteins. ToestablishasensitivebioassaytostudymammalianGPCRsinyeast,genetically engineeredyeaststrains(Price etal.,1995,1996;Pausch etal.,1998)wereused.The threeyeaststrains,MPy578fc,MPy578q5,andMPy578s5,wereisogenicexceptforthe GPA1genecodingfortheyeastG αsubunit,Gpa1p(forgenotype,seeTable2.1;for constructionofMPy578q5andMPy578s5,see“MaterialsandMethods,”chapter 2.2.2.5).Akeyfeatureofthesestrainsisthatyeastgrowthrequiresactivationofthe pheromonepathway.Deletionofthe FAR1geneallowsyeasttogrowdespiteGprotein- mediatedactivationofthepheromonepathway,whichnormallyleadstocellcyclearrest (Pausch etal. ,1998).Thepresenceofthe FUS-HIS3reporterconstructmakesthe productionofHis3proteindependentonreceptor-mediatedactivationoftheyeast pheromonepathway.Asaresult,onlyreceptorsabletoactivateco-expressedGproteins willallowgrowthofauxotrophic(his3)yeaststrainsinmedialackinghistidine.TheSST2 gene(whichcodesforaproteinthatishomologoustomammalianRGS( RegulatorofG proteinSignaling)proteins)wasdisruptedtopreventattenuationofGproteinsignaling mediatedbytheGAPactivityofSst2p.The STE2genecodingfortheyeast α-factor (pheromone)receptorwasdeletedtopreventcompetitionwithheterologouslyexpressed GPCRsforco-expressedGproteins(seeFig.3.13). Theyeastexpressionsystemoffersthegreatadvantagethatpowerfulgenetic screenscanbeemployedinordertoidentifymutantreceptorsorGproteinswithdefined phenotypes(e.g.inactiveversusactivereceptors,receptorswithalteredGprotein couplingselectivity,constitutivelyactivereceptors,second-sitesuppressormutants,etc.). Moreover,rapidandefficienttechniquesareavailableformakinggeneticalterationsin yeast,makingitpossibletostudyGPCRfunctioninwaysthatcannotbedonein mammalianexpressionsystems.

119 3.ResultsandDiscussion

heterologous GPCR

elimination of yeast GPCR (STE2) gamma alpha beta GTP

GDP SST2

P beta/gamma alpha-GTP alpha-GDP Ste20

STE11 STE5 STE7 MAP-Kinase pathway FUS3/KSS1

Fus3 or Kss1

Fus3 Dig1, Dig2

Far1 Ste12

reporter genes

Cdk/Cyclin Fus1-His3 Fus1-LacZ

cell cycle arrest His+ phenotype beta-galactosidase synthesis

Fig.3.13Ayeast-basedexpressionsystemforstudyingthefunctionofmammalianGPCRs. Thebaker'syeast,S. cerevisiae,initshaploidform,expressesoneGPCRandoneGproteinheterotrimer thatarepartoftheyeastmatingpathway.Bindingofpheromoneoftheoppositematingtypeleadsto activationofthe yeastpheromonesignal transductionpathwaycomposedofelementsofamitogen- activatedproteinkinase(MAP kinase)cascade.Physiologically,activationofthispathwayresultsincell cyclearrestandtranscriptionalinductionofpheromone-responsivegenes. Theyeastexpressionsystememployedinthepresentstudytakesadvantageofthestrikingresemblanceof componentsofthepheromonepathwayandmammalianGPCRsignalingsystems.Geneticalterationswere introducedintoatypicallaboratoryyeaststraintogenerateayeaststrainthatrequiredactivationofthe pheromonepathwayforgrowth.Specifically,thefollowinggeneticmodificationsweremade:

120 3.ResultsandDiscussion

3.2.3Results

3.2.3.1FunctionalexpressionoftheV2vasopressinreceptorinyeast

Theinitialgoalofthisstudywastodesignastrategythatallowedthefunctional expressionofthehumanV2vasopressinreceptorinyeast.First,thehumanV2receptor codingsequencecontaininganHA epitopetagaftertheinitiating methioninecodon (Schönebergetal. ,1996)wasinsertedintotheyeastexpressionplasmid,p416GPD (Mumbergetal.,1995),thusplacingV2receptorexpressionunderthecontrolofthe strongyeastGPDpromoter.Theresultingexpression plasmid(hV2-p416GPD)wasthen transformedintoyeaststrainsthatweregeneticallymodifiedsuchthattheyrequired productivereceptor/Gproteincouplingforgrowth(see"MaterialsandMethods"for details).Specifically,theV2receptorexpressionconstructwastransformedintothree differentyeaststrains(MPy578fc,MPy578q5,andMPy578s5)whichwere isogenic exceptfortheGPA1genecodingfortheendogenousyeastGprotein αsubunit(Pausch etal.,1998,alsoseeTable2.1andchapter2.2.2.5).MPy578fccontainedthewt GPA1 gene,whereasMPy578q5andMPy578s5harboredmutantversionsofthisgenecoding formutantGpa1proteinsinwhichthelastfiveaminoacidsofGpa1pwerereplacedwith thecorrespondingresiduespresentinmammalianG αqandGαs,respectively(Fig.3.14). Inthefollowing,theencoded Gα subunitsarereferredtoasGpa1p,Gq5,andGs5, respectively.

Fig.3.13continued ______The Far1proteinmediatespheromone-dependentcellcyclearrest;deletionof FAR1thereforeallows continuedgrowthofyeastinthepresenceofpheromone. Sst2pisaprototypicalRGSprotein( Regulatorof GproteinS ignaling)andincreasestheintrinsic GTPaseactivityofG α,thuspromotingdesensitizationof the pheromonesignalingpathway.Deletionof SST2leadstoamorerobustandsustainedpheromone signalingresponse.FUS1encodesacellsurfaceproteininvolvedincellfusion(mating);activationofthe pheromonepathwaystronglyinducesthe FUS1promoter.TheFUS1genewasreplacedwith aFUS1-HIS3 reportergeneconstuct. Inthissystem, agonist-inducedreceptor/GproteincouplingtriggerstheactivationoftheyeastMAP kinase/pheromonepathway.Thiseventuallyleadstoactivationofthe FUS1promoterandtheexpressionof His3p,allowingyeastgrowthonhistidine-deficientmedia(see“MaterialsandMethods”fordetails).

121 3.ResultsandDiscussion

Gpa1p

(K-I-G-I-I)

Gq5

αq sequence (E-Y-N-L-V)

Gs5

αs sequence (Q-Y-E-L-L)

Fig.3.14StructureofGprotein αsubunitsusedinthisstudy. TheindicatedwtandmutantGprotein αsubunitswereco-expressedwiththeV2 vasopressinreceptorordifferent muscarinicreceptorsinyeast. Gpa1prepresentstheendogenousyeastG αsubunit,whereasGq5andGs5are chimericGproteinsin whichtheC-terminalfiveaminoacidsofGpa1pwerereplacedwiththecorrespondingsequencesderived frommammalianGαqandGαs,respectively.Thesingleletteraminoacidcodeisused.

Initially,V2receptorexpressionwasmonitoredviaWesternblottinganalysis, usingthe12CA5anti-HAmousemonoclonalantibodyastheprimaryantibody.This analysisrevealedtwoclustersofimmunoreactiveV2receptorspecies,onemigratingat~ 40 kDaandtheotheroneat~80kDA(Fig.3.15)The~40 kDareceptorcluster correspondsinsizetomonomericformsoftheV2receptor,whereasthe~80kDacluster probablyrepresentsdimericreceptorspecies(ZhuandWess,1998).Itislikelythatthe heterogeneityofthe40and80 kDabandsis primarillyduetoheterogeneous glycosylationoftheV2receptorprotein(Innamoratietal.,1996;Romanosetal.,1992).

122 3.ResultsandDiscussion

Fig.3.15ImmunoblotanalysisofwtandmutantV2 vasopressinreceptorsexpressedinyeast. Membraneswerepreparedfromyeastcells(strainMPy578q5)transformedwithvectorDNA(p416GPD) oryeastexpressionconstructscodingforthewtV2receptorordifferentmutantV2receptors.Equal amountsofmembraneproteins(10 µg)wereanalyzedbySDS-PAGE(4-20%)andWesternblotting,using aprimaryantibodythatwasdirectedagainsttheHAepitopetagpresentattheN-terminusofallreceptor constructs(see"MaterialsandMethods"fordetails).ThefollowingmutantV2receptorconstructswere studied:V2(Ile141∆)( lane1),V2(Cys142 ∆)( lane2),V2(Arg143 ∆)( lane3 ),V2(Pro144 ∆)(lane4 ), V2(Met145∆)(lane5 ),V2(Leu146 ∆ )( lane6 ),V2(Ala147 ∆)( lane7 ),V2(Tyr148 ∆)(lane8 ),and V2(Arg149∆)(lane9).Proteinmolecularmassstandards(inkDa)areindicated.

Ingeneral,thepatternofimmunoreactiveV2receptorbandsthatwasobtainedin yeastcloselyresembledthatpreviouslyobservedintransfectedmammaliancells(Zhu and Wess,1998).Also,itwasfoundthatallthreeyeaststrainsusedinthisstudy (MPy578fc,MPy578s5,andMPy578q5)expressedV2receptorproteinatsimilarlevels (datanotshown). TodeterminethenumberoffunctionalV2receptorsexpressedinyeast,initially radioligandbindingstudieswerecarriedoutwiththe agonistligand,[ 3H]AVP(upto8 nM).Forreasonsthataremostlikelyrelatedtotheagonistand/orpeptidenatureofAVP (seebelow),nosignificantlevelsof[ 3H]AVPbindingsitescouldbedetectedusing membranespreparedfromV2receptor-transformedyeaststrains.Incontrast,saturation bindingexperimentswiththenon-peptideV2receptorantagonist,[ 3H]-SR121463 (Serradeil-LeGaletal.,1996,2000),consistentlyrevealedasignificantnumberofV2 receptorbindingsitesusingthesameyeastmembranepreparations.[ 3H]-SR121463 bindingtothewtV2receptorexpressedinyeastwascharacterizedbyhighaffinity(KD=

123 3.ResultsandDiscussion

8.0+2.5nM;n=3)anda Bmaxvalueof322+102fmol/mg(MPy578q5strain;n=3)(see Table3.7,page145).Asexpected,nospecific[ 3H]-SR121463bindingactivitywas detectedwithmembranespreparedfromyeaststrainstransformedwithemptyvector (p416GPD).

1200 V2 (wt) + Gs5 V2 (wt) + Gq5 1000 V2 (wt) + Gpa1p p416GPD + Gs5

0 800 0 0 1 x

0 600 3 6 D

O 400

200

0 0 -13 -11 -9 -7 -5 AVP, log [M]

Fig.3.16AVP-inducedyeastgrowthmediatedbycouplingofthewtV2 vasopressinreceptortoaco- expressedhybridGprotein. Liquidbioassayswerecarriedoutwithyeaststrainsco-expressingthewtV2 vasopressinreceptorandtheindicatedGprotein αsubunits(Gpa1p,Gs5,orGq5;forGproteinstructures, seeFig.3.14),asdescribedunder“MaterialsandMethods”.Yeastgrowthwasmeasuredbydetermining theabsorbanceat630 nm(forAVPEC 50values,seeTable3.6).Resultsfromonerepresentative experiment,carriedoutwiththreeindependent transformants,areshown.Dataaregivenasmeans+S.E. Twoadditionalexperimentsgavesimilarresults.

124 3.ResultsandDiscussion

Next,itwasexaminedwhetherV2receptorswereabletoproductivelycoupleto co-expressedGproteinsinyeast.Specifically,liquidbioassayswerecarriedoutto examinetheabilityoftheagonist,AVP,tostimulategrowthofwtV2receptor- expressingyeaststrainsinmedialackinghistidine(notethatproductivereceptor/G proteincouplingstimulatestheproductionofHis3protein).AsshowninFig.3.16,the V2receptorwasunabletoefficientlyinteractwithyeastGpa1pandthehybridGprotein, Gq5.AresidualgrowthresponsewasobservedonlyatthehighestAVPconcentrations used(>0.01mM).Incontrast,thewtV2receptorwasabletoproductivelyinteractwith

co-expressedGs5(EC 50~6nM;Fig.3.16andTable3.6,page140).AsshowninFig. 3.16,thisinteractionwascharacterizedbyremarkablyhighAVPpotency.SinceGpa1p, Gq5,andGs5differonlyintheirC-terminalfiveaminoacids(Fig.3.14),thesedata

indicatethattheV2vasopressinreceptorcanselectivelyrecognizetheC-terminal αs

residuespresentinGs5.Moreover,sincethewtV2receptorselectivelycouplestoG sin mammaliansystems(Birnbaumer etal.,1992;Lolait etal.,1992;Burbach etal.,1995; Liuand Wess,1996; Thibonnieretal.,1998),theseobservationsconfirmthattheV2 receptordisplaystheproperGproteincouplingpreferenceinyeast.

3.2.3.2Functionalexpressionofmuscarinicreceptorsinyeast

3.2.3.2.1WildtypeM 1,M3,andM 5muscarinicreceptorsarepoorlyexpressedand donotcoupleefficientlytoGproteinsinyeast

Asdescribedabove,theV2receptorexpressedinyeastdisplayedpronounced couplingtoGs5butnotGq5.Toruleoutthepossibilitythatthelackofinteraction observedbetweentheV2receptortoGq5wasduetopoorexpressionor misfoldingof

Gq5,theG q/11-coupledmuscarinicM1,M 3,andM 5receptorswereexpressedinyeast.

Initially,thefull-lengthM1,M3,andM5muscarinicreceptorswereexpressedintheyeast strain(MPy578fc)containingtheendogenousyeastG α subunit,Gpa1.Toexamine whethertheheterologouslyexpressed muscarinicreceptorswereabletocoupletothe endogenousyeastGprotein,theabilityofthemuscarinicagonist,carbachol,tostimulate

125 3.ResultsandDiscussion

M1 + Gq5 600 M3 + Gq5 M5 + Gq5 M1 + Gpa1

0 M + Gpa1

0 3 0 M5 + Gpa1 1

X 400

X p416GPD + Gq5 (vector) 630 D O

200

X X X X X X X X X X X

0 0 -13 -11 -9 -7 -5 Carbachol, log[M]

Fig.3.17 Carbachol-inducedyeastgrowthmediatedbycouplingofthewt(full-length)M 1,M 3andM 5 muscarinicreceptorstoendogenousyeastGprotein,Gpa1p,orthechimericG α subunit,Gq5.Liquid bioassayswerecarriedoutwithyeaststrainsco-expressingtheindicated muscarinicreceptorsandeither Gpa1porGq5,asdescribedunder“MaterialsandMethods”.Growthwasmeasuredbydeterminingthe absorbanceat630nm.Onerepresentativeexperiment,carriedoutwiththreeindependent transformants,is shown.Dataaregivenasmeans+SE.Twoadditionalexperimentsgavesimilarresults.

yeastgrowthwasdeterminedinliquidbioassays.Thesestudiesshowedthatcarbachol

-13 -4 (10 -10 M)failedtopromotegrowthofyeaststrainstransformedwiththeM 1,M3,and

M5receptorexpressionplasmids(Fig.3.17),indicatingthatthesereceptorscannot productivelyinteractwithyeastGpa1p.

126 3.ResultsandDiscussion

WenextexpressedtheM 1,M 3,andM 5 muscarinicreceptorsinayeaststrain

(MPy578q5)expressingGq5(Fig.3.14).Inthissystem,aweak(M 1,M 5)tomoderate

(M3)growthresponsewasobservedatthehighest carbacholconcentrations(>1 µM), indicatingthatthepresenceoftheC-terminalαqresiduesinGq5facilitatescouplingwith theM1,M3,andM5muscarinicreceptors(Fig.3.17).

Table3.4Pharmacologicalpropertiesoffull-lengthandi3loop-shortenedM1,M3, andM5muscarinicreceptorsexpressedinyeast ______[3H]NMSbinding Yeastgrowthassay (MPy578q5strain) ____________

Receptor KD Bmax EC50(Carbachol) (pM) (fmol/mg) nM ______

M1 ND <5

M1∆i3 188+20 58+3 120+0.6

M3 ND <2

M3∆i3 574+118 214+15 9+3

M5 ND <2

M5∆i 1,269+51 53+2 48+1.6 ______ND,notdeterminablewithsufficientaccuracy.

Radioligandbindingstudiesandliquidbioassays(yeastgrowthassays)werecarriedoutasdescribedunder

"MaterialsandMethods".InthecaseoftheM 1∆i3,M3∆i3,andM 5∆i3receptors,bindingparameterswere calculatedfromcomplete[ 3H]NMSsaturationbindingorcarbacholinhibitionbindingcurves.Inthecaseof thefull-lengthreceptors,Bmaxvaluesweredefinedasspecificbindinginthepresenceofonehighsaturating concentrationof[3H]NMS(3.8nM).Dataaregivenasmeans +SEofthreeindependentexperiments,each carriedoutinduplicate(bindingassays)ortriplicate(liquidbioassays).

127 3.ResultsandDiscussion

Todeterminereceptorexpressionlevels,[ 3H]NMSbindingstudieswerecarried outwithmembranespreparedfromyeaststrains(basedonMPy578q5)transformedwith theM 1,M 3,andM 5receptorexpression plasmids.Incubationofyeastmembrane homogenateswithasaturatingconcentrationof[3H]NMS(3.8nM)revealedthatallthree receptorswereexpressedatverylowlevels(<5fmol/mg)(Table3.4).

3.2.3.2.2TheM 1∆i3,M 3∆i3,andM 5∆i3 muscarinicreceptorscouplewithhigh efficiencytoahybridGpa1p/αqGprotein

Asdescribedinthepreviousparagraph,theexpressionofthefull-lengthM 1,M3, andM5muscarinicreceptorsinyeastresultedinverylownumbersof muscarinicbinding sitesandnon-detectable(inthecaseofGpa1p)orinefficient(inthecaseofGq5)G proteincoupling.TheM 1-M5muscarinicreceptors,likeseveralother GPCRs,contain verylargei3loopsranginginsizefrom157to240aminoacids(Wess,1996).However, studiesinmammalianexpressionsystemshaveshownthatmostofthei3loopsequences, exceptforthemembrane-proximal10-15aminoacids,arenotrequiredforproductive receptor/Gproteincoupling(reviewedinWess,1996).

i3 TMV TMVI

- C T N A R A E --∆115 aa------G K EQ L A K R K T F SL V K E K K A A R TL S A IL L-(373-460) M1∆i3 (1-202) VM LYW R IY R E T E R EL A LQ G S T - IM T IL YW R IY K ET E K R T K E L A G LQ A SG T E-∆196aa------T R SQ ITK R K RM SL V K E K K A A Q T L S A IL L-(498-590) M3∆i3 (1-244) - C D D D S V- - S T KG L N P NP S H QM TK R K R V V LV K E R K A A Q T L S A IL L-(450-532) M5∆i3 (1-207) VM T IL Y R IY R E T E K R T K LA LQ G S ∆177 aa

Fig.3.18StructureoftheM 1∆i3,M3∆i3,andM5∆i3mutantmuscarinicreceptors.Thecytoplasmicendsof transmembranedomainsVandVIandthemembrane-proximalportionsofthei3loopareshown.To generatetheM 1∆i3,M3∆i3,andM 5∆i3mutantmuscarinicreceptors,theindicatedi3loopsequenceswere deletedfromthehumanM 1(Bonneretal.,1988),ratM 3(Bonneretal.,1987),andhumanM 5(Bonneret al.,1988)muscarinicreceptors.Numbersinparenthesesindicatethenumberofaminoacidsthatwerenot includedinthealignment.Darkgrayboxes(boldletters)indicatesitesofaminoacididentity;light gray boxeshighlightconservativeaminoacidchanges.Thesingle-letteraminoacidcodeisused.

128 3.ResultsandDiscussion

Itappearedpossiblethatthelargei3loopdomainsmaybedetrimentaltotheefficient expressionofmuscarinicreceptorsinyeast,perhapsbyservingastargetsforyeast proteasesleadingtorapidreceptordegradation.Totestthehypothesisthatremovalofi3 loopsequencesmayleadtoimprovedGproteincouplingandincreased muscarinic receptorexpressionlevelsinyeast,wegeneratedp416GPD-basedyeastexpression plasmidscodingformutantM 1,M3,andM 5receptors(M 1∆i3,M3∆i3,andM 5∆i3)that lackedmajorportionsoftheiri3loops(Fig.3.18).Onlythefirstandlast21-22amino acidsofthei3loopsstillremainedintheM1∆i3,M3∆i3,andM5∆i3constructs. Liquidbioassaysusingyeastcellsco-expressingthei3loop-shortenedversionsof theM1,M 3,andM 5muscarinicreceptorsandtheyeastGprotein,Gpa1p,showedthat

M1∆i3andM 5∆i3wereunabletocoupletoyeastGpa1p(Figs.3.19Aand3.19C).Inthe caseofM 3∆i3,ratherweakcouplingcouldbedetectedatthehighest carbachol concentrationused(0.1 mM)(Fig.3.19B).Strikingly,however,theM 1∆i3,M3∆i3,and

M5∆i3receptorsgainedtheabilitytointeractwiththehybridGprotein,Gq5,withhigh efficiency.AsshowninFigs3.19A-C, carbacholstimulatedthegrowthofyeaststrains co-expressingM1∆i3,M3∆i3orM 5∆i3andGq5withhighpotencyandefficacy(Table 3.4).Theseresponseswereabolishedwhenyeastcellswereculturedinthepresenceof themuscarinicantagonist,atropine(10 µM)(datanotshown).AsshowninTable3.4, couplingoftheM 3∆i3mutantreceptortotheGq5Gproteinwascharacterizedby remarkablyhighefficiency(carbacholEC50:~9nM).

ToexaminewhethertheM 1∆i3,M 3∆i3andM 5∆i3receptorsretainedproperG proteincouplingselectivityinyeast,theseconstructswerealsoexpressedinayeaststrain (MPy578s5)expressingamutantversionofGpa1p(Gs5)inwhichtheC-terminalfive aminoacidswerereplacedbythehomologousG αssequence(Fig.3.14).Asshownin

Fig.3.19,theM1∆i3,M3∆i3,andM5∆i3receptorscoupledtoco-expressedGs5muchless efficientlythantoGq5.InthecaseofM 1∆i3andM 3∆i3, carbacholconcentration responsecurveswereshiftedtotherightbyatleasttwoordersofmagnitude(Figs.3.19A and3.19B),whereascouplingofM5∆i3toGs5wasvirtuallynon-detectable(Fig.3.19C).

129 3.ResultsandDiscussion

A 1000 M1 + Gq5 M1∆i3 + Gq5 M1 + Gs5 M1∆i3 + Gs5 800 M1 + Gpa1 M1∆i3 + Gpa1 X p416GPD + Gq5 (vector) 600 X 1000 630 400 OD

200

X X X X X X X X X X X

0 0 -13 -11 -9 -7 -5 Carbachol, log[M]

1000 B M3 + Gq5 M3∆i3 + Gq5 M3 + Gs5 M i3 + Gs5 800 3∆ M3 + Gpa1 M3∆i3 + Gpa1 X p416GPD + Gq5 600 (vector) X 1000 630 400 OD

200

X X X X X X X X X X X 0 0 -13 -11 -9 -7 -5 Carbachol, log[M]

130 3.ResultsandDiscussion

1000 C M5 + Gq5 M5∆i3 + Gq5 M5 + Gs5 M ∆i3 + Gs5 800 5 M5 + Gpa1 M5∆i3 + Gpa1 X p416GPD + Gq5 600 (vector) X 1000

630 400 OD

200

X X X X X X X X X X X

0 0 -13 -11 -9 -7 -5 Carbachol, log[M]

Fig.3.19 Carbachol-inducedyeastgrowthmediatedbycouplingofwtandi3-loopshortened muscarinicreceptorstoco-expressedwtandhybridGproteins. A,Couplingpropertiesofthefull- lengthM 1receptorandtheM 1∆i3deletionmutant. B,Couplingpropertiesofthefull-lengthM 3receptor andtheM 3∆i3deletionmutant. C,Couplingpropertiesofthefull-lengthM 5receptorandtheM 5∆i3 deletionmutant.ThestructuresoftheM 1∆i3,M3∆i3,andM5∆i3mutantreceptorsandtheco-expressedG α subunitsaregiveninFigs.3.15and3.17,respectively.Liquidbioassayswerecarriedoutwithyeaststrains co-expressingtheindicatedreceptorsandG αsubunits,asdescribedunder“MaterialsandMethods”. Growthwasmeasuredbydeterminingthe absorbanceat630nm.Onerepresentativeexperiment,carried outwiththreeindependent transformants,isshown.Dataaregivenasmeans +SE.Twoadditional experimentsgavesimilarresults.

Asdescribedinthepreviousparagraph,functionalexpressionoftheG s-coupled V2vasopressinreceptorinyeastshowedthatthisreceptorinteractedwithGs5withmuch greaterefficiencythanwithGq5orGpa1p.TheobservationthattheM 1∆i3,M3∆i3,and

M5∆i3receptorscoupledtoGq5muchmoreefficientlythantoGs5demonstratedthatthe

131 3.ResultsandDiscussion lackofcouplingobservedbetweentheV2receptorandGq5wasnotcausedbypoor expressionormisfoldingoftheGq5subunit.

3.2.3.2.3 LigandbindingpropertiesoftheM 1∆i3,M 3∆i3,andM 5∆i3 muscarinic receptorsexpressedinyeast

Tofurthercharacterizethepharmacologicalpropertiesofthei3loop-shortened muscarinicreceptors,[ 3H]NMSbindingstudieswerecarriedoutwithmembranes preparedfromyeaststrains(basedonMPy578q5)transformedwiththeM 1∆i3,M3∆i3,

3 andM5∆i3receptorexpressionplasmids.[ H]NMSsaturationbindingstudies(Table3.4) showedthattransformationofyeastwiththeM 1∆i3,M3∆i3,andM5∆i3constructsledto dramaticincreasesinthemaximumnumberofdetectable[ 3H]NMSbindingsites(range: 53-214fmol/mg),ascomparedtotheirfull-lengthreceptorcounterparts(<5 fmol/mg).

3 [ H]NMSdissociationconstants(KDvalues)rangedfrom188pMfortheM 1∆i3receptor to1,269pMfortheM5∆i3construct(Table3.4).

3.2.3.3Furthervalidationoftheyeastexpressionsystem

Additionalexperimentswerecarriedouttofurthersubstantiatethegeneral usefulnessoftheyeastexpressionsystemdescribedhereasamodelforstudying mammalianreceptor/Gproteincouplingmechanisms.Studiesinmammalianexpression systemshaveledtotheidentificationofmutant GPCRswithalteredfunctional properties,includingreceptorswithmodifiedcouplingselectivity,receptorsthatare constitutivelyactive,orreceptorswhichdonotcoupletoGproteinsatall.Itwasof interesttoexaminewhetherthesemutantreceptorphenotypescouldalsobeobservedin theyeastexpressionsystem.

ZengandWess(unpublishedresults)recentlyidentifiedthreemutantM 3 muscarinicreceptors(M 3∆i3(Gln490->Tyr),M3∆i3(Gln490->Cys),andM 3∆i3(Gln490-

>Leu)(Gln490islocatedatthe cytoplasmicendofTMVIintheM 3receptor))which displayedpronouncedconstitutiveactivitywhenexpressedinCOS-7cells.Expressionof

132 3.ResultsandDiscussion thesethreemutantreceptorsinayeaststrainexpressingthechimericG α-subunit,Gq5, showedthatallmutantreceptorsretainedrobustconstitutiveactivityinyeast(Fig. 3.20A). Moreover,studieswithtransfectedmammaliancellsshowedthatamutantV2 vasopressinreceptor(V2i2)inwhichthei2loophadbeenexchangedagainsthomologous

V1areceptorsequencegainedtheabilitytointeractwithGproteinsoftheG q/11family withhighefficiency(LiuandWess,1996).

A M3∆i3 + Gq5 B V2 + Gs5 M3∆i3 (Gln490->Cys) + Gq5 V2 + Gq5 1000 M3∆i3 (Gln490->Tyr) + Gq5 1000 V2i2 + Gq5 M3∆i3 (Gln490->Leu) + Gq5

800 800

600 600 X 1000 X 1000 630 630 400 400 OD OD

200 200

0 0 0 -13 -11 -9 -7 -5 0 -13 -11 -9 -7 -5 Carbachol, log[M] AVP, log[M]

Fig.3.20Ligand-inducedyeastgrowthmediatedbycouplingofwtandmutantmuscarinicand vasopressinreceptorsco-expressedwithhybridGproteins. A,Couplingpropertiesofthewtandmutant M3∆i3muscarinicreceptors.ThestructureoftheM 3∆i3receptorisgiveninFig.3.15. B,Coupling propertiesofwtV2andchimericV1a/V2vasopressinreceptors.The chimericvasopressinreceptorV2i2 wascreatedbyreplacing V2(138->160)withV1a(150->171)inthewtV2receptor(alsoseeFig.1.9, chapter1.3.3).Thestructuresoftheco-expressed GαsubunitsaregiveninFig.3.14.Liquidbioassayswere carriedoutwithyeaststrainsco-expressingtheindicatedreceptorsand Gαsubunits,asdescribedunder “MaterialsandMethods”.Growthwasmeasuredbydeterminingtheabsorbanceat630nm.One representativeexperiment,carriedoutwiththreeindependent transformants,isshown.Dataaregivenas means+SE.Twoadditionalexperimentsgavesimilarresults.

133 3.ResultsandDiscussion

Whenexpressedintheyeastexpressionsystem,thisV2i2constructgainedtheabilityto productivelycoupletotheGq5protein(Fig.3.20B).Incontrast,asindicatedabove,the wtV2receptorrecognizedthishybridGproteinonlyverypoorly(Fig.3.20B). Thesedatastronglysuggestthatobservationsmadeinmammaliansystemscanbe faithfullyreproducedintheyeastexpressionsystemdescribedhere.Reciprocally,it appearsreasonabletoassumethatresultsgeneratedbyusingtheyeastexpressionsystem willbeapplicabletomammaliansystems.

3.2.3.4ScreeningandselectionofmutantreceptorswithalteredGproteincoupling properties

Thepowerfulgeneticselectionproceduresthatcanbeemployedinyeastshould allowtheisolationofmutantV2receptorswithnovelGproteincouplingproperties.In thispresentstudy,astrategywasdevisedtoidentifymutantV2receptorsthatwouldgain theabilitytocoupletotheGq5chimericGprotein. Totestthefeasibilityofthisapproach,thei2loopoftheV2 vasopressinreceptor (His138-Val160;Fig.3.21)wassubjectedtooligonucleotide-basedrandom mutagenesis. TogenerateaMPy578q5-basedlibraryofyeastclonesexpressingmutantV2receptors,a gap-repairmethodwasused(Muhlrad etal.,1992;StaplesandDieckmann,1993; SommersandDumont,1997,1999)thatinvolvedco-transformationofagappedversion ofhV2-p416GPDwithaPCRfragmentcodingformutagenizedi2loopsequencesinto MPy578q5(see"MaterialsandMethods"fordetails).Invivorecombinationeventsledto thereformationofcircularplasmidscodingformutantV2 vasopressinreceptors.To assessthequalityofthemutantV2receptorlibrary, plasmidswererecoveredfrom15 randomlypickedcoloniesgrownonuracil-deficientmediumtoselectfor transformants containingreceptor plasmids.Sequencinganalysisoftheseplasmidsshowedthateach clonecontainedanaverageofabout6.2nucleotidechanges,ingoodagreementwiththe predicted mutagenesisrate(10%atthenucleotidelevel).Wealsonotedthatthe mutationswereevenlydistributedthroughoutthei2loopsequence.

134 3.ResultsandDiscussion

A TM III TM IV

A L S S L Y S F M I A A L W L M A V D T membrane L 160 V R R A H P I 138 R C N R W P i2 loop H 155 A 145 M L G 146 A S Y 147 R H G 152 148 150 B TM III i2 TM IV Rho - VVLAIERYVVVCKPM-SNFRFGENHAIMGVA - V1a - VVMTADRYIAVCHPL-KTLQQPARRSRLMIA - V2 - LAMTLDRHRAICRPMLAYRHGSGAHWNRPVL - * 138 * * 145 160

Fig.3.21Aminoacidsequenceofthei2loopofthehumanV2vasopressinreceptor. A,Residues His138-Val160correspondinginsequencetothei2loopofthehumanV2 vasopressinreceptorwere subjectedtorandommutagenesisasdescribedunder"MaterialsandMethods".Met145(highlightedbyan arrow)ispredictedtoplayakeyroleinregulatingreceptor/Gproteincouplingselectivity(seetextfor details).Theputativecytoplasm/membraneboundaryisindicatedbyadottedline. B,Comparisonofthei2 loopsequencesofbovine rhodopsin( Rho;NathansandHogness,1983),forwhichhighresolution structuralinformationisavailable(Palczewski etal.,2000),theratV1a vasopressinreceptor(Morel etal., 1992),andthehumanV2vasopressinreceptor( Birnbaumer etal.,1992).*, positionsofaminoacid identity.NumbersrefertoaminoacidpositionsinthehumanV2vasopressinreceptorsequence (Birnbaumeretal.,1992).

Coloniesthatwereabletogrowonuracil-deficientmediumwerethenreplica- platedontomediumthatlackedboth uracilandhistidinebutcontainedtheagonist,AVP (0.4µM),and10mMofAT(tosuppressbackgroundgrowth).Undertheseconditions, yeastclonesexpressingthewtV2receptorfailedtogrow(Fig.3.22),obviouslydueto theinabilityoftheV2receptortointeractwithGq5inaproductivefashion.However, underidenticalconditions,yeastcellsco-expressingthewtV2receptorandGs5showed robustagonist-dependentgrowth(Fig.3.22).Approximately30,000primary

135 3.ResultsandDiscussion

Fig.3.22 TheRM1-RM4mutantV2vasopressinreceptors,butnotthewtV2receptor,stimulate yeastgrowthviainteractionwithGq5 .YeaststrainsexpressingeitherGs5orGq5(forGprotein structures,seeFig.3.14)weretransformedwithvectorDNA(p416GPD)oryeastexpression plasmids codingforthewtV2receptorortheRM1-RM4mutantreceptors(formutantreceptorstructures,seeTable 3.6).5 µlofyeastcellsuspensions(OD:~0.1)co-expressingtheindicated chimericGproteinsandwtor mutantV2receptorswerespottedontouracil-and histidine-deficientSCmediumintheabsenceor presenceofAVP(finalconcentration:0.4 µM).Tosuppressbackgroundgrowth,theplateswere supplementedwith10mMAT,acompetitiveinhibitorofthe HIS3geneproduct(fordetails,see“Materials andMethods”).Plateswereincubatedat30°Cfor3days.

transformantswerereplica-platedandscreenedfortheirabilitytogrowinanAVP- dependentfashionontheselectionmedium.Basedontheobserved mutagenesisrate (aboutsixnucleotidechangesperclone),thisnumberofclonesshouldbemorethan sufficienttoincludeanypossiblenucleotidesubstitutionwithinthe mutagenizedreceptor region. Theinitialscreenyieldedelevencoloniesthatwereabletogrowonplates containingtheselectionmedium(afterreplicaplating).Toconfirmthattheirgrowth phenotypewasdependentonaplasmid-borneV2receptormutation,receptorplasmids wererecoveredfromtheseclones,amplifiedin E.coli,and retransformedintothe

136 3.ResultsandDiscussion

MPy578q5parentalyeaststrain.Colonyassaysoftheresulting transformantsshowed thatfouroftherecoveredreceptor plasmidsreproduciblyconferredontheMPy578q5 straintheabilitytogrow,inanAVP-dependentfashion,onplatescontainingtheproper selectionmedia(Fig.3.22).ThemutationsfoundintheencodedmutantV2receptors (RM1-RM4)aregiveninTable3.5.Threeofthefourrecoveredmutantreceptorshad threeormoremutationswithinthei2loop(RM2-RM4),whereasRM1containedasingle aminoacidsubstitution(Met145Trp).Interestingly,allfourmutantreceptorscontaineda modificationatpositionMet145,eitheranaminoacidsubstitution(RM1-RM3)ora deletion(RM4).Infact,theMet145 ∆/Leu146TrpmutationinRM4isidenticalwitha Met145Trp/Leu146∆mutation(Table3.5).

Table3.5

MutantV2vasopressinreceptorsrecoveredinayeastgeneticscreenthatgained couplingtothehybridGprotein,Gq5

About30,000mutantV2receptors,generatedbyrandom mutagenesisoftheregioncodingforthei2loop, werescreenedfortheirabilitytogaincouplingtoamutantversionofGpa1(Gq5)containingC-terminal αq sequence(forGproteinstructure,seeFig.3.14),asdescribedunder"MaterialsandMethods".Thefour recoveredmutantreceptors,RM1-RM4,conferredontheMPy578q5yeaststrain(Fig.3.14)theabilityto grow,inanAVP-dependentfashion,onplateslackinguracilandhistidine(seetextfordetails).

______RecoveredV2 Mutationsidentified mutantreceptor viasequencing ______

RM1 Met145Trp RM2 Met145Leu,Leu146Arg,Ala147Thr,Ser152Arg RM3 Met145Leu,Tyr148Phe,His155Leu RM4 Met145∆,Leu146Trp,His150Arg,Ser152Arg (=Met145Trp,Leu146∆,His150Arg,Ser152Arg) ______

137 3.ResultsandDiscussion

A 1200 RM1 + Gq5 RM2 + Gq5 1000 RM3 + Gq5 RM4 + Gq5 V2 (wt) + Gq5

0 800 0 V2 (wt) + Gs5 0 1

x

0 600 3 6 D

O 400

200

0 0 -13 -11 -9 -7 -5

B 800 RM1 + Gs5 700 RM2 + Gs5 RM3 + Gs5 600 RM4 + Gs5 0 0

0 V2 (wt) + Gs5

1 500 x

0

3 400 6 D O 300 RM1 + Gpa1p RM2 + Gpa1p 200 RM3 + Gpa1p RM4 + Gpa1p 100

0 0 -13 -11 -9 -7 -5 AVP, log [M]

Fig.3.23AVP-inducedyeastgrowthmediatedbycouplingoftheRM1-RM4mutantV2 vasopressin receptorstoco-expressedhybridGproteins. Liquidbioassayswerecarriedoutwithyeaststrainsco- expressingtheRM1-RM4mutantV2 vasopressinreceptorsandtheindicatedGprotein αsubunits(forG proteinstructures,seeFig.3.14),asdescribedunder“MaterialsandMethods”. A,CouplingtoGq5.The yeaststrainco-expressingthewtV2receptorandGs5wasincludedasacontrol. B,CouplingtoGs5or

Gpa1p.Yeastgrowthwasmeasuredbydeterminingtheabsorbanceat630 nm(forAVPEC 50values,see Table3.6).Resultsfromonerepresentativeexperiment,carriedoutwiththreeindependenttransformants, areshown.Dataaregivenasmeans+S.E.Twoadditionalexperimentsgavesimilarresults.

138 3.ResultsandDiscussion

3.2.3.5CharacterizationoftheGproteincouplingpropertiesoftheRM1-RM4 mutantV2receptorsinyeastliquidbioassays

ToexaminetheGproteincouplingpropertiesoftherecoveredRM1-RM4mutant receptorsingreaterdetail,liquidbioassayswerecarriedouttoexaminetheabilityof thesemutantreceptorstostimulateGq5,Gs5,oryeastGpa1p.Asexpectedbasedonthe colonyscreen,allfourmutantreceptorsgainedconsiderablecouplingtoGq5(E max~60- 80%),ascomparedtothewtV2receptorwhichconferredonlyaresidualgrowth responseonGq5-expressingyeastcells(Fig.3.23A,Table3.6).However,similartothe wtreceptor,theRM1-RM4mutantreceptorsretainedtheabilitytointeractwithGs5ina highlyefficientmannerandshowedlittleornocouplingtoyeastGpa1p((Fig.3.23B, Table3.6).

3.2.3.6SubstitutionsatpositionMet145havepronouncedeffectsontheGprotein couplingprofileoftheV2vasopressinreceptor

Oneofthefourmutantreceptors(RM1)recoveredfromtheinitialcolonyscreen harboredasingleMet145Trppointmutationandtwooftherecoveredmutantreceptors (RM2andRM3)containedanMet145Leusubstitution,inadditiontootherpoint mutations(Table3.5).ToexcludethepossibilitythatRM1harboredadditionalmutations outsidetheregionthatwassubjectedtorandommutagenesisandsequencing(i2loopand adjacentTMdomains),aV2(Met145Trp)mutantreceptorwasrecreatedviasite-directed mutagenesis.Inaddition,toexaminewhethertheMet145Leusubstitutionwassufficient toconferontheV2receptortheabilitytointeractwithGq5,amutantV2receptor constructwasgeneratedwhichcontainedtheMet145Leusubstitutionastheonly mutation.TheV2(Met145Trp)andV2(Met145Leu)receptorconstructsweretransformed intotheMPy578q5 strainandthenfunctionallyanalyzedinyeastliquidbioassays.As showninFig.3.24A,bothmutantreceptorsgainedsignificantcouplingtoGq5(forAVP

EC50and Emaxvalues,seeTable3.6),ascomparedtothewtreceptorwhichrecognized Gq5onlypoorly.

139 Table3.6

AminoacidcompositionandGproteincouplingprofileofwtandmutantV2vasopressinreceptorsexpressedinyeast

NumbersrefertoaminoacidpositionsinthewthumanV2vasopressinreceptorsequence (Birnbaumeretal.,1992).Liquidbioassayswerecarriedout asdescribedunder"MaterialsandMethods”.YeastgrowthwasmeasuredinthepresenceofincreasingconcentrationsofAVPbydeterminingthe absorbanceat630nm.Allreceptorswereexpressedinthreedifferentyeaststrains(MPy578fc,MPy578s5,andMPy578q5)differingonlyinthe structureoftheexpressedGprotein αsubunit.MPy578fcexpresseswtyeastGpa1p,whereasMPy578q5andMPy578s5carrymutantversionscoding forhybridGαsubunits(Gq5andGs5)inwhichthelastfiveaminoacidsofGpa1pwerereplacedwiththecorrespondingmammalianG αqandG αs sequences,respectively(Fig.3.14).EC 50valueswerecalculatedfromAVPconcentration-responsecurvesusingthecomputerprogramKaleidagraph (SynergySoftware).Dataaregivenasmeans+S.E.oftwotosevenindependentexperiments,eachcarriedoutintriplicate.

______a AVPEC50 Emax Receptorsisolated ____________intheinitialscreen V2receptormutation Gq5 Gs5 Gpa1p Gq5 Gs5 Gpa1p ______nM nM nM % % % V2(wt) - 5.8+2.3 - -b 100 -

RM1 Met145Trp 1700+4001.4+0.2 - 62+2 98+3 - RM2 Met145Leu,Leu146Arg,Ala147Thr,Ser152Arg 490+2501.8+0.8 - 67+2105+4 - RM3 Met145Leu,Tyr148Phe,His155Leu 130+501.0+0.5 - 77+1 105+3 - Met145Trpc 3500+3001.1+0.5 - 62+2101+3 - Met145Leu 3700+19001.8+0.8 - 76+399+1 - Met145Gly - 8.0+5.0 - -103+3 - Met145Ala - 3.7+2.7 - -100+8 - Table3.5continued______a AVPEC50 Emax Receptorsisolated ____________intheinitialscreen V2receptormutation Gq5 Gs5 Gpa1p Gq5 Gs5 Gpa1p ______nM nM nM % % %

RM4d Met145∆,Leu146Trp,His150Arg,Ser152Arg 32+9 1.4+0.4 - 83+5 95+1- Leu146Trp,His150Arg,Ser152Arg - 6.0+0.5 --109+3- His150Arg,Ser152Arg - 6.5+0.6 --102+1- Met145∆,e His150Arg,Ser152Arg 25+3 5.5+4.5 -83+498+8- Met145∆, His150Arg 120+602.4+0.6-78+4102+8- Met145∆, Ser152Arg 79+151.2+0.5190+7574+498+1 41+2 Met145∆ 160+741.9+0.7180+4663+6111+8 53+3

Ile141∆ - - - - - - Cys142∆ - - - - - - Arg143∆ - - - - - - Pro144∆ - - - - - - Leu146∆ - 3.4+2.0 - - 104+3 - Ala147∆ - 4.3+1.0 - -110+9 - Tyr148∆ - 3.4+0.8 - -103+2 - Arg149∆ - 8.0+3.0 - -105+1 - ______a Emaxvalueswereexpressedasgrowthresponsesrelativetotheresponseinducedby0.1mMAVPintheyeaststraincoexpressingthewtV2receptor andGs5(Emax=100%). b OnlyresidualactivityatthehighestAVPconcentrationused(Emax<10%). cRecreatedbysite-directedmutagenesis. dNotethatRM4isalsoequivalentto:Met145Trp,Leu146∆,His150Arg,Ser152Arg. eNotethatMet145∆isequivalenttotheMet145Leu/Leu146∆doublemutation. 3.ResultsandDiscussion

V2(Met145Trp) + Gq5 A 1200 V2(Met145Leu) + Gq5 V2(Met145Gly) + Gq5 V2(Met145Ala) + Gq5 1000 V2 (wt) + Gq5 p416GPD + Gq5 800 V2 (wt) + Gs5

x 1000 600 630

OD 400

200

0 0 -13 -11 -9 -7 -5

V2(Met145Trp) + Gs5 V2(Met145Leu) + Gs5 1000 B V2(Met145Gly) + Gs5 V2(Met145Ala) + Gs5 V2 (wt) + Gs5 800

600 x 1000

630 400 V2(Met145Trp) + Gpa1p

OD V2(Met145Leu) + Gpa1p V2(Met145Gly) + Gpa1p 200 V2(Met145Ala) + Gpa1p

0 0 -13 -11 -9 -7 -5 AVP, log [M]

Fig.3.24EffectofsubstitutionsatpositionMet145ontheabilityoftheV2 vasopressinreceptorto coupletohybridGproteinsinyeast. Liquidbioassayswerecarriedoutwithyeaststrainsco-expressing theindicatedmutantV2 vasopressinreceptorsandGprotein αsubunits(forGproteinstructures,seeFig. 3.14),asdescribedunder“MaterialsandMethods”. A,CouplingtoGq5.Theyeaststrainco-expressingthe wtV2receptorandGs5wasincludedasacontrol. B,CouplingtoGs5orGpa1p.Yeastgrowthwas measuredbydeterminingtheabsorbanceat630 nm(forAVPEC 50values,seeTable3.6).Resultsfromone representativeexperiment,carriedoutwiththreeindependent transformants,areshown.Dataaregivenas means+S.E.Twoadditionalexperimentsgavesimilarresults.

142 3.ResultsandDiscussion

[3H]-SR121463saturatingbindingstudiesshowedthatthe V2(Met145Leu)construct yielded Bmaxvaluesthatwerenotsignificantlydifferentfromthecorrespondingwt receptorvalues(Table3.7),indicatingthattheobservedgain-of-functionphenotypewas notcausedsimplybyoverexpressionofthetwomutantreceptors. Interestingly,replacementofMet145witheitherglycineor alanine,twosmall aminoacidslackinglargehydrophobicsidechains,ledtomutantV2receptors (V2(Met145Gly)andV2(Met145Ala),respectively)thatwereunabletoactivateGq5 (Fig.3.24A).However,theV2(Met145Gly),andV2(Met145Ala)mutantreceptors,like theV2(Met145Trp)andV2(Met145Leu)constructs,retainedtheabilitytoproductively interactwithGs5,inafashionsimilartothewtV2receptor(Fig.3.24B,Table3.6).This observationexcludesthepossibilitythattheinabilityofthe V2(Met145Gly)and V2(Met145Ala)mutantreceptorstostimulateGq5wasduetoimproperfoldingofthe mutantreceptorproteins. Fig.3.24Balsoshowsthatnoneofthefourmutantreceptors( V2(Met145Trp), V2(Met145Leu),V2(Met145Gly),andV2(Met145Ala))gainedtheabilitytocoupleto yeastGpa1p.Takentogether,thesedataindicatethatproperrecognitionoftheC- terminusofGαqisdependentonthechemicalnatureoftheaminoacidpresentatposition 145inthei2loopofthevasopressinreceptor.

3.2.3.7FunctionalanalysisofRM4-basedmutantV2vasopressinreceptors

SequenceanalysisshowedthatMet145wasdeletedinoneofthefourmutant receptors(RM4)thatwererecoveredintheinitialcolonyscreen(Table3.5).However,it shouldbenotedthattheMet145 ∆/Leu146TrpmutationcontainedinRM4(besidesthe His150ArgandSer152Argsubstitutions)isidenticalwithaMet145Trp/Leu146 ∆ mutation(Table3.5).Toassessthefunctionalimpactoftheindividualmutationspresent inRM4,severalRM4-basedmutantreceptorsweregeneratedwhichcontainedthe Met145∆ deletionastheonlymutation(notethattheMet145 ∆ deletionisequivalenttoa Met145Leu/Leu146∆ doublemutation),orwhichcontainedthemutationspresentin RM4invariousdifferentcombinations(seeTable3.6,center).

143 3.ResultsandDiscussion

RM4 + Gq5 V2(Met145∆/His150Arg/Ser152Arg) + Gq5 V2(Leu146Trp/His150Arg/Ser152Arg) + Gq5 1200 V2(His150Arg/Ser152Arg) + Gq5 A V2 (wt) + Gq5 p416GPD + Gq5 1000 V2 (wt) + Gs5

800

x 1000 600 630

OD 400

200

0 0 -13 -11 -9 -7 -5

RM4 + Gs5 B V2(Met145∆/His150Arg/Ser152Arg) + Gs5 1000 V2(Leu146Trp/His150Arg/Ser152Arg) + Gs5 V2(His150Arg/Ser152Arg) + Gs5 V2 (wt) + Gs5 800

x 1000 600

630 RM4 + Gpa1p V2(Met145∆/His150Arg/Ser152Arg) + Gpa1p OD 400 V2(Leu146Trp/His150Arg/Ser152Arg) + Gpa1p V2(His150Arg/Ser152Arg) + Gpa1p V2 (wt) + Gpa1p 200

0 0 -13 -11 -9 -7 -5 AVP, log [M]

Fig.3.25AVP-inducedyeastgrowthmediatedbycouplingofRM4-de rivedmutantV2 vasopressin receptorstoco-expressedhybridGproteins. Liquidbioassayswerecarriedoutwithyeaststrainsco- expressingtheRM4-derivedmutantV2 vasopressinreceptorsandtheindicatedGprotein αsubunits(forG proteinstructures,seeFig.3.14),asdescribedunder“MaterialsandMethods”. A,CouplingtoGq5.The yeaststrainco-expressingthewtV2receptorandGs5wasincludedasacontrol. B,CouplingtoGs5or

Gpa1p.Yeastgrowthwasmeasuredbydeterminingtheabsorbanceat630 nm(forAVPEC 50values,see Table3.6).Resultsfromonerepresentativeexperiment,carriedoutwiththreeindependenttransformants, areshown.Dataaregivenasmeans+S.E.Twoadditionalexperimentsgavesimilarresults.

144 3.ResultsandDiscussion

Table3.7

LigandbindingpropertiesofwtandmutantV2vasopressinreceptors expressedinyeast(MPy578q5)

Yeastmembranehomogenateswereincubatedwitheightdifferentconcentrations(0.1-15 nM)oftheV2 3 vasopressinreceptorantagonist,[ H]-SR121463,asdescribedunder“MaterialsandMethods”.K DandBmax valueswerecalculatedfromsaturationbindingcurvesusingtheprogramLIGAND( MunsonandRodbard, 1980).Becauseofthelimitedsupplyoftheradioligand,onlyseveralrepresentativemutantV2receptors couldbeanalyzedin[ 3H]-SR121463bindingstudies.Dataaregivenasmeans +S.E.oftwoorthree independentexperiments,eachcarriedoutinduplicate.

______[3H]-SR121463binding ______

Receptor KD Receptordensity

Bmax ______nM fmol/mg

V2(wt) 8.0+2.5 322+102

V2(Met145Trp) 10.1+0.9 476+164 V2(Met145Leu) 8.5+1.6 363+51

V2(His150Arg,Ser152Arg) 7.2+0.8 318+136 V2(Met145∆,His150Arg,Ser152Arg)7.0+1.4 527+145 V2(Met145∆) 5.4+0.4 592+51

V2(Ile141∆) NDa - V2(Cys142∆) ND - V2(Arg143∆) ND - V2(Pro144∆) ND - ______aND,nodetectablespecific[3H]-SR121463bindingactivity.

145 3.ResultsandDiscussion

V2(Met145∆) + Gq5 A 1200 V2(Met145∆/His150Arg) + Gq5 V2(Met145∆/Ser152Arg) + Gq5 V2 (wt) + Gq5 1000 p416GPD + Gq5 V2 (wt) + Gs5 800 x 1000 600 630 OD 400

200

0 0 -13 -11 -9 -7 -5

B 1000 V2(Met145∆) + Gs5 V2(Met145∆/His150Arg) + Gs5 V2(Met145∆/Ser152Arg) + Gs5 800 V2 (wt) + Gs5 p416GPD + Gs5

600 x 1000 630 400 OD

200

0 0 -13 -11 -9 -7 -5

146 3.ResultsandDiscussion

C 800 V2(Met145∆) + Gpa1p V2(Met145∆/His150Arg) + Gpa1p 600 V2(Met145∆/Ser152Arg) + Gpa1p

x 1000 400 630 OD 200

0 0 -13 -11 -9 -7 -5 AVP, log [M]

Fig.3.26AVP-inducedyeastgrowthmediatedbyMet145 ∆-derivedmutantV2vasopressinreceptors toco-expressedwtandhybridGproteins. Liquidbioassayswerecarriedoutwithyeaststrainsco- expressingtheindicatedMet145 ∆-derivedmutantV2 vasopressinreceptorsandGprotein αsubunits(for Gproteinstructures,seeFig.3.14),asdescribedunder“MaterialsandMethods”. A,CouplingtoGq5.The yeaststrainco-expressingthewtV2receptorandGs5wasincludedasacontrol. B,CouplingtoGs5. C,

CouplingtoGpa1p.Ye astgrowthwasmeasuredbydeterminingtheabsorbanceat630nm(forAVPEC 50 values,seeTable3.6).Resultsfromonerepresentativeexperiment,carriedoutwiththreeindependent transformants,areshown.Dataaregivenasmeans+S.E.Twoadditionalexperimentsgavesimilarresults.

Liquidbioassaysshowedthatallmutantreceptorsthatcontainedthe Met145∆ deletiongainedcouplingtoGq5,ascomparedtothewtreceptor(Figs.3.25A and3.26A;Table3.6).Ontheotherhand,allRM4-basedmutantreceptorsthatlackedthe Met145∆ deletionwereunabletointeractwithGq5(Figs.3.25Aand3.26A ;Table3.6). [3H]-SR121463saturatingbindingstudiesshowedthatthe V2(Met145∆)and V2(Met145∆/His150Arg/Ser152Arg)mutantreceptors(becauseofthelimitedsupplyof the[ 3H]-SR121463radioligand,wecouldonlystudytworepresentativeRM4-based mutantreceptorswhichgainedcouplingtoGq5)wereexpressedatlevelssimilartothose foundwiththewtV2receptor(Table3.7),excludingthepossibilitythatthe

147 3.ResultsandDiscussion

Met145∆ deletionenhancesreceptor/Gq5interactionsduetooverexpressionofthe mutantreceptorprotein. GrowthassaysalsoshowedthatallRM4-basedmutantreceptorsretainedthe abilitytostimulateGs5withhighefficiency,inafashionsimilartothewtV2receptor (Figs.3.25Band3.26B ;Table3.6,center).Likewise,asobservedwiththewtreceptor, mostRM4-basedmutantreceptorsshowedlittleornointeractionwithyeastGpa1p(Figs. 3.25Band3.26C ;Table3.6). Surprisingly,twoRM4-derivedmutantreceptors, V2(Met145∆)andV2(Met145 ∆/Ser152Arg),displayedsubstantialcouplingtoGpa1p

(AVPEC50~200 nM;Emax~40-50%)(Fig.3.26C;Table3.6).Thus,thesetwomutant receptorswereabletointeractwithallthreeGproteinsusedinthepresentstudy. Interestingly,inthepresenceofanadditionalHis150Argpointmutation,the V2(Met145∆)andV2(Met145∆/Ser152Arg)mutantreceptorslosttheabilitytoactivate Gpa1p,butretainedcouplingtoGs5andGq5(Figs.3.25Band3.26C;Table3.6).

3.2.3.8Aminoacidsatthebeginningofthei2looparecriticalforproperfoldingof theV2vasopressinreceptor

Asoutlinedinthepreviousparagraph,deletionofMet145(whichisequivalentto aMet145Leu/Leu146∆ doublemutation)ledtoamutantV2receptorthatdisplayed promiscuousGproteincouplingproperties.Toexaminewhethersimpleshorteningofthe i2loopbyasingleaminoacidmightberesponsibleforthisphenomenon,eightadditional mutantV2receptorsweregeneratedwhichcontainedsingleaminoaciddeletionsat positionsimmediatelyN-terminal(Ile141 ∆,Cys142 ∆,Arg143 ∆,andPro144 ∆)and immediatelyC-terminalofMet145(Leu146 ∆,Ala147∆,Tyr148∆,andArg149 ∆)(Fig. 3.21).LiquidbioassaysindicatedthatthefourmutantreceptorsharboringdeletionsC- terminalofMet145showedessentiallythesamecouplingprofileasthewtV2receptor (Fig.3.27andTable3.6).Ontheotherhand,thefourmutantreceptorslackingsingle aminoacidsN-terminalofMet145werecompletelydevoidoffunctionalactivity.These mutantreceptorswereunabletointeractwitheitherGs5(Fig.3.27),Gq5(Table3.6),or yeastGpa1p(Table3.6).

148 3.ResultsandDiscussion

Westernblottingstudiesshowedthatthefourcoupling-defectivedeletionmutants (Ile141∆,Cys142∆,Arg143∆,andPro144∆)wereexpressedathighlevelsinyeastwhich evenexceededthecorrespondingwtV2receptorlevels(Fig.3.15,lanes1-4).However, incontrasttothewtreceptor,noneofthefourcoupling-defectivemutantreceptorswas abletobindsignificantamountsofthe[ 3H]-SR121463radioligand(Table3.7).Taken together,thesedatastronglysuggestthattheIle141 ∆,Cys142∆,Arg143∆,andPro144∆ deletionsdisruptproperfoldingoftheV2receptorprotein.

1000 V2(Leu146∆) + Gs5 V2(Ala147∆) + Gs5 V2(Tyr148∆) + Gs5 V2(Arg149∆) + Gs5 800 V2 (wt) + Gs5

600

x 1000 V2(Ile141∆) + Gs5

630 V2(Cys142∆) + Gs5 400 V2(Arg143∆) + Gs5 OD V2(Pro144∆) + Gs5

200

0 0 -13 -11 -9 -7 -5 AVP, log [M]

Fig.3.27Effectofsingleaminodeletionsinthei2loopontheabilityoftheV2vasopressinreceptor tocoupletotheGs5hybridGprotein. Liquidbioassayswerecarriedoutwithyeaststrainsco-expressing theindicatedV2 vasopressinreceptordeletionmutantsandthehybridG αsubunit,Gs5(Fig.3.14),as describedunder“MaterialsandMethods”.Yeastgrowthwasmeasuredbydeterminingtheabsorbanceat

630nm(forAVPEC 50values,seeTable3.6).Resultsfromonerepresentativeexperiment,carriedoutwith threeindependent transformants,areshown.Dataaregivenasmeans+S.E.Twoadditionalexperiments gavesimilarresults.

149 3.ResultsandDiscussion

3.2.4Discussion

Tofacilitatestructure-functionrelationshipstudiesoftheV2vasopressinreceptor, thehumanV2receptorwasexpressedinyeaststrainsthatrequiredproductivereceptor/G proteincouplingforgrowth( Pauschetal.,1998;Price etal.,1995,1996).Theyeast strainsthatwereemployedforthesestudiesonlydifferedinthenatureoftheGprotein α subunitthattheyexpressed(Fig.3.14).GrowthassaysshowedthattheV2vasopressin receptor,whichpreferentiallyactivatesG sinmammaliancells(Birnbaumer etal.,1992; Lolaitetal.,1992;Burbach etal.,1995;LiuandWess,1996;Thibonnier etal.,1998), wasunabletocoupletotheendogenousyeastGprotein,Gpa1p,oramutantversionof Gpa1pinwhichthelastfiveaminoacidsofGpa1pwerereplacedwiththecorresponding mammalian Gαqsequence(Gq5).Ontheotherhand,theV2receptorwasableto productivelyinteractwithahybridGpa1p/ αssubunit(Gs5)inwhichthelastfiveamino acidswerederivedfrommammalianG αs(Fig.3.16).Inyeastgrowthassays,V2 receptor/Gs5couplingwascharacterizedbyremarkablyhighagonist(AVP)potency

(EC50~6nM).TheAVPEC 50valuefoundinyeastwasinthesamerangeasAVPEC 50 valuesdeterminedpreviouslyinmammaliansystemsmeasuringV2receptor-mediated stimulationofadenylylcyclase(Birnbaumeretal.,1992;Burbach etal.,1995;Liuand Wess,1996;Innamoratietal.,1996;Yunetal.,2000).

Interestingly,theG q/11-coupledM 1,M 3,andM 5 muscarinicreceptors,when expressedinthesameyeaststrains,wereabletoactivateGq5withmuchhigher efficiency(agonistpotency)thanGs5,thusdisplayingaGprofilecouplingprofilethatis reverseofthatobservedwiththeV2vasopressinreceptor.Theseobservationsindicate thatGPCRsmaintaintheirproperGproteincouplingselectivityinyeast,asstudiedwith yeastGpa1p/mammalianGαhybridGproteins.Itshouldbenotedthattheuseofhybrid Gα subunitsforthestudiesdescribedherewaspromptedbypreviouswork demonstratingthatthelastfiveaminoacidsofmammalianGαsubunitsplayakeyrolein properreceptorrecognition(Conklin etal.,1993;Liu etal.,1995).Mostimportantly, studieswithhybridmammalianGαsubunitshaveshownthatthecharacterofthelastfive

150 3.ResultsandDiscussion

GαresidueslargelydeterminesbywhichclassofGPCRsaspecificGproteincanbe activated(reviewedinWess,1998). ThespecificgoalofthisstudywastoidentifymutantV2receptorsthatwould gaintheabilitytocoupletoGq5,ahybridGproteincontainingC-terminal αqsequence (Fig.3.14).StudieswithV1a/V2hybridreceptorspreviouslyshowed(LiuandWess, 1996)thattheabilityoftheV1avasopressinreceptortopreferentiallyactivateGproteins oftheGqfamilyiscriticallydependentonthestructuralintegrityofthei2loop.Basedon thisobservation,thei2loopoftheV2vasopressinreceptorwassubjectedtorandom mutagenesisinanattempttogenerateandrecovermutantreceptorsthatwouldgain couplingtoGq5intheyeastexpressionsystem. Ayeastgeneticscreenofabout30,000mutantreceptors(thisnumberismorethan sufficienttomutateeveryaminoacidinthei2loopmultipletimes)ledtothe identificationoffourmutantreceptors,RM1-RM4(Table3.5),which,incontrasttothe wtreceptor,showedpronouncedcouplingtoGq5(Fig.3.23).Interestingly,allrecovered mutantreceptorscontainedamutationatposition145,eitheranaminoacidsubstitution (Met145TrporMet145Leu)oradeletion(asdiscussedinmoredetailbelow,a Met145∆ deletionisequivalenttoaMet145Leu/Leu146 ∆ doublemutation).Functional analysisofmutantV2receptorscontainingtheMet145TrporMet145Leuaminoacid replacementsastheonlymutationsshowedthateithersubstitutionwasabletoconferon theV2receptortheabilitytointeractwithGq5(Fig.3.24A,Table3.6).Ontheother hand,thisactivitywasnotobservedafterreplacementofMet145with glycineoralanine. Thesedatasuggestthatthepresenceofarelativelylargehydrophobicaminoacidside chainatposition145favorsrecognitionoftheC-terminusof Gαq.Thisconclusion appearstobeinconsistentwithourobservationthatmutantV2receptorsinwhich Met145wasdeletedalsogainedcouplingtoGq5.However,asshowninFig.3.21, Met145isimmediatelyfollowedbya leucineresidue(Leu146)inthewtV2receptor sequence.Asaresult,deletionofMet145inthewtreceptorcorrespondstoaMet145Leu substitution(whichpromotesinteractionwithGq5),combinedwithaLeu146 ∆deletion whichdoesnotdisruptV2receptorfunction(seebelow;Fig.3.27,Table3.6). Similarly, theRM4mutantreceptorwhichlacksMet145andcontainsaLeu146Trpsubstitution

151 3.ResultsandDiscussion

(besidestwoadditionalpointmutations;Table3.5)isequivalenttoamutantV2receptor carryingaMet145Trpsubstitution(which,asdiscussedabove,promotescouplingto Gq5)andaLeu146 ∆deletion(whichdoesnotinterferewithV2receptorfunction;Fig. 3.27,Table3.6).

WhereastheV2vasopressinreceptorispreferentiallylinkedtoGs(Birnbaumeret al.,1992;Lolaitetal.,1992;Burbachetal.,1995;LiuandWess,1996;Thibonnieretal., 1998),allothermembersofthevasopressin/ oxytocinreceptorfamily(oxytocinandV1a andV1bvasopressinreceptors)areselectivelycoupledtoG q/11(Burbachetal.,1995;Liu andWess,1996;Thibonnier etal.,1998). Interestingly,consistentwiththeobservation thataMet145LeusubstitutionallowsmutantV2receptorstointeractwithGq5,aleucine residueispresentinthe oxytocinandV1aandV1bvasopressinreceptorsattheposition correspondingtoMet145intheV2receptor( Burbachetal.,1995,Liuand Wess,1996; shownfortheV1areceptorinFig.3.21). Takentogether,theaboveobservationsstronglysupporttheconceptthatthe presenceofaleucineor tryptophanresidueatpositionMet145intheV2receptor

facilitatesrecognitionoftheC-terminusof Gαq.Onepossiblescenarioisthatthese

relativelylargehydrophobicresiduescandirectlycontacttheC-terminusofG αqwhich, liketheC-terminiofother Gα subunits,containaclusterofhydrophobicaminoacids predictedtobeinvolvedinreceptorrecognition( Conklinand Bourne,1993;Rens- DomianoandHamm,1995; Wess,1998).Consistentwiththisconcept,co-expression

studieswithhybridM 2/M3muscarinicreceptorsandhybrid αs/αqGproteinssuggested

thatresidueswithinthei2loopoftheG q/11-coupledM 3 muscarinicreceptormay

participateininteractionswiththeC-terminusofG αq(Kostenisetal.,1997c).However, itislikelythatadditionalaminoacidslocatedonreceptordomainsotherthanthei2loop, suchastheC-terminalportionofthei3loopandtheadjacent cytoplasmicendofTMVI, canalsocontactC-terminalGαresidues(Liuetal.,1995;Kostenisetal.,1997a;Acharya etal.,1997). AsequencecomparisonshowsthatmostGPCRsoftherhodopsinfamilycontain arelativelybulky lipophilicaminoacid(primarily leucine,isoleucine,phenylalanine,or valine)atthepositioncorrespondingtoMet145intheV2 vasopressinreceptor(Moroet

152 3.ResultsandDiscussion al.,1993;WatsonandArkinstall,1994).Replacementofthisaminoacidwithhydrophilic aminoacidsoralanineintheM 1andM 3muscarinicreceptors(coupledtoG q/11;Moroet al.,1993),the β2-adrenergicreceptor(coupledtoG s;Moro etal.,1993),theGnRH receptor(coupledtoG q/11;Aroraetal.,1995),ortheH2histaminereceptor(coupledto

Gs;Smitetal.,1996)showedthattheresultingmutantreceptorsweregreatlyimpairedin theirabilitytoactivateGproteins.Theseloss-of-functionmutagenesisdatasuggested thatthetargetedi2loopresidueisgenerallyimportantforproductivereceptor/Gprotein coupling(Moroetal.,1993;Aroraetal.,1995;Smitetal.,1996).Themutagenesisdata presentedinthisstudyhoweverindicatethatsubstitutionofMet145withsmallamino acidssuchas alanineorglycinedoesnotinterruptGproteincouplingingeneral,as demonstratedbytheabilityoftheresultingmutantV2receptorstoproductivelyinteract withGs5(Fig.3.24).Importantly,thegain-of-functiondatasuggestthattheprecise chemicalnatureoftheaminoacidpresentatposition145(V2receptorsequence)playsa keyroleinregulatingreceptor/Gproteincouplingselectivity. Thehigh-resolutionX-raystructureofbovinerhodopsinindicatesthatthei2loop exhibitsanL-likestructurewhenviewedparalleltothemembraneplanebutlacksregular secondarystructure(Palczewski etal.,2000).Liketheotherintracellularloops,thei2 loopdoesnotfoldovertheareadefinedbytheintracellularendsofTMI-VII (Palczewskietal.,2000)(seeFig.1.3B).Sincethecytoplasmic extensionofTMIIIand theN-terminalsegmentofthei2loopshowconsiderablesequencehomologyamong GPCRsofthe rhodopsinfamily( Moroetal.,1993;WatsonandArkinstall ,1994;Fig. 3.21),itislikelythatthei2loopoftheV2receptoradoptsastructuresimilartothat observedin rhodopsin(Fig.3.28).Ifthisassumptioniscorrect,Met145(highlightedin magentainFig.3.28)ispredictedtobelocatedjustN-terminalofthebendoftheL-like structurethatisacharacteristicfeatureofthei2loop(Palczewskietal.,2000),whereitis easilyaccessibleforinteractionswithGproteins. Interestingly,the V2(Met145∆)andV2(Met145∆/Ser152Arg)mutantreceptors didnotonlygaincouplingtoGq5butwerealsoabletointeractwithyeastGpa1p(Fig. 3.26C,Table3.6).However,couplingofthesetwomutantreceptorstoGpa1pcouldbe

153 3.ResultsandDiscussion

Fig.3.28Modelofthethree-dimensionalstructureofthei2loopoftheV2vasopressinreceptor. The structuredepictedhereisbasedonthehighresolutionX-raystructureofbovine rhodopsin(Palczewskiet al.,2000).Theintracellularreceptorsurfaceisviewedfromthecytoplasm.Met145(highlightedin magenta)ispredictedtobelocatedclosetothebendoftheL-likestructurethatisacharacteristicfeatureof thei2loopinbovine rhodopsin(Palczewski etal.,2000).Deletionofanyoftheresidueshighlightedin lightblue(Ile141-Pro144)completelyabolishedV2receptorfunction,probablybyinterferingwithproper receptorfolding.Ontheotherhand,deletionofanyoftheresidueshighlightedinyellow(Leu146-Arg149) hadnoeffectontheGproteincouplingpropertiesoftheV2receptor.

selectivelydisruptedbyanadditionalHis150Argpointmutation(Figs.3.25Band3.26C, Table3.6).Thisfindingfurtherhighlightsthefactthatminorchangesinthestructureof thei2loopcanleadtopronouncedchangesintheGproteincouplingprofileoftheV2 vasopressinreceptorandprobablyotherGPCRs. PromptedbytheobservationthattheMet145 ∆deletion(whichisidenticalwitha Met145Leu/Leu146∆doublemutation)hadprofoundeffectsonthefunctionalproperties oftheV2receptor,theGproteincouplingpropertiesofadditionalmutantreceptors, whichlackedsingleaminoacidsimmediatelyN-terminalorC-terminalofMet145,was

154 3.ResultsandDiscussion studied.ItwasfoundthatdeletionofsingleaminoacidsimmediatelyN-terminalof Met145(Ile141 ∆,Cys142 ∆,Arg143 ∆,orPro144 ∆)resultedin misfoldedreceptor proteinsthatwereunabletobindligandsandtocoupletoGproteins(Tables3.6and3.7). Fig.3.28showsthataminoacidsIle141-Pro144arepredictedtobelocatedatthevery beginningofthei2loopstructure,justadjacenttothecytoplasmicextensionofTMIII whichalsocontainsthehighlyconservedDRY(H)motif(Fig.3.21).Onepossibility thereforeisthatresidueswithintheIle141-Pro144segmentareincontactwiththe adjacentcytoplasmicendsofTMIIIand/orTMV,thusstabilizingtheproper arrangementofthe transmembranereceptorcore.However,thepossibilitycannotbe ruledoutthatdeletionsatthebeginningofthei2loopcausemajorstructural rearrangementsoftheentirei2loopwhichmaydisruptproperreceptorfoldingby mechanismsthataredifficulttopredict.Ontheotherhand,deletionofsingleaminoacids locatedC-terminalofMet145(Leu146 ∆,Ala147 ∆,Tyr148 ∆,orArg149 ∆)didnot interferewithproperV2receptorfoldingandfunction(Fig.3.27,Table3.6).These residuesarelocatedwithinthecentralportionofthei2loop(Fig.3.28)andaretherefore unlikelytobeinvolvedincontactswiththetransmembranereceptorcore. Itshouldbenotedthatallmutantreceptorsanalyzedinthisstudy(exceptforthe Leu146∆,Ala147∆,Tyr148∆,andArg149 ∆deletionmutantswhichwerecompletely devoidoffunctionalactivity)retainedhighlyefficientcouplingtoGs5,inafashion similartothewtreceptor(rangeofAVPEC 50values:~1-8 nM;Table3.6).This observationisconsistentwithpreviousfindings(LiuandWess,1996)thatreplacementof thei2loopoftheV2vasopressinreceptorwiththecorrespondingV1avasopressinorSS4 somatostatinreceptorsequences(theSS4receptorispreferentiallylinkedtoG i-type proteins)hadlittleeffectontheabilityoftheV2receptortoproductivelyinteractwithGs. Asshowninthefirstpartofthisthesis,efficientcouplingoftheV2vasopressinreceptor toGsisdeterminedprimarilybysequenceelementswithinthei3loopandthemembrane- proximalportionoftheC-terminaltail. TheabilityofessentiallyallanalyzedmutantV2 receptorstoactivateGs5withsimilarlyhighefficiency(AVPpotency)providesa suitableinternalcontrolindicatingthatthelackofcouplingtoGq5displayedbymanyof

155 3.ResultsandDiscussion themutantreceptorsanalyzedinthisstudywasnotduetogenerallyimpairedGprotein coupling. Tworecentstudies(Baranski etal.,1999;Geva etal.,2000)haveapplieda strategysimilartothatdescribedheretoidentifyaminoacidsthatareessentialforthe properfunctionofthechemoattractantC5areceptor,anothermemberoftherhodopsin familyofGPCRs.Inthesestudies,transmembranedomainsoftheC5areceptorwere subjectedtorandom mutagenesisfollowedbyayeastgeneticscreenthatallowedthe isolationoffunctionalmutantreceptors.Sequenceanalysisoftherecoveredmutant receptorssuggestedpossiblemolecularmechanismsinvolvedinGPCRactivation (Baranskietal.,1999)andtheexistenceofapotentialreceptor oligomerizationdomain (Gevaetal.,2000). Inconclusion,theresultspresentedinthisstudyindicatethatreceptorrandom mutagenesis,complementedwithyeastexpressiontechnology,representsapowerfulnew approachtostudythemolecularbasisunderlyingreceptor/Gproteincouplingselectivity. Theapproachdescribedhere,whichisapplicabletootherreceptorregionsandother classesofGPCRs,shouldeventuallyprovideamorecomprehensivepictureofthe structuralelementsregulatingtheselectivityofreceptor/Gproteininteractions.

156 4.Summary 4.Summary

Gprotein-coupledreceptors(GPCRs)representoneofthelargestproteinfamilies foundinnature(Watsonand Arkinstall,1994).GPCRsarecellsurfacereceptors,which interactwithcellular effectorsystemsviaheterotrimericGproteinstoactivateawide rangeofsignaltransductionpathways. Despitethestructuraldiversityoftheiractivating ligands(Schwartz,1994),most GPCRsinteractonlywithalimitedsetofthemanystructurallysimilarGproteins expressedwithinacell(Hedinetal.,1993;ConklinandBourne,1993).Elucidatinghow thisreceptor/Gproteincouplingselectivityisachievedatamolecularlevelisof fundamentalimportanceforunderstandingcellularsignaltransduction. Structure-functionanalysisofdifferentclassesofbiogenicamine GPCRs, includingthemuscarinicacetylcholine(Wess,1996)andadrenergic receptors(Dohlman etal.,1991;Savarese andFraser ,1992;Strader etal.,1994),hasledtoconsiderable insightintothestructuralelementsthatcontroltheGproteincouplingselectivityofthis classofreceptors.Incontrast,themolecularmechanismsgoverningthecoupling selectivityofGPCRsactivatedbypeptideligandsarenotwellunderstoodatpresent. Thus,thegoalofthisthesiswastoelucidatethestructuralelementsregulatingthe GproteincouplingpreferenceofpeptideGPCRs.Thevasopressinreceptorfamilydiffers fromvirtuallyallotherpeptidereceptorsubfamiliesinthatitsindividualmembersclearly differintheirGproteincouplingprofile.WhereastheV1aandV1breceptorsare selectivelycoupledtoGproteinsoftheGq/11class,thusstimulatingphospholipaseCβ,the

V2receptorpreferentiallyinteractswiththeGproteinG s,resultingintheactivationof adenylylcyclase(Birnbaumer etal.,1992;Moreletal.,1992;Thibonnieretal.,1994). Therefore,thevasopressinreceptorsubtypesconstituteanattractivemodelsystemto studypeptidereceptordomainsthatarecriticalforGproteinrecognition. TakingadvantageofthedifferentcouplingpreferencesoftheV1aandV2 vasopressinreceptorsubtypes,thefocusofthisthesiswastousetheV2vasopressin receptorasamodelsystemtoexplorethestructuralbasisunderlyingpeptidereceptor/G proteincouplingselectivity,employingclassical mutagenesisstrategiesandyeast expressiontechnology.

158 4.Summary

4.1MolecularbasisofV2vasopressinreceptor/Gscouplingselectivity

Aformerstudy(LiuandWess,1996)foundthatefficientcouplingtoG q/11bythe wildtype(wt)V1aorhybridV1a/V2receptorswascriticallydependentonthepresence ofV1areceptorsequenceinthesecondintracellular(i2)loop,whereasefficient recognitionofG sbythewtV2receptororV1a/V2mutantreceptorsrequiredthe presenceofV2receptorsequenceinthethirdintracellular(i3)loop.Toexplorethe structuralelementsunderlyingtheabilityoftheV2receptortoselectivelyrecognizeGsin greaterdetail,again-of-functionmutagenesisapproachwasemployed.DistinctV2 receptorsegments(orsingleaminoacids)weresubstitutedintotheV1areceptorandthe resultinghybridreceptorswerestudiedfortheirabilitytogaincouplingtohormone- dependentcAMPproduction.Thisstrategyappearedparticularlyattractivesince hormonestimulationoftheV1areceptorhasvirtuallynoeffectonintracellular cAMP levels. Asmentionedabove,thei3loopoftheV2receptorplaysakeyroleinselective recognitionofG s.However,themaximalresponsemediatedbyamutantV1areceptor, containingV2receptorsequenceinitsi3loop,wassmallerthanthatobservedwiththewt

V2receptor,suggestingthatotherV2receptordomainsarealsocriticalforoptimalG s couplingefficiency(LiuandWess,1996).Basedonthisobservation,aseriesofV1a/V2 chimericreceptorswascreatedtoexaminethecontributionofthesecondandfourth intracellularV2receptordomainstoV2receptor/G scouplingselectivity.Functional analysisofthevarioushybridreceptorstransientlyexpressedinmammaliancells(COS- 7)indicatedthatashortsequenceattheN-terminusofthecytoplasmictailmakesan importantcontributiontoV2receptor/Gscouplingselectivity.AmutantV1areceptorthat containedV2receptorsequenceinbothitsi3loopandtheN-terminalsegmentofthe cytoplasmictailshowedafunctionalprofileverysimilartothewtV2receptor. Next,structuralelementswithinthei3loopcriticalforV2receptor-mediated activationofG swerestudiedinmoredetail.Functionalanalysisrevealedthatthemajor structuraldeterminantsregulatingV2receptor/G scouplingselectivityarecontained withintheN-terminusofthei3loop.AseriesofmutantV1areceptorswerecreatedin

159 4.Summary

whichshortsegmentsintheN-terminusofthei3loopwerereplacedwithcorresponding V2receptorsequence.Functionalanalysisofthesemutantreceptorsshowedthatan aminoacidpair(Gln225,Val226)andtriplet(Phe229,Arg230,Glu231)attheN-

terminusofthei3loopoftheV2receptormakeimportantcontributionstoG scoupling efficiency.Moredetailedmutationalanalysisofthisreceptorregionidentifiedtwopolar

V2receptorresidues,Gln225andGlu231,thatplaykeyrolesinG srecognition.Studies withotherclassesofGPCRs(Dohlmanetal.,1991;SavareseandFraser,1992;Straderet al.,1994;Wess,1996)havealsodemonstratedthattheN-terminusofthei3loop contributestoregulatingreceptor/Gproteincouplingselectivity.Thesestudiesreported theinvolvementofprimarilyhydrophobicornonchargedresiduesinproperGprotein recognition.Interestingly,thefunctionallycriticalV2receptorresidues,Gln225and Glu231,arehighlypolarandcharged,indicatingthatreceptor/Gproteincoupling selectivityisnotlimitedtohydrophobiccontacts. Interestingly,additionalmutagenesisstudiesshowedthattheefficiencyofV2 receptor/Gscouplingcanalsobemodulatedbythelengthofthecentralportionofthei3 loop(ratherthanthespecificaminoacidsequencewithinthisdomain).Thei3loopsof theV1aandV2receptorsdifferinlengthby13aminoacids.AmutantV1areceptorthat containsV2receptorsequenceattheN-terminusofthei3loopgainedefficientcoupling

toG ssimplybyshorteningthecentralportionofthei3loopbyelevenaminoacids. Likewise,whenthecentralportionofthei3loopofhybridV1a/V2receptors,which

recognizedGswithhighefficiency,wasextendedinlength,theresultinghybridreceptors

displayedapronouncedlossinGscoupling. Takentogether,theseresultssuggestthatthecentralportionofthei3loop, althoughpredictednottobedirectlyinvolvedinreceptor/Gproteininteractions,can modulatereceptor/GproteincouplingselectivitybyregulatingGproteinaccess( e.g.via sterichindrance)tofunctionallyimportantrecognitionsitesonthereceptorprotein(such astheTMV/i3loopjunction).

160 4.Summary

4.2SingleaminoacidsubstitutionsanddeletionsthataltertheGproteincoupling propertiesoftheV2 vasopressinreceptoridentifiedinyeastbyreceptorrandom mutagenesis

Tofacilitatestructure-functionrelationshipstudiesoftheV2vasopressinreceptor andovercomethelimitationsofclassicalmutagenesisstrategies,yeastexpression technologywasemployed.TheV2receptorandvarious chimericyeast/mammalianGα proteinswereco-expressedingeneticallyengineeredyeaststrainswhichrequired ligand- activatedreceptor/Gproteincouplingforcellgrowth( Pausch etal.,1998). Inthis system,productivereceptor/GproteincouplingtriggerstheactivationoftheyeastMAP kinase/pheromonepathway.Thiseventuallyleadstotranscriptionofthe FUS1-HIS3 reportergeneandtheexpressionofHis3p,allowinggrowthofthe auxotrophic(his3) yeaststrainsonhistidine-deficientmedia. HeterologouslyexpressedV2receptorswere unabletoproductivelyinteractwiththeendogenousyeastGproteinαsubunit,Gpa1p,or amutantGpa1p subunitcontainingC-terminalGαqsequence(Gq5).Incontrast,theV2 receptorefficientlycoupledtoaGpa1p/G αshybrid subunitcontainingC-terminalG αs sequence(Gs5),indicatingthattheV2receptorretainedproperGproteincoupling selectivityinyeast.StudieswiththethreeG q/11-coupledmuscarinicreceptors(M 1,M 3, andM5)andanumberofmutantvasopressinandM 3 muscarinicreceptorswithaltered functionalpropertiesshowedthatwtandmutantGPCRsdisplayedsimilarphenotypesin yeastandmammaliancells.

TounderstandwhytheV2receptordoesnotcoupletoGproteinsoftheGq/11class efficiently,randommutagenesistechniqueswereappliedtorecovermutantV2receptors withalteredGproteincouplingproperties.Inthisstudy,thei2loopwastargetfor mutagenesissincethisdomainhadbeenshowntobecriticalforactivationofG q/11bythe V1areceptor(LiuandWess,1996).Receptorsaturationrandommutagenesisgenerateda yeastlibraryexpressingmutantV2receptorscontainingmutationswithinthei2loop (mutagenesisrate:about10%atthenucleotidelevel).Asubsequentyeastgeneticscreen ofabout30,000mutantreceptorsyieldedfourmutantreceptorswhich,incontrasttothe wtreceptor,showedsubstantialcouplingtoGq5(butdidnotcoupletoyeastGpa1).

161 4.Summary

Functionalanalysisofthesemutantreceptors,followedbymoredetailedsite-directed mutagenesisstudies,indicatedthatsingleaminoacidsubstitutionsatpositionMet145in thecentralportionofthei2loopoftheV2receptorhadpronouncedeffectsonreceptor/G proteincouplingselectivity.TheabilityoftheV2receptortoproductivelyinteractwith theGq5proteinwaslargelydependentonthepresenceofarelativelyspacious hydrophobicaminoacidsuchas leucineor tryptophaneatthisposition.Substitutionof Met145withsmallaminoacidssuchasglycineor alaninepreventedV2receptor/Gq5 interactions.Interestingly,allmutantV2receptorscarryingMet145singlepoint mutationsstimulatedtheGs5proteintothesameextentasthewtV2receptor,indicating thatthelackofGq5interactionsobservedwiththeMet145GlyandMet145Alamutant V2receptorswasnotduetoafoldingdeficitofthemutantreceptorproteins.Likewise, theabilityofthe V2(Met145Leu)andV2(Met145Trp)receptorstogainsignificant couplingtoGq5wasnotduetooverexpressionofreceptorproteins,asindicatedby radioligandbindingstudies.Takentogether,theseresultssuggestthattheprecise chemicalnatureoftheaminoacidatposition145playsakeyroleinregulatingV2 receptor/Gproteincouplingselectivity.Interestingly,allothermembersofthe vasopressin/oxytocinreceptorfamily(oxytocin,V1aandV1breceptors),whichare selectivelycoupledtoGproteinsoftheG q/11class,containaleucineresidueatthe positionthatcorrespondstoMet145intheV2receptor. OneofthemutantV2receptors,whichwererecoveredfromtheinitialscreen, containedaMet145 ∆deletion,amongseveralothermutations.Interestingly,more detailedsite-directedmutagenesisstudiesyieldedtwomutant vasopressinreceptors, V2(Met145∆)andV2(Met145 ∆/Ser152Arg)thatwereabletoactivateallthreeG proteinsusedinthisstudy.Toexaminewhethershorteningofthei2loopbyasingle aminoacidgenerallyresultsinreceptor/Gproteincouplingpromiscuity,additional mutantreceptorswerecreatedwhichlackedsingleaminoacidsimmediatelyN-terminal orC-terminalofMet145.Functionalanalysisrevealedthatdeletionofsingleaminoacids N-terminalofMet145(Ile141∆,Cys142∆,Arg143∆,orPro144∆)resultedinmutantV2 receptorsthatlackedtheabilitytocoupletoGproteins.Inaddition,radioligandbinding studiesshowedthatthesecoupling-defectivemutantreceptorswereunabletobindV2

162 4.Summary receptorligands,indicatingthatdeletionofsingleaminoacidsimmediatelyN-terminalof Met145resultedinmisfoldedreceptorproteins.AminoacidsIle141-Pro144arepredicted tobelocatedattheverybeginningofthei2loopstructure,justadjacenttothe cytoplasmicextensionofTMIIIwhichalsocontainsthehighlyconserved DRY(H)- motif.ItisconceivablethatresidueswithinthisIle141-Pro144segmentareincontact withcytoplasmicendsofTMIIIand/orTMV,thusstabilizingtheproperarrangementof the transmembranereceptorcore.Therefore,deletionsofsingleresidueswithinthis stretchofaminoacidsmaydestabilizethereceptorstructureanddisruptproperreceptor folding.Incontrast,deletionsofsingleaminoacidslocatedimmediatelyC-terminalof Met145(Leu146∆,Ala147 ∆,Tyr148 ∆,orArg149 ∆)hadnoeffectonV2receptor function.Theseresiduesarelocatedwithinthecentralportionofthei2loopandare thereforeunlikelytobeinvolvedincontactswiththetransmembranereceptorcore.

4.3Conclusion

Inconclusion,thestructuralelementsgoverningV2vasopressinpeptide receptor/Gscouplingselectivitywerestudiedinmoleculardetail.V2receptorcoupling selectivitywasfoundtodependonseveraldifferentstructuralfeatures,someofwhich hadnotbeenobservedpreviouslyinstudieswithotherclassesofGPCRs.Also,the usefulnessofcombiningreceptorrandom mutagenesisandyeastexpressiontechnology tostudymechanismsgoverningreceptor/Gproteincouplingselectivityandreceptor foldingcouldbedemonstrated.Thefunctionalapproachesdescribedinthisthesis, combinedwiththeapplicationofbiophysicaltechniquessuchasNMRandX-ray crystallography,shouldeventuallyleadtoamorecomprehensivepictureofthestructural elementsregulatingtheselectivityofreceptor/Gproteininteractions. ThefindingsobtainedwiththeV2vasopressinreceptorhighlightthediversityof mechanismsbywhichreceptor/Gproteincouplingselectivitycanbeachieved.Giventhe highstructuralhomologyfoundamongallGPCRs,theseresultsshouldbeofgeneral importancefortheentireGPCR superfamily.Detailedinformationaboutthestructural mechanismsinvolvedinreceptor/Gproteincouplingshouldeventuallyleadtonovel

163 4.Summary therapeuticstrategiesaimedatinhibitingorenhancingspecificGPCRsignaling pathways.

164 5.Zusammenfassung 5.Zusammenfassung

G-Protein-gekoppelteRezeptoren(GPCRs)stelleneine dergrößtenin derNatur vorkommendenProteinfamilien dar(WatsonandArkinstall,1994). GPCRs sind plasmamembranständigeProteine,diemitheterotrimärenG- Proteineninteragierenund eineVielzahlanSignaltransduktionswegenaktivieren. TrotzderstrukturellenVielfaltderan GPCRsangreifendenLigandenstimulieren die meisten GPCRs nur einebegrenzteAnzahl strukturellsehr ähnlicherG-Proteine (Hedin etal. ,1993;ConklinandBourne,1993).Die Aufklärungder molekularen Mechanismen,die dieserRezeptor/G-Protein-Kopplungsselektivitätzugrundeliegen,ist vonfundamentalerWichtigkeitfürdasVerständniszellulärerSignaltransduktion. Ausführliche Struktur-Funktionsanalysen verschiedenerNeurotransmitter- rezeptoren, einschließlich derMuskarinrezeptoren( Wess,1996)und adrenergen Rezeptoren(Dohlmanetal. ,1991;Savareseand Fraser,1992; Straderetal. ,1994), habeneinenbeträchtlichenBeitragzurIdentifizierungderstrukturellenElemente,diefür dieG-Protein-KopplungsselektivitätdieserRezeptorgruppeverantwortlichsind,geleistet. ImGegensatz dazuist bishernoch weitgehendungeklärt, welchemolekularen MechanismenderKopplungsselektivitätvonGPCRs,diedurchPeptidligandenaktiviert werden,zugrundeliegen. Das Zieldieser Arbeitwardaher, molekulareGrundlagenderG-Protein- Kopplungsselektivitätvon Peptid-GPCRsnäher zu untersuchen undaufzuklären.Die Vasopressinrezeptorfamilieunterscheidetsichvonnahezu allenanderenPeptid-GPCRs darin, daßdieeinzelnen Rezeptorsubtypen deutlichunterschiedlicheG-Protein- Kopplungspräferenzenaufweisen.DieV1a-undV1b-Vasopressinrezeptorenstimulieren selektivG- Proteine derG q/11-Familie,was zur Aktivierung von Phospholipase-Cβ Isomerenführt.ImGegensatzdazukoppeltderV2-Vasopressinrezeptorvornehmlichan dasG-ProteinGs,wasineinemAnstieganintrazelluläremcAMPresultiert.Daherstellen dieVasopressinrezeptorsubtypeneinattraktivesModellsystemzumStudiumderPeptid- GPCR-Rezeptordomänen,die fürdieselektiveG-Protein-Aktivierungverantwortlich sind,dar.AlsModellsystemfürdieseArbeitdienteprimärderV2-Vasopressinrezeptor.

166 5.Zusammenfassung

5.1Molekulare Faktoren,diedie G s - Kopplungsselektivität desV2- Vasopressinrezeptorsbestimmen.

Einefrühere Studiezeigte,daßdieGegenwart derV1a-Rezeptorsequenzin der zweitenintrazellulären(i2) Schleifenotwendigwar,umden WildtypV1aundV1a/V2-

RezeptorchimäreneffizientanGq/11-Proteinezukoppeln(LiuandWess,1996).Effiziente InteraktionenzwischenWildtypV2oderV1a/V2-Rezeptorchimären unddemG-Protein

G s waren hingegen hauptsächlichvonV2-Rezeptorsequenzenin derdritten intrazellulären(i3) Schleifeabhängig.Umdiemolekularen Grundlagen derG s- KopplungsselektivitätdesV2-Rezeptorsnäher zuuntersuchen, wurdenzunächst klassischeMutagenesetechniken(“ zielgerichteteMutagenese”)angewandt. Definierte V2-Rezeptorsegmente(odereinzelne Aminosäuren) wurdenindenV1a-Rezeptor transferiert,unddieresultierendenHybrid-Vasopressinrezeptoren wurdenanschließend infunktionellenStudien aufihreFähigkeit, hormonabhängigintrazellulärecAMP-

Konzentrationenzu steigern(Gs-vermittelt),getestet.Diese Strategieschien besonders geeignet,dadieAktivierungdesV1a-WildtyprezeptorsnahezukeineAuswirkungenauf intrazellulärecAMP-Spiegelhat.

Wie bereitserwähnt,istdie effizienteKopplung desV2-RezeptorsandasG s- Proteinvornehmlich vonV2-Rezeptorsequenzeninderi3-Schleifeabhängig(Liuand Wess,1996).EineV1a-Rezeptormutante, dereni3-Schleife durchdiehomologeV2-

Rezeptorsequenzersetztwordenwar,warinderLage, effizientmitG szuinteragieren.

DieFähigkeitdieser Rezeptormutante,Gszuaktivieren,warjedochimVergleich zum V2-Wildtyprezeptorvermindert.DieseBeobachtungließdie Vermutungzu, daß noch andereintrazelluläreV2-RezeptordomänenzuroptimalenGs-Kopplungnotwendigsind. Daherwurde zunächsteine ReihevonV1a/V2-Rezeptorchimärenerzeugt,dieden Beitrag der zweiten(i2)und vierten intrazellulären(i4)RezeptordomänezurV2-

Rezeptor/Gs-Kopplungsselektivitätklärensollten.Funktionelle Untersuchungen der resultierendenHybrid-Rezeptormutantenin Säugetierzellen(COS-7)zeigten,daß ein kurzesSegmentimN-terminalenAbschnittderi4-DomäneeinendeutlichenBeitragzur

V2-Rezeptor/Gs-Kopplungsselektivitätleistet.EineV1a-Rezeptormutante,welcheinder

167 5.Zusammenfassung i3-Schleife und demN-terminalenSegmentderi4-Domäne(Ni4) homologeV2-

Rezeptorsequenzenenthielt,zeigteeinfunktionellesProfil(EC50undEmax),welchesmit demV2-Wildtyprezeptornahezudeckungsgleichwar. Anschließend wurden strukturelle Elemente innerhalb deri3-Schleifenäher untersucht.FunktionelleAnalysenzeigten,daßderN-terminaleAbschnittderi3-Schleife weitgehenddasG-Protein-KopplungsprofildesV2-Rezeptorsbestimmt.EineReihevon V1a-Rezeptormutantenwurde erzeugt,indenen kurze Segmente desN-terminalen Bereichs deri3-Schleifemit der entsprechendenV2-Rezeptorsequenzausgetauscht wurden. FunktionelleUntersuchungenergaben,daß ein Aminosäurepaar(Gln225, Val226)und-triplet(Phe229, Arg230,Glu231)amBeginn deri3-SchleifedesV2-

Rezeptorsfürdie effizienteAktivierung vonG svon entscheidenderBedeutung sind. DurchPunktmutationenindiesem Bereichwurden zweipolare Aminosäuren,Gln225 undGlu231, identifiziert,diefürdie effizienteV2-Rezeptor/G s-Interaktionessentiell sind.UntersuchungenmitanderenGPCR-Klassen(Dohlman etal.,1991;Savareseand Fraser,1992;Strader etal.,1994;Wess,1996)haben ebenfallsgezeigt, daßdemN- Terminusderi3-Schleifeeine besondereRolleimRezeptor/G-Protein-Kopplungsprozeß zukommt.IndiesenStudienwirdberichtet,daßvornehmlichhydrophobeundungeladene Aminosäuren Schlüsselrollenin derrezeptorvermitteltenG-Protein- Aktivierung einnehmen.Die hierbeschriebenen Untersuchungenhingegen ergaben,daß zwei polare/geladeneAminosäuren,Gln225 undGlu231, fürdieV2-Rezeptor/G s-Kopplung von besonderer Wichtigkeitsind und zeigen daher,daßdieRezeptor/G-Protein- KopplungsselektivitätnichtaufausschließlichhydrophobenWechselwirkungenberuht. Desweiteren konnte beobachtetwerden,daßdie Längederi3-Schleifedie

Effizienz,mit der derV2-RezeptorG- Proteine derG s-Klassezu aktivierenvermag, beeinflußen kann.DieV1a-undV2-Rezeptorenweisenunterschiedlich langei3- Schleifenauf(diei3-SchleifedesV2-Rezeptorsist13 Aminosäurenkürzeralsdie des V1a-Rezeptors). EineV1a-Rezeptormutante, derenN-terminaler Abschnitt deri3- SchleifedurchhomologeV2-Rezeptorsequenz ersetztwurde,konnte deutlicheffizienter mitG sinteragieren, wenn dermittlere Abschnittderi3-Schleifeumelf Aminosäuren verkürztwurde.Gleichermaßenkonntedieeffiziente Kopplung bestimmterV1a/V2-

168 5.Zusammenfassung

HybridrezeptorenanG sdurchEinfügenvonelf Aminosäureninden zentralenBereich deri3-Schleifedeutlichgehemmtwerden. Diese Ergebnisse legen nahe,daß der zentrale Bereich deri3-Schleifedie Rezeptor/G-Protein-Kopplungsselektivität beeinflussen kann,obgleich diese RezeptordomänevermutlichnichtdirektmitdemG-Proteininteragiert.Es istdenkbar, daßdie Länge deri3-Schleifeden Zugang desG-Proteinszufunktionell wichtigen Rezeptordomänen,z.B.AminosäurenimBereichderfünftenTransmembrandomäne(TM V)undderi3-Schleife,reguliert.

5.2IdentifizierungeinzelnerAminosäuresubstitutionenundAminosäuredeletionen, diedieG-Protein-KopplungsselektivitätdesV2-Rezeptorsbeeinflussen:Einsatzvon Hefeexpressionstechnologie undzufallsgerichteter Mutagenese(“random mutagenesis”)

ImzweitenTeil dieserArbeitwurden Hefe-(Saccharomycescerevisiae)- Expressionstechnologienangewandt,umStruktur-FunktionsanalysendesV2-Rezeptors zuerleichternundBeschränkungenklassischerMutagenesetechnikenzuüberwinden.Der V2-WildtyprezeptorundverschiedeneG-ProteinchimärenausHefe-und Säugetier-Gα- Untereinheitenwurdeningenetisch modifiziertenHefelinien,derenZellwachstum von effizienterRezeptor/G-Protein-Kopplungabhängigwar,co-exprimiert.IndiesemSystem aktiviertproduktiveRezeptor/G-Protein-Kopplungden Hefe-MAP-Kinase/Pheromon- Signaltransduktionsweg.DiesführtzurTranskriptiondesFUS1-HIS3-Reportergensund somitzurExpressionvonHis3-Protein,wasden Histidin-auxotrophen(his3)Hefelinien ermöglicht,in histidinfreiemMedium zuwachsen(Pausch etal. ,1998).Eskonnte gezeigtwerden,daßheterologexprimierteV2-RezeptorenwedermitderHefe-G-Protein- α-Untereinheit(Gpa1p)nochmiteinemmutiertenGpa1-Protein,indemdieC-terminalen fünfAminosäurengegen homologeGαq-Sequenzausgetauschtworden waren(Gq5), effizientinteragierten.ImGegensatzdazuerwiessichdieInteraktionzwischendemV2- Rezeptorund einemmutiertenGpa1-Protein, dessenC-terminalefünfAminosäurendie homologeG αs-Sequenzenthielten(Gs5), als hocheffizient.Diese Beobachtungen

169 5.Zusammenfassung zeigten, daß derV2-Rezeptor im Hefesystemsein physiologischesKopplungsprofil beibehielt. Zur weiteren ValidierungdesHefeexpressionssystemswurdendieG q/11- gekoppeltenM 1-, M3-undM 5-Muskarinrezeptoren und verschiedene mutierte

Vasopressin-undM 3-Muskarinrezeptorenmit verändertenfunktionellenEigenschaften heterologinHefeexprimiert.FunktionelleAnalysenzeigten,daßdieWildtyprezeptoren unddie verschiedenenRezeptormutantenin Hefe und Säugetierzellen ähnliche Phänotypenaufwiesen. Umzu untersuchen,weshalbderV2-Rezeptornicht effizientanG- Proteineder

Gq/11-Familie koppelt, sollte derin HefeexprimierteV2-Rezeptor zufallsgerichteter Mutagenese(“randommutagenesis”) unterzogen und MutantenmitverändertenG- Protein-Kopplungeigenschaftenisoliertwerden.Imspeziellenwurdediei2-Schleife untersucht,daeinefrühereStudiegezeigthatte,daßvornehmlichdiei2-SchleifedesV1a-

RezeptorsfürdieV1a-Rezeptor/G q/11-Kopplungsselektivitätverantwortlichist(Liuand Wess,1996).MittelszufallsgerichteterMutagenesetechnikwurdeinHefeeineBibliothek vonV2-Rezeptormutanten erzeugt,dereni2-SchleifeMutationen miteiner Mutageneseratevon ungefähr10%( auf derNukleotidebene) enthielt.Anschließend wurdenin einemSelektionsverfahren(“screen”)30000V2-Rezeptormutantenauf ihre Fähigkeit,mit Gq5 zu interagieren,überprüft.Es konntenvierV2-Rezeptormutanten isoliertwerden, welcheeffizient anGq5( jedochnichtanHefe-Gpa1p) koppelten. FunktionelleUntersuchungenmitdiesenundanderenmittelszielgerichteterMutagenese erzeugterV2-Rezeptormutantenzeigten,daßdieSubstitution einereinzigenAminosäure (Met145)im zentralenBereichderi2-Schleife beträchtlicheAuswirkungen aufdie Rezeptor/G-Protein-Kopplungsselektivitäthatte.DieFähigkeitdesV2-Rezeptors, produktivmitGq5zuinteragieren,warvonderAnwesenheitrelativgroßer,hydrophober AminosäurenwieLeucinundTryptophanabhängig.AustauschvonMet145mitkleinen Aminosäuren wie Glycin oderAlanin erlaubte demV2-Rezeptornicht,Gq5 zu aktivieren.InteressanterweiseinteragiertenalleV2-Rezeptormutanten,dieeineMet145- Punktmutationaufwiesen,mitGs5ähnlich effizient wie derV2-Wildtyprezeptor.Die UnfähigkeitderV2(Met145Gly)-undV2(Met145Ala)-Rezeptoren,Gq5zu aktivieren, beruhtdaher nichtaufeinemFaltungsdefizit. Gleichermaßenbasiertedie Fähigkeitder

170 5.Zusammenfassung

V2(Met145Trp)-undV2(Met145Leu)-Rezeptoren,produktivanGq5zukoppeln, nicht aufderÜberexpressionvonRezeptorprotein.DieseErgebnissezeigen,daßdiechemische Eigenschaft derAminosäureanPosition145dieV2-Rezeptor/G-Protein- Kopplungsselektivität reguliert.Interessanterweisebefindet sichinallenanderen SubtypenderVasopressin/Oxytocin-Rezeptorfamilie(V1a-,V1b-,und Oxytocin-

Rezeptoren),welcheselektivanG-ProteinederGq/11-Klassegekoppeltsind,einLeucinan derStelle,diezuMet145(V2-Rezeptorsequenz)homologist. Eineder vier ursprünglich isoliertenV2-Rezeptormutantenenthielt neben verschiedenen PunktmutationeneineDeletioninPositionMet145.In detaillierteren zielgerichtetenMutagenese-StudienwurdenzweiV2-Rezeptormutantenerzeugt,diealle dreiG-Proteine(Gq5,Gs5 undGpa1p)aktivierenkonnten.Um zuuntersuchen,obein generellesVerkürzenderi2-SchleifeumeineAminosäurederGrundfürdiebeobachtete Rezeptor/G-Protein-Promiskuitätist,wurdenverschiedeneV2-Rezeptormutanten erzeugt,in denen einzelneAminosäuren unmittelbarN-undC-terminal vonMet145 deletiert worden waren. Funktionelle Untersuchungenergaben, daßdieDeletion einzelnerAminosäurenN-terminal vonMet145(Ile141 ∆,Cys142 ∆,Arg143 ∆ oder Pro144∆)inV2-Rezeptormutanten resultierte,dienichtmitG- Proteineninteragieren konnten.Radioligand-Bindungsstudienzeigten, daß dieseV2-Rezeptormutantenkeine V2-Ligandenbinden konnten,wasdaraufschließenläßt, daß Deletioneneinzelner AminosäurenN-terminal vonMet145zu mißgefaltetenRezeptorenführen.Die AminosäurenIle141-Pro144befindensichamBeginnderi2-Schleife,unmittelbarneben derα-helikalenzytoplasmatischenVerlängerungderdrittenTransmembrandomäne(TM III)inder Nähe deshochkonservierten DRY(H)-Motivs.Esistdenkbar, daß Aminosäuren innerhalbdesIle141-Pro144-Segments mitden zytoplasmatischen AbschnittenvonTMIIIund/ oderTMVinteragierenund dieseWechselwirkungendie Rezeptorstrukturstabilisieren.ImGegensatz dazu hatten Deletionen unmittelbarC- terminalvonMet145(Leu146 ∆,Ala147 ∆,Tyr148 ∆ oderArg149 ∆)keinerlei AuswirkungenaufdieFunktiondesV2-Rezeptors.DieseAminosäurenbefindensichim zentralenBereich deri2-Schleife, dernichtmitden transmembranärenDomänendes Rezeptorproteinsinteragierenkann.

171 5.Zusammenfassung

5.3Schlußfolgerung

Die strukturellen Faktoren,diederV2-Vasopressinrezeptor/G s- Kopplungsselektivitätzugrundeliegen, wurdenaufmolekularer Ebeneuntersucht.Die V2-Rezeptor-Kopplungsselektivitätscheintaufmehrerenunterschiedlichenstrukturellen Elementenzuberuhen. Einigedieserstrukturellen Faktorensindbisher nochnichtin StudienmitanderenGPCR-Klassenbeschriebenworden.Desweiterenkonnteindieser Arbeitdie Nützlichkeit einesHefeexpressionssystemsunddieAnwendbarkeit von zufallsgerichteterMutagenese-Technik zum Studiumvon Rezeptor/G-Protein- Kopplungsselektivitätengezeigtwerden Die Beobachtungen,diein dieserArbeitanhand desV2-Rezeptorsgemacht werdenkonnten, unterstreichendieVielfaltderMechanismen,die fürdieRezeptor/G- Protein-Kopplungsselektivitätwichtigsind.Da alle GPCRs eine ähnlichemolekulare Strukturaufweisen, solltendieamBeispieldesV2-Vasopressinrezeptorserzielten Resultateauch aufandere Mitgliederdieser Rezeptor-“Superfamilie”übertragbarsein. DieAufklärung der strukturellenMechanismen,diedie Rezeptor/G-Protein- Kopplungsselektivitätbestimmen,sollte zu neuen Therapieansätzenführen,welche gezieltspezifischeGPCR-Signaltransduktionswegehemmenoderaktivierenkönnen.

172 6.References 6.References

AbadjiV.,Lucas-LenardJ.M.,ChinC.,andKendallD.A.(1999)Involvementofthe carboxylterminusofthethirdintracellularloopofthecannabinoidCB1receptorin constitutiveactivationofGs.J.Neurochem.72:2032-2038.

Abell,A.N.,andSegaloff,D.L.(1997)Evidenceforthedirectinvolvementof transmembraneregion6ofthelutropin/choriogonadotropinreceptorinactivatingG s.J. Biol.Chem.272:14686-14591.

AcharyaS.,andKarnikS.S.(1996)ModulationofGDPreleasefromtransducinbythe conservedGlu134-Arg135sequenceinrhodopsin.J.Biol.Chem.271:25406-25411.

AcharyaS.,SaadY.,andKarnikS.S.(1997) Transducin-αC-terminalpeptidebinding siteconsistsofC-DandE-Floopsofrhodopsin.J.Biol.Chem.272:6519-6524.

AlaY.,MorinD.,MouillacB.,SabatierN.,VargasR.,CotteN.,DechauxM.,Antignac C.,ArthusM.F.,LonerganM.,TurnerM.S.,BalestreM.N.,AlonsoG.,HibertM., BarberisC.,HendyG.N.,BichetD.G.,andJardS.(1998)Functionalstudiesoftwelve mutantV2vasopressinreceptorsrelatedtonephrogenicdiabetesinsipidus:molecular basisofamildclinicalphenotype.J.Am.Soc.Nephrol.9:1861-1872.

AlblasJ.,vanEttenI.,KhanumA.,andMoolenaarW.H.(1995)C-terminaltruncationof theneurokinin-2receptorcausesenhancedandsustainedagonist-inducedsignalling:Role ofreceptorphosphorylationinsignalattenuation.J.Biol.Chem.270:8944-8951.

AlewijnseA.E.,TimmermanH.,JacobsE.H.,SmitM.J.,RooversE.,CotecchiaS.,and LeursR.(2000)TheeffectofmutationsintheDRY-motifontheconstitutiveactivityand structuralinstabilityofthehistamineH2receptor.Mol.Pharmacol.57:890-898.

AlonU.,andChanJ.C.(1985)Hydrochlorothiazide-amilorideinthetreatmentof congenitaldiabetesinsipidus.Am.J.Nephrol.5:9-13.

AltenbachC.,YangK.,FarrensD.L.,FarahbakhshZ.T.,KhoranaH.G.,andHubbell W.L.(1996)Structuralfeaturesandlight-dependentchangesinthecytoplasmic interhelicalE-Floopregionofrhodopsin:asite-directedspinlabelingstudy. Biochemistry35:12470-12478.

AmatrudaT.T.,III,GerardN.P.,GerardC.,andSimonM.I.(1993)Specificinteractions ofchemoattractantfactorreceptorswithGproteins.J.Biol.Chem.268:10139-10144.

AmatrudaT.T.,III,Dragas-GraonicS.,HolmesR.,andPerezH.D.(1995)Signal transductionbytheformylpeptidereceptor:Studiesusingchimericreceptorsandsite- directedmutagenesisdefineanoveldomainforinteractionswithGproteins. J.Biol. Chem.270:28010-28013.

174 6.References

AncellinN.,PreisserL.,CormanB.,andMorelA.(1997)RoleofproteinkinaseCand carboxyl-terminalregioninacutedesensitizationofvasopressinV1areceptor.FEBSLett. 413:323-326.

AncellinN.,PreisserL.,LeMaoutS.,BarbadoM.,CreminonC.,CormanB.,andMorel A.(1999)HomologousandheterologousphosphorylationofthevasopressinV1a receptor.CellSignal11:743-751.

AraiH.andCharoI.F.(1996)DifferentialregulationofGprotein-mediatedsignalingby chemokinereceptors.J.Biol.Chem.271:21814-21819.

ArnisS.,FahmyK.,HofmannK.P.,andSakmarT.P.(1994)Aconservedcarboxylicacid groupmediateslight-dependentprotonuptakeandsignalingbyrhodopsin.J.Biol.Chem. 269:23879-23881.

AroraK.K.,SakaiA.,andCattK.J.(1995)Effectsofsecondintracellularloopmutations onsignaltransductionandinternalizationofthegonadotropin-releasinghormone receptor.J.Biol.Chem.270:22820-22826.

AroraK.K.,ChengZ.,andCattK.(1997)MutationsintheconservedDRS-motifinthe secondintracellularloopofthegonadotropin-releasinghormonereceptoraffect expression,activationandinternalization.Mol.Endocrinol.11:1203-1212.

AroraK.K.,KrsmanovicL.Z.,MoresN.,O’FarrellH.,andCattK.J.(1998)Mediationof cyclicAMPsignalingbythefirstintracellularloopofthegonadotropin-releasing hormonereceptor.J.Biol.Chem.273:25581-25586.

ArsevenO.K.,WilkesW.P.,JamesonJ.L.,andKoppP.(2000)Substitutionsoftyrosine 601inthehumanthyrotropinreceptorresultinincreaseorlossofbasalactivationofthe cyclicadenosinemonophosphatepathwayanddisruptcouplingtoGq/11.Thyroid10:3-10.

AttwoodT.K.,EliopoulosE.E.,andFindlayJ.B.C.(1991)Multiplesequencealignment ofproteinfamiliesshowinglowsequencehomology:amethodologicalapproachusing databasepattern-matchingdiscriminatorsforGprotein-linkedreceptors. Gene98:153- 159.

BaldwinJ.M.(1993)TheprobablearrangementofthehelicesinGprotein-coupled receptors.EMBOJ.12:1693-1703.

BaldwinJ.M.(1994)StructureandfunctionofreceptorscoupledtoGproteins. Curr. Opin.CellBiol.6:180-190.

BaldwinJ.M.,SchertlerG.F.X.,andUngerV.M.(1997)An α-carbontemplateforthe transmembranehelicesintherhodopsinfamilyofGprotein-coupledreceptors. J.Mol. Biol.272:144-164.

175 6.References

BarakL.S.,MenardL.,FergusonS.S.,ColapietroA.M.,andCaronM.G.(1994)The conservedseven-transmembranesequenceNPX 2,3YoftheGprotein-coupledreceptor superfamilyregulatesmultiplepropertiesofthe β2-adrenergicreceptor.Biochemistry34: 15407-15414.

BarakL.S.,FergusonS.S.,ZhangJ.,andCaronM.G.(1997)A β-arrestin/green fluorescentproteinbiosensorfordetectingGprotein-coupledreceptoractivation. J.Biol. Chem.272:27497-27500.

BarakL.S.,WarabiK.,FengX.,CaronM.G.,andKwatraM.M.(1999) Real-time visualizationofthecellularredistributionofGprotein-coupledreceptorkinase2and β- arrestin2duringhomologousdesensitizationofthesubstancePreceptor. J.Biol.Chem. 274:7565-7569.

BarakL.S.,OakleyR.H.,LaporteS.A.,andCaronM.G.(2001)Constitutivearrestin- mediateddesensitizationofahumanvasopressinreceptormutantassociatedwith nephrogenicdiabetesinsipidus.Proc.Natl.Acad.Sci.USA98:93-98.

BaranskiT.J.,HerzmarkP.,LichtargeO.,GerberB.O.,TrueheartJ.,MengE.C.,IiriT., SheikhS.P.,andBourneH.R.(1999)C5areceptoractivation.Geneticidentificationof criticalresiduesinfourtransmembranehelices.J.Biol.Chem.274:15757-15765.

BarberisC.,MouillacB.,andDurrouxT.(1998)Structuralbasesofvasopressin/function.J.Endocrinol.156:223-229.

BerridgeM.J.,DawsonM.C.,DownesC.P.,HeslopJ.P.,andIrvineR.F.(1983)Changes inthelevelsofinositolphosphatesafteragonist-dependenthydrolysisofmembrane phosphoinositides.Biochem.J.212:473-482.

BerridgeM.J.(1987)Inositoltrisphosphateanddiacylglycerol:twointeractingsecond messengers.Annu.Rev.Biochem.56:159-193.

BichetD.G.,HendyG.N.,LonerganM.,ArthusM.F.,LigierS.,PausovaZ.,KlugeR., ZinggH.,SaengerP.,OppenheimerE.,HirschD.J.,GilgenkranztS.,SallesJ.P.,Oberle I.,MandelJ.L.,GregoryM.C.,FujywaraM.,MorganK.,andScriverC.R.(1992)X- linkednephrogenicdiabetesinsipidus:fromtheshipHopewelltoRFLPstudies. Am.J. Hum.Genet.51:1089-1102.

BichetD.G.,ArthusM.F.,LonerganM.,HendyG.N.,ParadisA.J.,FujiwaraT.M., MorganK.,GregoryM.C.,RosenthalW.,DidwaniaA.,etal.(1993)X-linked nephrogenicdiabetesinsipidusmutationsinNorthAmericaandtheHopewellhypothesis. J.Clin.Invest.92:1262-1268.

BichetD.G.,RaziM.,LonerganM.,ArthusM.,PapuknaV.,KorasC.,andBarjonJ. (1988)Hemodynamicandcoagulationresponsesto1-desamino[8-D-arginine]vasopressin

176 6.References inpatientswithcongenitalnephrogenicdiabetesinsipidus. N.Engl.J.Med. 318:881- 887.

BichetD.G.,RaziM.,LongerganM.,ArthusM.F.,VassilikiP.,KortasC.,andBarjon J.N.(1988)Hemodynamicandcoagulationresponsesto1- desamino[8-D-arginine] vasopressininpatientswithcongenitalnephrogenicdiabetesinsipidus. N.Engl.J.Med. 318:239-253.

BichetD.G.(1998)Nephrogenicdiabetesinsipidus.Am.J.Med.105:431-442.

BichetD.G.andFujiwaraM.T.(1999)Congenital(presentatbirth)severediabetes insipidus.Mostpatientshavenephrogenicdiabetesinsipidus(NDI),butsomepatients haveautosomalrecessivecentral(neurogenic)diabetesinsipidus.InNDIFoundation 1999EuropeanConference(Amsterdam,TheNetherlands).

Biebermann,H.,Schöneberg,T.,Schulz,A.,Krause,G.,Grueters,A.,Schultz,G.,and Gudermann,T.(1998)Aconservedtyrosineresidue(Y601)intransmembranedomaine5 determinesofthehumanthyrotropinreceptorservesasamolecularswitchtodetermine Gproteincoupling.FASEBJ.12:1461-1471.

BirnbaumerM.,SeiboldA.,GilbertS.,IshidoM.,BarberisC.,AntaramianA.,BrabetP., andRosenthalW.(1992)Molecularcloningofthereceptorforhumanantidiuretic hormone.Nature357:333-335.

BirnbaumerM.,GilbertS.,andRosenthalW.(1994)Anextracellularcongenital nephrogenicdiabetesinsipidusmutationofthevasopressinreceptorreducescellsurface expression,affinityforligand,andcouplingtotheG s/adenylycyclasesystem. Mol. Endocrinol.8:886-894.

BirnbaumerM.(1995)MutationsanddiseasesofGprotein-coupledreceptors. J.Recept. SignalTransduct.Res.151:131-160.

BirnbaumerM.(1999)Vasopressinreceptormutationsandnephrogenicdiabetes insipidus.Arch.Med.Research30:465-474.

BissetG.W.,andChowdreyH.S.(1988)Controlofreleaseofvasopressinby neuroendocrinereflexes.Exp.Physiol.6:811-872.

BlinN.,YunJ.,andWessJ.(1995)Mappingofsingleaminoacidresiduesrequiredfor selectiveactivationofG q/11bytheM 3muscarinicacetylcholinereceptor. J.Biol.Chem. 270:17741-17748.

BlümlK.,MutschlerE.,andWessJ.(1994)Identificationofanintracellulartyrosine residuecriticalformuscarinicreceptor-mediatedstimulationofphosphatidylinositol hydrolysis.J.Biol.Chem.269:402-405.

177 6.References

BockaertJ.andPinJ.P.(1999)MoleculartinkeringofGprotein-coupledreceptors:an evolutionarysuccess.EMBOJ.18:1723-1729.

BöhmS.K.,GradyE.F.,andBunnettN.W.(1997)Regulatorymechanismsthatmodulate signallingbyGprotein-coupledreceptors.Biochem.J.322:1-18.

BonnerT.I.,BuckleyN.J.,YoungA.C.,andBrannM.R.(1987)Identificationofa familyofmuscarinicacetylcholinereceptorgenes.Science237:527-532.

BonnerT.I.,YoungA.C.,BrannM.R.,andBuckleyN.J.(1988)Cloningand expressionofthehumanandratm5muscarinicacetylcholinereceptorgenes. Neuron1: 403-410.

BourneH.R.(1997)HowreceptorstalktotrimericGproteins. Curr.Opin.CellBiol. 9: 134-142.

BouvierM.,ChidiacP,HebertT.E.,LoiselT.P.,MoffettS.,andMouillacB.(1995) DynamicpalmitoylationofG-protein-coupledreceptorsineukaryoticcells. Methods Enzymol.250:300-314.

BradfordM.M.(1976)Arapidandsensitivemethodforthequantitationofmicrogram quantitiesofproteinutilizingtheprincipleofprotein-dyebinding. Anal.Biochem.72: 248-254.

BrownA.J.,DyosS.L.,WhitewayM.S.,WhiteJ.H.,WatsonM.A.,MarziochM.,Clare J.J.,CousensD.J.,PaddonC.,PlumptonC.,RomanosM.A.,andDowellS.J.(2000) Functionalcouplingofmammalianreceptorstotheyeastmatingpathwayusingnovel yeast/mammalianGproteinα-subunitchimeras.Yeast16:11-22.

BrownE.M.,GambaG.,RiccardiD.,LombardiM.,ButtersR.,KiforO.,SunA.,Hediger M.A.,LyttonJ.,andHebertS.C.(1993)Cloningancharacterizationofanextracellular Ca2+-sensingreceptorfrombovineparathyroid.Nature366:575-580.

BuckL.andAxelR.(1991)Anovelmultigenefamilymayencodeodorantreceptors:A molecularbasisforodorrecognition.Cell65:175-187.

BuckF.,WangW.,HarderS.,BrathwaiteC.,BruhnT.O.,andGershengornM.C.(2000) Juxtamembraneregionsinthethirdintracellularloopofthethyrotropin-releasing hormonereceptortype1areimportantforcouplingtoG q. Endocrinology141:3717- 3722.

BurbachJ.P.H.,AdanR.A.H.,LolaitS.J.,vanLeeuwenF.W.,MezeyE.,PalkovitsM., andBarberisC.(1995) Molecularneurobiologyandpharmacologyofthevasopressin/ oxytocinreceptorfamily.Cell.Mol.Neurobiol.15:573-595.

178 6.References

BurfordN.T.andNahorskiS.R.(1996)Muscarinicm1receptor-stimulatedadenylate cyclaseactivityinChinesehamsterovarycellsismediatedbyG αsandisnota consequenceofphosphoinositidaseCactivation.Biochem.J.315:883-888.

BursteinE.S.,SpaldingT.S.,Hill-Eubanks,andBrannM.R.(1995)Structure-functionof muscarinicreceptorcouplingtoGproteins.Randomsaturationmutagenesisidentifiesa criticaldeterminantofreceptoraffinityforGproteins.J.Biol.Chem.270:3141-3146.

BursteinE.S.,SpaldingT.S.,andBrannM.R.(1996)Aminoacidsidechainsthatdefine muscarinicreceptor/Gproteincoupling.Studyofthethirdintracellularloop. J.Biol. Chem.271:2882-2885.

BursteinE.S.,SpaldingT.A.,andBrannM.R.(1998)Structure/functionrelationshipsofa

GproteincouplingpocketformedbythethirdintracellularloopoftheM 5muscarinic receptor.Biochemistry37:4052-4058.

CarnazziE.,AumelasA.,BarberisC.,GuillonG.,andSeyerR.(1994)Anewseriesof photoactivatableandiodinatablelinearvasopressinantagonists. J.Med.Chem.37:1841- 1849.

CarnazziE.,AumelasA.,PhalipouS.,MouillacB.,GuillonG.,BarberisC.,andSeyerR. (1997)EfficientphotoaffinitylabelingoftheratV1avasopressinreceptorusingalinear azidopeptidicantagonist.Eur.J.Biochem.247:906-913.

Cheung,A.H.,Huang,R.R.,Graziano,M.P.,andStrader,C.D.(1991)Specificactivation ofG sbysyntheticpeptidescorrespondingtoanintracellularloopofthe β-adrenergic receptor.FEBSLett.279:277-280.

CheungA.H.,HuangR.-R.C.andStraderC.D.,(1992)Involvementofspecific hydrophobic,butnothydrophilic,aminoacidsinthethirdintracellularloopofthe β- adrenergicreceptorintheactivationofGs.Mol.Pharmacol.41:1061-1065.

ChiniB.,MouillacB.,AlaY.,BalestreM.N.,Trumpp-KallmeyerS.,HoflackJ.,Elands J.,HibertM.,ManningM.,JardS.,andBarberisC(1995)Tyr115isthekeyresiduefor determiningagonistselectivityintheV1avasopressinreceptor.EMBOJ.14:2176-2182.

ChiniB.,MouillacB.,BalestreM.N.,Trumpp-KallmeyerS.,HoflackJ.,HibertM., AndrioloM.,PupierS.,JardS.,andBarberisC.(1996)Twoaromaticresiduesregulate theresponseofthehumanoxytocinreceptortothepartialagonistargininevasopressin. FEBSLett.397:201-206.

ChristiansonT.W.,SikorskiR.S.,DanteM.,SheroJ.H.andHieterP.(1992) Multifunctionalyeasthigh-copy-numbershuttlevectors.Gene110:119-122.

179 6.References

ChungH.O.,YangQ.,CattK.J.,andAroraK.K.(1999)Expressionandfunctionofthe gonadotropin-releasinghormonereceptoraredependentonaconservedapolaramino acidinthethirdintracellularloop.J.Biol.Chem.274:35756-35762.

ClaphamD.E.andNeerE.J.(1997)Gprotein βγsubunits. Annu. Rev.Pharmacol. Toxicol.37:167-203.

CohenG.B.,YangT.,RobinsonP.R.,andOprianD.D.(1993)Constitutiveactivationof opsin:influenceofchargeatposition134andsizeatposition296. Biochemistry 32: 6111-6115.

ColemanD.E.,BerghuisA.M.,LeeE.,LinderM.E.,GilmanA.G.,andSprangS.R.

(1994)StructuresofactiveconformationsofG αi1andthemechanismofGTPhyrolysis. Science265:1405-1412.

ConklinB.R.andBourneH.R.(1993)StructuralelementsofG αsubunitsthatinteract withGβγreceptors,andeffectors.Cell73:631-641.

ConklinB.R.,FarfelZ.,LustigK.D.,JuliusD.,andBourneH.R.(1993)Substitutionof

threeaminoacidsswitchesreceptorspecificityofG αqtothatofG αi.Nature363:274- 276.

ConklinB.R.,HerzmarkP.,IshidaS.,Voyno-YasenetskayaT.A.,SunY.,FarfelZ.,and

BourneH.R.(1996)Carboxyl-terminalmutationsofGαqandGαsthatalterthefidelityof receptoractivation.Mol.Pharmacol.50:885-890.

ConnP.J.andPinJ .-P.(1997)Pharmacologyandfunctionsofmetabotropicglutamate receptors.Annu.Rev.Pharmacol.Toxicol.37:205-237.

CookJ.V.andEidneK.A.(1997) Anintramoleculardisulfidebondbetweenconserved extracellularcysteinesinthegonadotropin-releasinghormonereceptorisessentialfor bindingandactivation.Endocrinology138:2800-2806.

CotecchiaS.,OstrowskiJ.,KjelsbergM.A.,CaronM.G.,andLefkowitzR.J.(1992)

Discreteaminoacidsequencesofthe α1-adrenergicreceptordeterminetheselectivityof couplingtophosphatidylinositolhydrolysis.J.Biol.Chem.267:1633-1639.

CotecchiaS.,ScheerA.,DivianiD.,FanelliF.,andDeBenedettiP.G.(1998)Molecular

mechanismsinvolvedintheactivationandregulationofthe α1-adrenergicreceptor subtypes.Farmaco53:273-277.

CotteN,BalestreM.N.,PhalipouS.,HibertM.,ManningM.,BarberisC,andMouillac B.(1998)Identificationofresiduesresponsiblefortheselectivebindingofpeptide antagonistsandagonistsintheV2vasopressinreceptor. J.Biol.Chem. 273:29462- 29468.

180 6.References

CotteN.,BalestreM.N.,AumelasA.,MaheE.,PhalipouS.,MorinD.,HibertM.,, ManningM.,DurrouxT.,BarberisC.,andMouillacB.(2000)Conservedaromatic residuesinthetransmembraneregionVIoftheV1avasopressinreceptordifferentiate agonistvs.antagonistbinding.Eur.J.Biochem.267:4253-4263.

CullenB.R.(1987)Useofeukaryoticexpressiontechnologyinthefunctionalanalysisof clonedgenes.MethodsEnzymol.152:684-704.

CypessA.M.,UnsonC.G.,WuC.R.,andSakmarT.P.(1999)Twocytoplamicloopsof theglucagonreceptorarerequiredtoelevatecAMPorintracellularcalcium. J.Biol. Chem.274:19455-19464.

CzaplewskiC.,KazmierkiewiczR.,andCiarkowskiJ.(1998) Molecularmodelingofthe humanvasopressinV2receptor/agonistcomplex. J.Comput.AidedMol.Des. 12:275- 287.

D’AngeloD.D.,EubankJ.J., DavisM.G.,andDornG.W.,II(1996)Mutagenicanalysis ofplateletthromboxanereceptorcysteines:Rolesinligandbindingandreceptor-effector coupling.J.Biol.Chem.271:6233-6240.

DantzerR.andBlutheR.M.(1992)Vasopressininvolvementinantipyresis,social communicationandsocialrecognition:asynthesis.CriticalReviewsinNeurobiology16: 243-255.

DavidsonF.F.,LoewenP.C.,andKhoranaH.G.(1994)Structureandfunctionin rhodopsin:replacementbyalanineofcysteineresidues110and187,componentsofa conserveddisulfidebondin rhodopsin,affectsthelight-activatedmetarhodopsinIIstate. Proc.Natl.Acad.Sci.USA91:4029-4033.

DeenP.M.,VerdijkM.A.,KnoersN.V.,WieringaB.,MonnensL.A.,vanOsC.H.,and vanOostB.A.(1994)Requirementofhumanrenalwaterchannelaquaporine-2for vasopressin-dependentconcentrationofurine.Science264:92-95. deKeyzerY.,AuzanC.,LenneF.,BeldjordC.,Thibonnier,BertagnaX.,andClauserE. (1994)CloningandcharacterizationofthehumanV3pituitaryvasopressinreceptor. FEBSLett.356:215-220. DiGiovanniS.R.,NielsenS.,ChristensenE.I.,andKnepperM.A.(1994)Regulationof collectingductwaterchannelexpressionbyvasopressinintheBrattlebororat.Proc.Natl. Acad.Sci.USA91:8984-8988.

DixonR.A.F.,KobilkaB.K.,StraderD.J.,BenovicJ.L.,DohlmanH.G.,FrielleT., BolanowskyM.A.,BennetC.D.,RandsE.,DiehlR.E.,MumfordR.A.,SlaterE.E.,Sigal I.S.,CaronM.G.,LefkowitzR.J.,andStraderC.D.(1986)CloningthegeneandcDNA formammalianβ-adrenergicreceptorandhomologywithrhodopsin.Nature321:75-79.

181 6.References

DörjeF.,WessJ.,LambrechtG.,TackeR.,MutschlerE.,andBrannM.R.(1991) Antagonistbindingprofilesoffiveclonedhumanmuscarinicreceptorsubtypes. J. Pharmacol.Exp.Ther.256:727-733.

DohlmanH.G.,ThornerJ.,CaronM.G.,andLefkowitzR.J.(1991)Modelsystemsfor thestudyofseven-transmembrane-segmentreceptors.Annu.Rev.Biochem.60:653-688.

DongM.,DingX.Q.,PinonD.,HadacE.M.,OdasR.P.,LandersJ.P.,andMillerL.J. (1999) Structurallyrelatedpeptideagonist,partialagonist,andantagonistoccupya similarbindingpocketwithinthecholecystokininreceptor.Rapidanalysisusing fluorescentphotoaffinitylabelingprobesandcapillaryelectrophoresis. J.Biol.Chem. 274:4778-4785.

DonnellyD.,OveringtonJ.P.,RuffleS.V.,NugentJ.H.A.,andBlundellT.L.(1993) Modelingα-helicaltransmembranedomains:calculationanduseofsubstitutiontables forlipid-facingresidues.ProteinSci.2:55-70.

DossR.C.,PerkinsJ.P.,andHardenT.K.(1981)Recoveryof β-adrenergicreceptors followinglongtermexposureofastrocytomacellstocatecholamine. Roleofprotein synthesis.J.Biol.Chem.256:12281-12286.

DowellS.J.,BishopA.L.,DyosS.L.,BrownA.J.,andWhitewayM.S.(1998)Mapping ofayeastGproteinβγsignalinginteraction.Genetics150:1407-1417.

DratzE.A.,FurstenauJ.E.,LambertC.G.,ThireaultD.L.,RarickH.,SchepersT., PakhlevaniantsS.,andHammH.E.(1993)NMRstructureofareceptor-boundGprotein peptide.Nature363:276-281.

DulacC.andAxelR.(1995)Anovelfamilyofgenesencodingputativepheromone receptorsinmammals.Cell83:195-206.

DunningB.E.,MoltzJ.H.andFawcettC.P.(1984)Actionsoftheneurohypophysial peptidesonpancreatichormonerelease.Am.J.Physiol.246:E108-E114.

EasonM.G.,KuroseH.,HoltB.D.,RaymondJ.R.,andLiggettS.B.(1992)Simultaneous couplingof α2-adrenergicreceporstotwoGproteinswithopposingeffects:Subtype- selectivecouplingof α2C10, α2C4,and α2C2-adrenergicreceptorstoG iandG s.J.Biol. Chem.267:15795-15801.

EasonM.G.andLiggettS.B.(1996)ChimericmutagenesisofputativeGprotein- couplingdomainsoftheα2A-adrenergicreceptor:Localizationoftworedundantandfully competentGicouplingdomains.J.Biol.Chem.271:12826-12832.

182 6.References

EcelbargerC.A.,TerrisJ.,FrindtG.,EchevarriaM.,MarplesD.,NielsenS.,andKnepper M.A.(1995)Aquaporin-3waterchannellocalizationandregulationinratkidney. Am.J. Physiol.38:F663-F672.

EhrlichG.K.,AndriaM.L.,ZhengX.,KiefferB.,GioanniniT.L.,HillerJ.M., RosenkranzJ.E.,VekslerB.M.,ZukinR.S.,andSimonE.J.(1998)Functional significanceofcysteinresiduesinthe δ-opioidreceptorstudiedbysite-directed mutagenesis.Can.J.Physiol.Pharmacol.76:269-277.

EllingC.E.,RaffetsederU.,NielsenS.M.,andSchwartzT.W.(2000)Disulfidebridge engineeringinthetachykininNK1receptor.Biochemistry39:667-675.

EricksonJ.R.,WuJ.J.,GoddardJ.G.,TigyiG.,KawanishiK.,TomeiL.D.,andKiefer M.C.(1998)Edg-2/Vzg-1couplestotheyeastpheromoneresponsepathwayselectively inresponsetolysophosphatidicacid.J.Biol.Chem.273:1506-1510.

FarahbakhshZ.T.,HidegK.,andHubbellW.L.(1993)Photoactivatedconformational changesinrhodopsin:atime-resolvedspinlabelstudy.Science262:1416-1419.

FarrensD.L.,AltenbachC.,YangK.,HubbellW.L.,andKhoranaH.G.(1996) Requirementofrigid-bodymotionoftransmembranehelicesforlightactivationof rhodopsin.Science274:768-770.

FrancesconiA.,andDuvoisinR.M.(1998)Roleofthesecondandthirdintracellular loopsofmetabotropicglutamatereceptorsinmediatingdualsignaltransduction activation.J.Biol.Chem.273:5615-5624.

FrankeR.R.,SakmarT.P.,GrahamR.M.,andKhoranaH.G.(1992)Structureand functioninrhodopsin.Studiesoftheinteractionbetweentherhodopsincytoplasmic domainandtransducin.J.Biol.Chem.267:14767-14774.

FriedL.F.andPalevskyP.M.(1997)Hyponatremiaandhypernatremia. Med.Clin.North Am.81:585-609.

GarciaP.D.,OnrustR.,BellS.M.,SakmarT.P.,andBourneH.R.(1995)Transducin-aC- terminalmutationspreventactivationbyrhodopsin:anewassayusingrecombinant proteinsexpressedinculturedcells.EMBOJ.14:4460-4469.

GeorgoussiZ.,MerkourisM.,MullaneyI.,MegaritisG.,CarrC.,ZioudrouC.,and MilliganG.(1997)Selectiveinteractionsof µ-opioidreceptorswithpertussistoxin- sensitiveGproteins:involvementofthethirdintracellularloopandtheC-terminaltailin coupling.Biochim.Biophys.Acta1359:263-274.

Gerald,C.,Walker,M.W.,Criscione,L.,GustafsonE.L.,Batzl-HarmannC.,SmithK.E., VaysseP.,DurkinM.M.,LazT.M.,LinemeyerD.L.,SchaffhauserA.O.,WhitebreadS.,

183 6.References

HofbauerK.G.,TaberR.I.,BranchekT.A.,andWeinshankR.L.(1996)Areceptor subtypeinvolvedinneuropeptide-Y-inducedfoodintake.Nature382:168-171.

Geva,A.,Lassere,T.B,Lichtarge,O.,Pollitt,S.K.,andBaranski,T.J.(2000)Genetic mappingofthehumanC5areceptor.Identificationoftransmembraneaminoacidscritical forreceptorfunction.J.Biol.Chem.275:35393-35401.

GietzR.D.,andWoodsR.A.(1994)in MolecularGeneticsofYeast:Practical Approaches(Johnston,J.A.,ed),pp.124-134,OxfordUniversityPress,Oxford

GilchristR.L.,RyuK .-S.,JiI.,andJiT.H.(1996)Theluteinizinghormone/chorionic gonadotropinreceptorhasdistincttransmembraneconductorsforcAMPandinositol phosphatesignals.J.Biol.Chem.271:19283-19287.

GomezaJ.,JolyC.,KuhnR.,KnöpfelT.,BockaertJ.,andPinJ .-P.(1996a)Thesecond intracellularloopofthemetabotropicglutamatereceptor1cooperateswiththeother intracellulardomainstocontrolcouplingtoGproteins.J.Biol.Chem.271:2199-2205.

GomezaJ.,MaryS.,BrabetI.,ParmentierM.-L.,RestituitoS.,BockaertJ.,andPinJ.-P.

(1996b)Couplingofmetabotropicglutamatereceptors2and4toG α15,Gα16,and chimericGαq/iproteins:Characterizationofnewantagonists. Mol.Pharmacol.50:923- 930.

GopalakrishnanV.,McNeillJ.,SulakheP.,andTriggleC.(1988)Hepaticvasopressin receptor:differentialeffectsofdivalentcations,guaninenucleotides,andN-ethyl maleimideonagonistandantagonistinteractionswiththeV1subtypereceptor. Endocrinology123:922-931.

GudermannT.,NurnbergB.,andSchultzG.(1995)ReceptorsandGproteinsasprimary componentsoftransmembranesignaltransduction.Part1.Gprotein-coupledreceptors: structureandfunction.J.Mol.Med.73:51-63.

GudermannT.,KalkbrennerF.,andSchultzG.(1996)Diversityandselectivityof receptor/Gproteininteraction.Annu.Rev.Pharmacol.Toxicol.36:429-459.

GudermannT.,SchonebergT.,andSchultzG.(1997)Functionalandstructural complexityofsignaltransductionviaGprotein-coupledreceptors. Annu.Rev.Neurosci. 20:399-427. HammH.E.,DeretikD.,ArendtA.,HargraveP.A.,KoenigB.,andHofmannK.P.(1988) SiteofGproteinbindingtorhodopsinmappedwithsyntheticpeptidesfromtheasubunit. Science241:832-835.

HammH.E.(1998)ThemanyfacesofGproteinsignaling.J.Biol.Chem.273:669-672.

HandlerJ.S.andOrloffJ.(1981)Antidiuretichormone.A.Rev.Physiol.43:611-624.

184 6.References

HardmanJ.G.,GilmanA.G.,andLimbirdL.E.(eds.)(1996)GoodmanandGilman’s: ThePharmacologicalBasisofTherapeutics,9thed.,McGraw-Hill,NewYork.

HasegawaH.,NegishiM.,andIchikawaA.(1996)TwoisoformsoftheprostaglandinE

receptorEP3subtypedifferentinagonist-independentconstitutiveactivity.J.Biol.Chem. 271:1857-1860.

HaslamR.J.andRossonG.M.(1972)Aggregationofhumanbloodplateletsby vasopressin.Am.J.Physiol.223:958-967.

HausmannH.,RichtersA.,KreienkampH.,MeyerhofW.,MatteiH.,LederisK.,Zwiers H.,andRichterD.(1996)Mutationalanalysisandmolecularmodelingofthe nonapeptidehormonebindingdomainsoftheArg 8-vasotocinreceptor.Proc.Natl.Acad. Sci.USA93:6907-6912.

HawtinS.R.,DaviesA.R.L.,MatthewsG.,andWheatleyM.(1997)Theroleofputative glycosylationsitesintheextracellularloopsofthevasopressinV1areceptor. Biochem. Soc.Trans.25:435S.

HawtinS.R.,WesleyV.J.,ParslowR.A.,PatelS.,andWheatleyM.(2000) Criticalrole ofasubdomainoftheN-terminusoftheV1avasopressinreceptorforbindingagonists butnotantagonists;functionalrescuebytheoxytocinreceptorN-terminus. Biochemistry 39:13524-13533.

HedinK.E.,DuersonK.,andClaphamD.E.(1993)Specificityofreceptor/Gprotein interactions:searchingforthestructurebehindthesignal.Cell.Sign.5:505-518.

HemsD.A.,RodriguesL.M.andWhittonP.D.(1976)Glycogenphosphorylase,glucose outputandvasoconstrictionintheperfusedratliver.Biochem.J.160:367-374.

HendersonR.andSchertlerG.F.(1990)Thestructureofbacteriorhodopsinandits relevancetothevisualopsinsandotherseven-helixGprotein-coupledreceptors. Philos. Trans.R.Soc.Lond.B.Biol.Sci.326:379-389.

HermansE.,OctaveJ.-N.,andMaloteauxJ.-M.(1996)InteractionoftheCOOH-terminal domainoftheneurotensinreceptorwithaGproteindoesnotcontrolthephospholipaseC activationbutisinvolvedintheagonist-inducedinternalization. Mol.Pharmacol. 49: 365-372.

HerradaG.andDulacC.(1997)Anovelfamilyofputativepheromonereceptorsin mammalswithatopographicallyorganizedandsexuallydimorphicdistribution. Cell90: 763-773.

185 6.References

HibertM.,HoflackJ.,Trumpp-KallmeyerS.,MouillacB.,ChiniB.,MaheE.,CotteN., JardS.,ManningM.,andBarberisC.(1999)Functionalarchitectureof vasopressin/oxytocinreceptors.J.Recept.Signal.Transduct.Res.19:589-596.

HigashijimaT.andRossE.M.(1991)Mappingofthemastoparan-bindingsiteonG 125 proteins:Cross-linkingof[ I-Tyr3,Cys11]mastoparantoGo.J.Biol.Chem.266:12655- 12661.

HigginsJ.B.andCaseyP.J.(1994)InvitroprocessingofrecombinantGprotein γ subunits.Requirementsforassemblyofanactive βγ-complex.J.Biol.Chem.269:9067- 9073.

HiguchiR.(1989)in PCRTechnology(ErlichH.A.,ed)pp61-70,StocktonPress,New York.

Hill-EubanksD.,BursteinE.S.,SpaldingT.A.,Bräuner-OsborneH.,andBrannM.R. (1996)StructureofaGprotein-couplingdomainofamuscarinicreceptorpredictedby randomsaturationmutagenesis.J.Biol.Chem.271:3058-3065.

HipkinR.W.,LiuX.,andAscoliM.(1995)TruncationoftheC-terminaltailofthe follitropinreceptordoesnotimpairtheagonist-orphorbolester-inducedreceptor phosphorylationanduncoupling.J.Biol.Chem.270:26683-26689.

HoareS.,CoplandJ.A.,StrakovaZ.,IvesK.,JengY.J.,HellmichM.R.,andSoloffM.S. (1999)TheproximalportionoftheCOOHterminusoftheoxytocinreceptorisrequired forcouplingtoGq,butnotGi.Independentmechanismforelevatingintracellularcalcium concentrationsfromintracellularstores.J.Biol.Chem.274:28682-28689.

HöggerP.,ShockleyM.S.,LamehJ.,andSadeeW.(1995)Activatingandinactivating

mutationsinN-andC-terminali3loopjunctionsofmuscarinicacetylcholinehM 1 receptors.J.Biol.Chem.270:7405-7410.

HofbauerK.G.,StuderW.,MahS.C.,MichelJ.B.,WoodJ.M.andStalderR.(1984)The significanceofvasopressinasapressoragent.J.Cardiovasc.Pharmac.6:S429-S438.

HoffmannC.,MoroS.,NicholasR.A.,HardenT.K.,andJacobsonK.A.(1999)Therole

ofaminoacidsinextracellularloopsofthehumanP2Y 1receptorinsurfaceexpression andactivationprocesses.J.Biol.Chem.274:14639-14647. HornF.,vanDerWendenE.M.,OliveiraL.,IjzermanA.P.,andVriendG.(2000) ReceptorscouplingtoGproteins:isthereasignalbehindthesequence? Proteins41: 448-459.

HorstmanD.A.,BrandonS.,WilsonA.L.GuyerC.A.,CragoeE.J.,andLimbirdL.E. (1990)AnaspartateconservedamongGproteincoupledreceptorsconfersallosteric

regulationofα2-adrenergicreceptorsbysodium.J.Biol.Chem.265:21590-21595.

186 6.References

HowlJ.andWheatleyM.(1996)Molecularrecognitionofpeptideandnon-peptide ligandsbytheextracellulardomainsofneurohypohysialhormonereceptors. Biochem.J. 317:577-582.

HozawaS.,HoltzmanE.J.,andAusielloD.A.(1996) cAMPmotifsregulating transcriptionintheaquaporin-2gene.Am.J.Physiol.270:C1695-C1702.

HuangZ.,ChenY.,PrattS.,ChenT.-H.,BambinoT.,ShobackD.M.,andNissenson R.A.(1995)MutationalanalysisofthecytoplasmictailoftheGprotein-coupledreceptor forparathyroidhormone(PTH)andPTH-relatedprotein:Effectsonreceptorexpression andsignaling.Mol.Endocrinol.9:1240-1249.

HukovicN.,PanettaR.,KumarU.,RochevilleM.,andPatelY.C.(1998)The cytoplasmictailofthehumansomatostatinreceptortype5iscrucialforinteractionwith adenylylcyclaseandinmediatingdesensitizationandinternalization.J.Biol.Chem.273: 21416-21422.

HulmeE.C.andLuZ.L.(1998)Scanningmutagenesisoftransmembranedomain3ofthe

M1muscarinicacetylcholinereceptor.J.Physiol.Paris.92:269-274.

Iida-KleinA.,GuoJ.,XieL.Y.,JüppnerH.,PottsJ.T.,Jr.,KronenbergH.M.,Bringhurst F.R.,Abou-SamraA.B.,andSegreG.V.(1995)Truncationofthecarboxyl-terminal regionoftheratparathyroidhormone(PTH)/PTH-relatedpeptidereceptorenhancesPTH stimulationofadenylylcyclasebutnotphospholipaseC.J.Biol.Chem.270:8458-8465.

InnamoratiG.,SadeghiH.,andBirnbaumerM.(1996a)Afullyactivenon-glycosylated V2vasopressinreceptor.Mol.Pharmacol.50:467-473.

InnamoratiG.,LolaitS.J.,andBirnbaumerM.(1996b)Sequenceidentitybetweentherat andhumanvasopressinV1areceptorsBiochem.J.314:710-711.

InnamoratiG.,SadeghiH.,EberleA.N.,andBirnbaumerM.(1997)Phosphorylationof theV2vasopressinreceptor.J.Biol.Chem.272:2486-2492.

InnamoratiG.,SadeghiH.,TranN.T.,andBirnbaumerM.(1998a)Aserinecluster preventsrecyclingoftheV2vasopressinreceptor. Proc.Natl.Acad.Sci.USA95:2222- 2226. InnamoratiG.,SadeghiH.,andBirnbaumerM.(1998b)Transientphosphorylationofthe V1avasopressinreceptor.J.Biol.Chem.273:7155-7161.

InoueH.,NojimaH.,andOkayamaH.(1990)Highefficiencytransformationof Escherichiacoliwithplasmids.Gene96:23-28.

187 6.References

InselT.R.,WinslowJ.T.,WilliamsJ.R.,HastingsN.,ShapiroL.E.,andCarterC.S. (1993)Theroleofneurohypophysealpeptidesinthecentralmediationofcomplexsocial processes–evidencefromcomparativestudies.RegulatoryPeptides45:127-131.

IshigaraT.,NakamuraS.,KaziroY.,TakahashiT.,TakahashiK.,andNagataS.(1991) MolecularcloningandexpressionofacDNAencodingthesecretinreceptor. EMBO10: 1635-1641.

IshigaraT.,ShigemotoR.,MoriK.,TakahashiK.,NagataS.(1992)Functional expressionandtissuedistributionofanovelreceptorforvasoactiveintestinal polypeptide.Neuron8:811-819.

IshiharaH.,ConnollyA.J.,Zeng,D.,KahnM.L.,ZhengY.W.,TimmonsC.,TramT., andCoughlinS.R.(1997)Protease-activatedreceptor3isasecondthrombinreceptorin humans.Nature386:502-506.

Janssens,R.,Communi,D.,Pirotton,S.,Samson,M.,Parmentier,M.,andBoeynaems, J.M.(1996)CloningandtissuedistributionofthehumanP2Y1receptor. Biochem. Biophys.Res.Commun.221:588-593.

JardS.,GaillardR.C.,GuillonG.,MarieJ.,SchoenenbergP.,MullerA.F.,ManningM., andSawyerW.H.(1986)Vasopressinantagonistsallowdemonstrationofanoveltypeof vasopressinreceptorintheratadenohypophysis.Mol.Pharmacol.30:171-177.

JardS.,ElandsJ.,SchmidtA.,andBarberisC.(1988)Vasopressinandoxytocin receptors:anoverview.InProgressinEndocrinology:1183-1188;Eds:H.ImuraandK. Shizume,Amsterdam:Elsevier.

JiI.,andJiT.(1991)Asp383inthesecondtransmembranedomainofthelutropin receptorisimportantforhighaffinityhormonebindingandcAMPproduction. J.Biol. Chem.266:14953-14957.

JianX.,SainzE.,ClarkW.A.,JensenR.T.,BatteyJ.F.,andNorthupJ.K.(1999)The bombesinreceptorsubtypeshavedistinctGproteinspecificities. J.Biol.Chem. 274: 11573-11581.

JonesS.V.P.,HeilmanC.J.,andBrannM.R.(1991)Functionalresponsesofcloned muscarinicreceptorsexpressedinCHO-K1cells.Mol.Pharmacol.40:242-247.

JonesP.G.,CurtisC.A.,andHulmeE.C.(1995)Thefunctionofahighly-conserved arginineresidueinactivationofthemuscarinicM 1receptor. Eur.J.Pharmacol. 288: 251-257.

188 6.References

JungH.,WindhaberR.,Palm,D.,andSchnackerzK.D.(1996)Conformationofa β- adrenoceptor-derivedsignaltransducingpeptideasinferredbycirculardichroismand1H NMRspectroscopy.Biochemistry35:6399-6405.

KaiserU.B.,ZhaoD.,CardonaG.R.,andChinW.(1992)Isolationandcharacterization ofcDNAsencodingtheratpituitarygonadotropin-releasinghormonereceptor. Biochem. Biophys.Res.Commun.189:1645-1652.

KajkowskiE.M.,PriceL.A.,PauschM.H.,YoungK.H.,andOzenbergerB.A.(1997) Investigationofgrowthhormonereleasinghormonereceptorstructureandactivityusing yeastexpressiontechnologies.J.Recept.SignalTransduct.Res.17:293-303.

KakarS.S.,MusgroveL.C.,DevorD.C.,SellersJ.C.,andNeillJ.D.(1992)Cloning, sequencingandexpressionofhumangonadotropinreleasinghormone(GnRH)receptor. Biochem.Biophys.Res.Commun.189:289-295.

KallalL.andKurjanJ.(1997)AnalysisofthereceptorbindingdomainofGpa1p,theGα subunitinvolvedintheyeastpheromoneresponsepathway. Mol.Cell.Biol. 17:2897- 2907.

KaupmannK.,HuggelK.,HeidJ.,FlorP.J.,BischoffS.,MickelS.J.,McMasterG.,

AngstC.,BittigerH.,FroestlW.,andBettlerB.(1997)ExpressioncloningofGABA B receptorsuncoverssimilaritytometabotropicglutamatereceptors.Nature386:239-246.

KennellyP.J.andKrebsE.G.(1991)Consensussequencesassubstratespecificity determinantsforproteinkinasesandproteinphosphatases. J.Biol.Chem. 266:15555- 15558.

KimJ.M.,AltenbachC.,ThrumondR.L.,KhoranaH.G.,andHubbellW.L.(1997) Structureandfunctioninrhodopsin:rhodopsinmutantswithaneutralaminoacidatE134 haveapartiallyactivatedconformationinthedarkstate. Proc.Natl.Acad.Sci.USA 94: 14273-14278.

KingK.,DohlmanH.G.,ThornerJ.,CaronM.G.,andLefkowitzR.J.(1990) Controlof yeastmatingsignaltransductionbyamammalian β2-adrenergicreceptorandG αs subunit.Science250:121-123.

KleinW.L.,NathansonN.,andNirenbergM.(1979)Muscarinicacetylcholinereceptor regulationbyacceleratedrateofreceptorloss. Biochem.Biophys.Res.Comm. 90:506- 512.

KnoersN.andMonnensL.A.(1992)Nephrogenicdiabetesinsipidus:clinicalsymptoms, pathogenesis,geneticsandtreatment.Pediatr.Nephrol.6:476-482

189 6.References

KobilkaB.K.,KobilkaT.S.,DanielK.,ReganJ.W.,CaronM.G.,andLefkowitzR.J.

(1988)Chimericα2-,β2-adrenergicreceptors:delineationofdomainsinvolvedineffector couplingandligandbindingspecificity.Science240:1310-1316.

KobilkaB.K.(1992)AdrenergicreceptorsasmodelsforGprotein-coupledreceptors. Annu.Rev.Neurosci.15:97-114.

KönigB.,ArendtA.,McDowellJ.H.,KahlertM.,HargraveP.A.,andHofmannK.P. (1989)Threecytoplasmicloopsofrhodopsininteractwithtransducin. Proc.Natl.Acad. Sci.U.S.A.86:6878-6882.

KojimaD.,TerakitaA.,IshikawaT.,TsukaharaY.,MaedaA.,andShichidaY.(1997)A novelGo-mediatedphototransductioncascadeinscallopvisualcells. J.Biol.Chem.272: 22979-22982.

KojroE.,EichP.,GimplG.,andFahrenholzF.(1993)Directidentificationofan extracellularagonistbindingsiteintherenalV2vasopressinreceptor. Biochemistry32: 13537-13544.

KomatsuzakiK.,MurayamaY.,GiambarellaU.,OgataE.,SeinoS.,andNishimotoI. (1997)AnovelsystemthatreportstheGproteinlinkedtoagivenreceptor:astudyof type3somatostatinreceptor.FEBSLett.406:165-170.

KostenisE.,ConklinB.R.,andWess,J.(1997a)Molecularbasisofreceptor/Gprotein couplingselectivitystudiedbycoexpressionofwildtypeandmutantM 2muscarinic receptorswithmutantGαqsubunits.Biochemistry36:1487-1495.

KostenisE.,DegtyarevM.Y.,ConklinB.R.,andWessJ.(1997b)TheN-terminal extensionofGαqiscriticalforconstrainingtheselectivityofreceptorcoupling. J.Biol. Chem.272:19107-19110.

KostenisE.,GomezaJ.,LercheC.,andWessJ.(1997c)Geneticanalysisofreceptor-Gαq couplingselectivity.J.Biol.Chem.272:23675-23681.

KosugiS.,OkajimaF.,BanT.,HidakaA.,ShenkerA.,andKohnL.D.(1993) Substitutionsofdifferentregionsofthethirdcytoplasmicloopofthethyrotropin(TSH) receptorhaveselectiveeffectsonconstitutive,TSH-,andTSHreceptorautoantibody- stimulatedphosphoinositideand3’,5’-cyclicadenosinemonophosphatesignal generation.Mol.Endocrinol.7:1009-1020.

KovacsG.L.andDeWiedD.(1994)Peptidergicmodulationoflearningandmemory processes.Pharmacol.Rev.46:269-291. KrupnickJ.G.andBenovicJ.L.(1998)TheroleofreceptorkinasesandarrestinsinG protein-coupledreceptorregulation.Annu.Rev.Pharmacol.Toxicol.38:289-319.

190 6.References

KunkelM.T.andPeraltaE.G.(1993)Chargedaminoacidsrequiredforsignal transductionbytheM3muscarinicacetylcholinereceptor.EMBOJ.12:3809-3815.

LambrightD.G.,NoelJ.P.,HammH.E.,andSiglerP.G.(1994)Structuraldeterminants foractivationoftheα-subunitofaheterotrimericGprotein.Nature369:621-628.

LambrightD.G.,SondekJ.,BohmA.,SkibaN.P.,HammH.E.,andSiglerP.G.(1996) The2.0ÅstructureofaheterotrimericGprotein.Nature379:311-319.

LaszloF.A.,LaszloF.,andDeWiedD.(1991)Pharmacologyandclinicalperspectivesof vasopressinantagonists.Pharmacol.Rev.43:73-108.

LattionA.-L.,DivianiD.,andCotecchiaS.(1994)Truncationofthereceptorcarboxyl terminusimpairsagonist-dependentphosphorylationanddesensitizationofthe α1B- adrenergicreceptor.J.Biol.Chem.269:22887-22893.

LaugwitzK.-L.,AllgeierA.,OffermannsS.,SpicherK.,VanSandeJ.,DumontJ.E.,and SchultzG.(1996)Thehumanthyrotropinreceptor:Aheptahelicalreceptorcapableof stimulatingmembersofallfourGproteinfamilies.Proc.Natl.Acad.Sci.U.S.A.93:116- 120.

LebererE.,ThomasD.Y.,andWhitewayM.(1997)Pheromonesignallingandpolarized morphogenesisinyeast.Curr.Opin.Genet.Dev.7:59-66.

LechleiterJ.,HellmissR.,DuersonK.,EnnulatD.,DavidN.,ClaphamD.,andPeraltaE. (1990)DistinctsequenceelementscontrolthespecificityofGproteinactivationby muscarinicacetylcholinereceptorsubtypes.EMBOJ.9:4381-4390.

LeeN.H.,GeoghagenN.S.M.,ChengE.,ClineR.T.,andFraserC.M.(1996)Alanine scanningmutagenesisofconservedarginine/lysine-arginine/lysine-X-X-arginine/lysineG protein-activatingmotifsonM1muscarinicacetylcholinereceptors.Mol.Pharmacol.50: 140-148.

LeeK.B.,Pals-RylaarsdamR.,BenovicJ.L.,andHoseyM.M.(1998)Arrestin- independentinternalizationoftheM 1,M 3,andM 4subtypesofmuscariniccholinergic receptors.J.Biol.Chem.273:12967-12972.

LeeN.H.,Earle-HughesJ.,andFraserC.M.(1994)Agonist-mediateddestabilizationof theM1muscarinicacetylcholinereceptormRNA.ElementsinvolvedinmRNAstability arelocalizedinthe3’-untranslatedregion.J.Biol.Chem.269:4291-4298.

LiardJ.F.(1994)L-NAMEantagonizesvasopressinV2-inducedvasodilatationindogs. Am.J.Physiol.266:H99-H106.

191 6.References

LiggettS.B.,CaronM.G.,LefkowitzR.J.,andHnatowichM.(1991)Coupling ofa mutatedformofthehuman β2-adrenergicreceptortoG iandG s:Requirementfor multiplecytoplasmicdomainsinthecouplingprocess.J.Biol.Chem.266:4816-4821.

LinH.Y.,HarrisT.L.,FlanneryM.S.,AruffoA.,KajiE.H.,GornA.,KolafowskiL.F.Jr., LodishH.F.,andGoldringS.R.(1991)Expressionandcloningofanadenylatecyclase- coupledcalcitoninreceptor.Science254:1022-1024.

LiuJ.,ConklinB.R.,BlinN.,YunJ.,andWessJ.(1995)Identificationofareceptor/G proteincontactsitecriticalforsignalingspecificityandGproteinactivation. Proc.Natl. Acad.Sci.U.S.A.92:11642-11646.

LiuJ.,andWessJ.(1996) DifferentsinglereceptordomainsdeterminethedistinctG proteincouplingprofilesofmembersofthevasopressinreceptorfamily. J.Biol.Chem. 271:8772-8778.

LolaitS.J.,O’CarrollA.M.,McBrideO.W.,KonigM.,MorelA.,andBrownsteinM.J. (1992)CloningandcharacterizationofavasopressinV2receptorandpossiblelinkto nephrogenicdiabetesinsipidus.Nature357:336-339.

LolaitS.,O’CarrollA.M.,MahanL.,FelderC.,ButtonD.,YoungIIIW.,MezeyE.,and BrownsteinM.J.(1995)ExtrapituitaryexpressionoftheratV1bvasopressinreceptor gene.Proc.Nat.Acad.Science92:6783-6787.

LoosfeltH.M.,MisrahiM.,AtgerM.,SalesseR.,VuHai-LuuThiM.T.,JolivetA., Guiochon-MantelA.,SarS.,JallaB.,GarnierJ.,andMilgromE.(1989)Cloningand sequencingofporcineLH-hCGreceptorDNA:variantslackingtransmembranedomain. Science245:525-528.

LuZ .-L.,CurtisC.A.,JonesP.G.,PaviaJ.,andHulmeE.C.(1997)Theroleofthe aspartate-arginine-tyrosinetriadintheM 1muscarinicreceptor:Mutationsofaspartate 122andtyrosine124decreasereceptorexpressionbutdonotabolishsignaling. Mol. Pharmacol.51:234-241.

MaggioR.,BarbierP.,FornaiF.,CorsiniG.U.(1996)Functionalroleofthethird cytoplasmicloopinmuscarinicreceptordimerization.J.Biol.Chem.271:31055-31060.

MalmbergA.,andStrangeP.G.(2000)Site-directedmutationsinthethirdintracellular loopoftheserotonin5-HT 1AreceptoralterGproteincouplingfromG itoGsinaligand- dependentmanner.J.Neurochem.75:1283-1293.

MartinE.L.,Rens-DomianoS.,SchatzP.J.,andHammH.(1996)Potentpeptide analoguesofaGproteinreceptor-bindingregionobtainedwithacombinatoriallibrary.J. Biol.Chem.271:361-366.

192 6.References

MathiS.,ChanY.,LiX.,andWheelerM.B.(1997)Scanningoftheglucagon-like peptide-1receptorlocalizesGprotein-activatingdeterminantsprimarilytotheNterminus ofthethirdintracellularloop.Mol.Endocrinol.11:424-432.

MatsunamiH.andBuckL.B.(1997)Amultigene familyencodingadiversearrayof putativepheromonereceptorsinmammals.Cell90:775-784.

Matus-LeibovitchN.,NussenzweigD.R.,GershengornM.C.,andOronY.(1995) Truncationofthethyrotropin-releasinghormonereceptorcarboxyltailcauseconstitutive activityandleadstoimpairedresponsivenessinXenopusoocytesandAtT20cells. J. Biol.Chem.270:1041-1047.

MendreC.,DufourM.N.,LeRouxS.,SeyerR.,GuillouL.,CalasB.,andGuillonG. (1997)SyntheticratV1avasopressinreceptorfragmentsinterferewithvasopressin bindingviaspecificinteractionwiththereceptor.J.Biol.Chem.272:21027-21036.

MerkourisM.,DragatsisI.,MegaritisG.,KonidakisG.,ZioudrouC.,MilliganG.,and GeorgoussiZ.(1996)Identificationofthecriticaldomainsofthe δ-opioidreceptor involvedinproteincouplingusingsite-specificsyntheticpeptides. Mol.Pharmacol.50: 985-993.

MichellR.H.,KirkC.J.,andBillahM.M.(1979) Hormonalstimulationof phosphatiylinositolbreakdownwithparticularreferencetothehepaticeffectsof vasopressin.Biochem.Soc.Trans.7:861-865.

MigeonJ.C.andNathansonN.M.(1994)DifferentialregulationofcAMP-mediatedgene transcriptionbyM1andM4muscarinicacetylcholinereceptors.J.Biol.Chem.269:9767- 9773.

MilliganG.(1995)SignalsortingbyGprotein-linkedreceptors. Adv.Pharmacol.32:1- 29.

MitchellR.,McCullochD.,LutzE.,JohnsonM.,MacKenzieC.,FennellM.,FinkG., ZhouW.,andSealfonS.C.(1998)Rhodopsin-familyreceptorsassociatewithsmallG proteinstoactivatephospholipaseD.Nature392:411-414.

MohrE.,MeyerhofW.,andRichterD.(1995)Vasopressinandoxytocin:molecular biologyandevolutionofthepeptidehormonesandtheirreceptors.Vitam.Horm.51:235- 266.

MorelA.,O’CarrollA.M.,BrownsteinM.J.,andLolaitS.J.(1992) Molecularcloning andexpressionofaratV1aarginine vasopressinreceptor.Nature356:523-526.

MorinD.,CotteN.,BalestreM.N.,MouillacB.,ManningM.,BretonC.,andBarberisC. (1998)TheD136AmutationoftheV2vasopressinreceptorinducesaconstitutively

193 6.References activitywhichpermitsdiscriminationbetweenantagonistswithpartialagonistand inverseagonistactivities.FEBSLett.441:470-475.

MoroO.,LamehJ.,HöggerP.,andSadéeW.(1993)Hydrophobicaminoacidinthei2 loopplaysakeyroleinreceptor-Gproteincoupling.J.Biol.Chem.268:22273-22276.

MoroO.,ShockleyM.S.,LamehJ.,andSadéeW.(1994)Overlappingmulti-sitedomains ofthemuscariniccholinergicHm1receptorinvolvedinsignaltransductionand sequestration.J.Biol.Chem.269:6651-6655.

MosesA.M.,SanganiG.,andMillerJ.L.(1995)Proposedcauseofmarkedvasopressin resistanceinafemalewithanX-linkedrecessiveV2receptorabonormality. J.Clin. Endocrinol.Metablol.80:1184-1186.

MouillacB.,ChiniB.,BalestreM.N.,ElandsJ.,Trumpp-KallmeyerS.,HoflackJ.,Hibert M.,JardS.,andBarberisC.(1995)ThebindingsiteofneuropeptidevasopressinV1a receptor.Evidenceforamajorlocalizationwithintransmembraneregions. J.Biol.Chem. 270:25771-25777.

MuhlradD.,HunterR.,andParkerR.(1992)Arapidmethodforlocalizedmutagenesis ofyeastgenes.Yeast8:79-82.

MumbergD.,MüllerR.,andFunkM.(1995)Yeastvectorsforthecontrolledexpression ofheterologousproteinsindifferentgeneticbackgrounds.Gene156:119-122.

MünchG.,DeesC.,HekmanM.,andPalmD.(1991)Multisitecontactsinvolvedin couplingofthe β-adrenergicreceptorwiththestimulatoryguanine-nucleotide-binding regulatoryprotein.Eur.J.Biochem.198:357-364.

MunsonP.J.andRodbardD.(1980)Ligand:aversatilecomputerizedapproachfor characterizationofligand-bindingsystems.Anal.Biochem.107:220-239.

NäsmanJ.,JanssonC.C.,andAkermanK.E.O.(1997) Thesecondintracellularloopof theα2-adrenergicreceporsdeterminessubtype-specificcouplingtocAMPproduction. J. Biol.Chem.272:9703-9708.

NakamuraM.,HondaZ.,IzumiT.,SakanakaC.,MutohH.,MinamiM.,BitoH.,Seyama Y.,MatsumotoT.,NomaM.etal. (1991)Molecularcloningandexpressionofplatelet- activatingfactorreceptorfromhumanleukocytes.J.Biol.Chem.266:20400-20405.

NakamuraM.,SakanakaC.,AokiY.,OgasawaraH.,TsujiT.,KodamaH.,Matsumoto T.,ShimizuT.,andNomaM.(1995)Identificationoftwoisoformsofmouse neuropeptideY-Y1receptorgeneratedbyalternativesplicing. Isolation,genomic structure,andfunctionalexpressionofthereceptors.J.Biol.Chem.270:30102-301010.

194 6.References

NakanishiS.(1992)Moleculardiversityofglutamatereceptorsandimplicationsforbrain function.Science258:597-603.

NathansJ.,andHognessD.S.(1983)Isolation,sequenceanalysis,andintron-exon arrangementofthegeneencodingbovinerhodopsin.Cell34:807-814.

NeerE.J.(1995)HeterotrimericGproteins:organizersoftransmembranesignals. Cell 80:249-257.

NeubigR.R.(1994)MembraneorganizationinGproteinmechanisms. FASEBJ.8:939- 946

NielsenS.,DiGiovanniS.R.,ChristensenE.I.,KnepperM.A.,andHarrisH.W.(1993) Cellularandsubcellularimmunolocalizationofvasopressin-regulatedwaterchannelin ratkidney.Proc.Natl.Acad.Sci.USA90:11663-11667.

NishimotoG.,ZeleninaM.,LiD.,YasuiM.,AperiaA.,NielsenS.,andNairnA.C. (1999)Argininevasopressinstimulatesphosphorylationofaquaporin-2inratrenaltissue. Am.J.Physiol.276:F254-F259.

NodaK.,SaadY.,GrahamR.M.,andKarnikS.S.(1994)Thehighaffinitystateoftheβ2- adrenergicreceptorrequiresuniqueinteractionbetweenconservedandnon-conserved extracellularloopcysteines.J.Biol.Chem.269:6743-6752.

NoelJ.P.,HammH.E.,andSiglerP.B.(1993)The2.2Åcrystalstructureoftransducin-α complexedwithGTPγS.Nature366:654-663

NussenzweigD.R.,ThawC.N.,andGershengornM.C.(1994)Inhibitionofinositol phosphatesecondmessengerformationbyintracellularlooponeofahumancalcitonin receptor:Expressionandmutationalanalysisofsyntheticreceptorgenes. J.Biol.Chem. 269:28123-28129.

Nystedt,S.,Emilsson,K.,Larsson,A.K.,Strombeck,B.,andSundelinJ.(1995) Molecularcloningandfunctionalexpressionofthegeneencodingthehumanproteinase- activatedreceptor2.Eur.J.Biochem.232:84-89.

OakleyR.H.,LaporteS.A.,HoltJ.A.,BarakL.S.,andCaronM.(1999)Associationof β- arrestinwithGprotein-coupledreceptorsduringclathrin-mediatedendocytosisdictates theprofileofreceptorresensitization.J.Biol.Chem.274:32248-32257.

OakleyR.H.,LaporteS.A.,HoltJ.A.,CaronM.G.,andBarakL.S.(2000) Differential affinitiesofvisualarrestin, β-arrestin1,andβ-arrestin2forGprotein-coupledreceptors delineatetwomajorclassesofreceptors.J.Biol.Chem.275:17201-17210.

195 6.References

ObosiL.A.,HenR.,BeadleD.J.,BermudezI.andKingL.A.(1997)Mutationalanalysis ofthemouse5-HT 7receptor:Importanceofthethirdintracellularloopforreceptor/G proteininteraction.FEBSLett.412:321-324.

O'DowdB.F.,HnatowichM.,ReganJ.W.,LeaderW.M.,CaronM.G.,andLefkowitz

R.J.(1988)Site-directedmutagenesisofthecytoplasmicdomainsofthehuman β2- adrenergicreceptor.J.Biol.Chem.263:15985-15992.

OffermannsS.,WielandT.,HomannD.,SandmannJ.,BombienE.,SpicherK.,Schultz G.andJakobsK.H.(1994)Transfectedmuscarinicacetylcholinereceptorsselectively coupletoGi-typeGproteinsandGq/11.Mol.Pharmacol.45:890-898.

OffermannsS.,andSimonM.I.(1995)G α15andGα16coupleawidevarietyofreceptors tophopholipaseC.J.Biol.Chem.270:15175-15180.

OkayamaH.andBergP.(1983)AcDNAcloningvectorthatpermitsexpressionof cDNAinsertsinmammaliancells.Mol.Cell.Biol.3:280-289.

OkscheA.,SchüleinR.,RutzC.,LiebenhoffU.H.W.,DicksonJ.,MuellerH.,Rascher W.,BirnbaumerM.,andRosenthalW.(1996)VasopressinV2receptormutantscausing X-linkednephrogenicdiabetesinsipidus:analysisofexpression,processingandfunction. Mol.Pharm.50:820-828.

OlahM.E.(1997)IdentificationofA 2aadenosinereceptordomainsinvolvedinselective couplingtoGs:AnalysisofchimericA1/A2aadenosinereceptors.J.Biol.Chem.272:337- 344.

OnrustR.,HerzmarkP.,ChiP.,GarciaP.D.,LichtargeO.,KingsleyC.,andBourneH.R. (1997)Receptorandβγbindingsitesintheα-subunitoftheretinalGproteintransducin. Science275:381-384.

OrloffJ.,andHandlerJ.(1967)Theroleofadenosine3’ ,5’-phosphateintheactionof antidiuretichormone.Amer.J.Med.42:757-768.

OrtizT.C.,DevereauxM.C.Jr.,andParkerK.K.(2000)Structuralvariantsofahuman5-

HT1areceptorintracellularloop3peptide.Pharmacology60:195-202.

OsawaS.andWeissE.R.(1995)Theeffectofcarboxyl-terminalmutagenesisofG ton rhodopsinandguaninenucleotidebinding.J.Biol.Chem.270:31052-31058.

OstromR.S.,PostS.R.,andInselP.A.(2000)StiochiometryandcompartmentationinG protein-coupledreceptorsignaling:implicationsfortherapeuticinterventioninvolvingGs. J.Pharmacol.Exp.Ther.294:407-412.

196 6.References

OstrowskiN.L.,LolaitS.J.,BradleyD.J.,O”CarrollA.M.,BrownsteinM.J.,andYoung W.S.(1992)DistributionofV1aandV2vasopressinreceptormessengerribonucleic acidsinratliver,kidney,pituitaryandbrain.Endocrinology131:533-535.

OstrowskiN.L.,andYoungW.S.(1993)ExpressionofvasopressinV1aandV2receptor messengerribonucleicacidintheliverandkidneyofembryonic,developing,andadult rats.Endocrinology133:1849-1859.

PaceU.,HanskiE.,SalomonY.,andLancetD.(1985)Odorant-sensitiveadenylate cyclasemaymediateolfactoryreception.Nature316:255-258.

PalczewskiK.,KumasakaT.,HoriT.,BehnkeC.A.,MotoshimaH.,FoxB.A.,LeTrong I.,TellerD.C.,OkadaT.,StenkampR.E.,YamamotoM,andMiyanoM.(2000)Crystal structureofrhodopsin:aGprotein-coupledreceptor.Science289:739-745.

Palm,D.,Muench.,G.,Dees,C.,andHekman,M.(1989)Mappingoftheβ-adrenoceptor couplingdomainstoG s-proteinbysite-specificsyntheticpeptides. FEBSLett. 254:89- 93.

PanY.,WilsonP.,andGitschierJ.(1994)TheeffectofeightV2vasopressinreceptor mutationsonstimulationofadenylylcyclaseandbindingtovasopressin.J.Biol.Chem.B 269:31933-31937.

ParkerE.M.andRossE.M.(1991)Truncationoftheextendedcarboxyl-terminaldomain increasestheexpressionandregulatoryactivityoftheavian β-adrenergicreceptor. J. Biol.Chem.266:9987-9996.

PauschM.H.(1997)Gprotein-coupledreceptorsin Saccharomycescerevisiae:high- throughputscreeningassaysfordrugdiscovery.TrendsBiotechnol.15:487-494.

PauschM.H.,PriceL.A.,KajkowskiE.M.,StranadJ.,delaCruzF.,HeinrichJ., OzenbergerB.A.,andHadcockJ.R.(1998)HeterologousGprotein-coupledreceptors expressedin Saccharomycescerevisiae:Methodsforgeneticanalysisandligand identification,inIdentificationandExpressionofGProtein-CoupledReceptors (Lynch K.R.,ed.),pp196-212.Wiley-Liss,NewYork.

PerezD.M.,HwaJ.,GaivinR.,MathurM.,BrownF.,andGrahamR.M.(1996) Constitutiveactivationofasingleeffectorpathway:evidenceformultipleactivation statesofaGprotein-coupledreceptor.Mol.Pharmacol.49:112-122.

PhalipouS.,CotteN.,CarnazziE.,SeyerR.,JardS.,BarberisC.,andMouillacB.(1997) Mappingpeptide-bindingdomainsofthehumanV1avasopressinreceptorwitha photoactivatablelinearpeptideantagonist.J.Biol.Chem.272:26536-26544.

197 6.References

PhalipouS.,SeyerR.,CotteN.,BretonC.,BarberisC.,HibertM.,andMouillacB. (1999)DockingoflinearpeptideantagonistsintothehumanV1avasopressinreceptor. J. Biol.Chem.274:23316-23327.

PinJ .-P.,JolyC.,HeinemannS.F.,andBockaertJ.(1994)Domainsinvolvedinthe specificityofGproteinactivationinphospholipaseC-coupledmetabotropicglutamate receptors.EMBOJ.13:342-348.

PitcherJ.A.,FreedmanN.J.,andLefkowitzR.J.(1998)Gprotein-coupledreceptor kinases.Annu.Rev.Biochem.67:653-692.

PocockGandRichardsC.D.(1999)HumanPhysiology.TheBasisofMedicine(New York:OxfordUniversityPress).

PorterJ.E.,HwaJ.,andPerezD.M.(1996)Activationofthe α1b-adrenergicreceptoris initiatedbydisruptionofaninterhelicalsaltbridgeconstraint.J.Biol.Chem.271:28318- 28323.

PostinaR.,KojroE.,andFahrenholzF.(1998)Identificationofneurohypophysial hormonereceptordomainsinvolvedinligandbindingandGproteincoupling. Adv.Exp. Med.Biol.449:371-385.

PostinaR.,UferE.,PfeifferR.,KnoersN.V.,andFahrenholzF.(2000) Misfolded vasopressinV2receptorscausedbyextracellularpointmutationsentailcongential nephrogenicdiabetesinsipidus.Mol.CellEndocrinol.164:31-39.

PriceL.A.,KajkowskiE.M.,HadcockJ.R.,OzenbergerB.A.,andPauschM.H.(1995) Functionalcouplingofamammaliansomatostatinreceptortotheyeastpheromone responsepathway.Mol.Cell.Biol.15:6188-6195.

PriceL.,StrnadJ.,PauschM.,andHadcockJ.(1996) Pharmacologicalcharacterization oftheratA 2aadenosinereceptorfunctionallycoupledtotheyeastpheromoneresponse pathway.Mol.Pharmacol.50:829-937.

ProbstW.C.,SnyderL.A.,SchusterD.I.,BrosiusJ.,andSealfonS.C.(1992) Sequence alignmentoftheGprotein-coupledreceptorsuperfamily.DNACellBiol.11:1-20.

QianA.,WangW.,andSanbornB.M.(1998)Evidencefortheinvolvementofseveral intracellulardomainsinthecouplingofoxytocinreceptortoG αq/11.CellSignal10:101- 105.

RaymondJ.R.(1995)Multiplemechanismsofreceptor/Gproteinsignalingspecificity. Am.J.Physiol.269:F141-F158.

198 6.References

RaymondC.K.,PownderT.A.,andSexsonS.L.(1999)Generalmethodforplasmid constructionusinghomologousrecombination.Biotechniques26:134-141

ReiländerH.,ReinhartC.,andSzmolenszkyA.(2000)Largescaleexpressionof receptorsinyeast,in Gproteincoupledreceptors (HagaT.andBersteinG.,eds.),pp. 281-322.CRCPress,BocaRaton.

RemmersA.E.,ClarkM.J.,AltA.,MedzihradskyF.,WoodsJ.H.,andTraynorJ.R. (2000)ActivationofGproteinbyopioidreceptors:roleofreceptornumberandGprotein concentration.Eur.J.Pharmacol.396:67-75.

Rens-DomianoS.,andHammH.(1995) Structuralandfunctionalrelationshipsof heterotrimericGproteins.FASEBJ.9:1059-1066.

RezaeiK.,SaarK.,SoometsU.,ValknaA.,NasmanJ.,ZorkoM.,AkermanK., SchroederT.,BartfaiT.,andLangelU.(2000)Roleofthirdintracellularloopofgalanin receptortype1insignaltransduction.Neuropeptides34:25-31.

RobbinsL.S.,NadeauJ.H.,JohnsonK.R.,KellyM.A.,Roselli-RehfussL.,BaackE., MountjoyK.G.,andConeR.D.(1993)Pigmentationphenotypesofvariantextension locusallelesresultfrompointmutationsthatalterMSHreceptorfunction. Cell72:827- 834.

RobinsonPR.,CohenG.B.,ZhukovskyE.A.,andOprianD.D.(1992)Constitutively activemutantsofrhodopsin.Neuron9:719-725.

RomanosM.A.,ScorerC.A.,andClareJ.J.(1992)Foreigngeneexpressioninyeast:a review.Yeast8:423-488.

RosenthalW.,SeiboldA.,AntaramianA.,LonerganM.,ArthusM.F.,HendyG., BirnbaumerM.,andBichetD.G.(1992)Molecularidentificationofthegeneresponsible forcongenitalnephrogenicdiabetesinsipidus.Nature359:233-235.

RosenthalW.,AntaramianA.,GilbertS.,andBirnbaumerM.(1993)Nephrogenic diabetesinsipidus:aV2vasopressinreceptorunabletostimulateadenylylcyclase. J. Biol.Chem.268:13030-13033.

RossE.M.(1989)SignalsortingandamplificationthroughGprotein-coupledreceptors. Neuron3:141-152.

RossE.M.(1995)Proteinmodification.PalmitoylationinGproteinsignalingpathways. Curr.Biol.5:107-109.

199 6.References

RossE.M.andWilkieT.M.(2000)GTPase-activatingproteinsforheterotrimericG proteins:regulatorsofGproteinsignaling(RGS)andRGS-likeproteins. AnnuRev Biochem.69:795-827.

RothsteinR.(1991)Targeting,disruption,replacementandallelerescue:integrative DNAtransformationinyeast.Meth.Enzymol.194:281-301.

SadeghiH.,RobertsonG.L.,BichetD.G.,andBirnbaumerM.(1997a)Biochemicalbasis ofpartialphenotypeinX-linkedrecessivediabetesinsipidus.Mol.Endocrinol.11:1806- 1813.

SadeghiH.M.,InnamoratiG.,DagaragM.,andBirnbaumerM.(1997b)Palmitoylationof theV2vasopressinreceptor.Mol.Pharmacol.52:21-29.

SadeghiH.,InnamoratiG.,andBirnbaumerM.(1997c)AnX-linkedNDImutation revealsarequirementforcellsurfaceV2Rexpression.Mol.Endocrinol.11:706-713.

SadeghiH.andBirnbaumerM.(1999)O-glycosylationoftheV2vasopressinreceptor. Glycobiology9:731-737.

SaitoM.,SugimotoT.,TaharaA.,andKawashimaH.(1995)Molecularcloningand characterizationofratV1bvasopressinreceptor:evidenceforitsexpressioninextra- pituitarytissues.Biochem.Biophys.Res.Commun.212:751-757.

SalomonY.,LondosC.,andRodbellM.(1974) Ahighlysensitiveadenylatecyclase assay.Anal.Biochem.58:541-548.

SanoT.,OhyamaK.,YamanoY.,NakagomiY.,NakazawaS.,KikyoM.,ShiraiH., BlankJ.H.,andInagamiT.(1997)AdomainforGproteincouplingincarboxyl-terminal tailofratangiotensinIIreceptortype1A.J.Biol.Chem.272:23631-23636.

SavareseT.,andFraserC.(1992) Invitro mutagenesisandthesearchforstructure- functionrelationshipsamongGprotein-coupledreceptors.Biochem.J.283:21-29.

ScheerA.,FanelliF.,CostaT.,DeBenedettiP.G.,andCotecchiaS.(1996)

Constitutivelyactivemutantsofthe α1B-adrenergicreceptor:roleofhighlyconserved polaraminoacidsinreceptoractivation.EMBOJ.15:3566-3578.

ScheerA.,FanelliF.,CostaT.,DeBenedetiP.G.,andCotecchiaS.(1997a)The activationprocessofthe α1B-adrenergicreceptor:potentialroleofprotonationand hydrophobicityofahighlyconservedaspartate.Proc.Natl.Acad.Sci.USA94:808-813.

ScheerA.,andCotecchiaS.(1997b)ConstitutivelyactiveGprotein-coupledreceptors: potentialmechanismsofreceptoractivation.J.Recept.SignalTransduc.Res.17:57-73.

200 6.References

SchertlerG.F.X.,VillaC.,andHendersonR.(1993)Projectionstructureofrhodopsin. Nature362:770-772.

SchmaleH.,BahnsenU.,andRichterD.(1993)Structureandexpressionofthe vasopressinprecursorgeneincentraldiabetesinsipidus. Ann.NewYorkAcad.Sci. 689: 74-82.

SchnermannJ.(1998)Juxtaglomerularcellcomplexintheregulationofrenalsalt excretion.Am.J.Physiol.274:R263-R279.

SchönebergT.,LiuJ.,andWessJ.(1995)Plasmamembranelocalizationandfunctional rescueoftruncatedformsofaGprotein-coupledreceptor. J.Biol.Chem. 270:18000- 18006.

SchönebergT.,YunL.,WenertD.,andWessJ.(1996)FunctionalrescueofmutantV2 vasopressinreceptorscausingnephrogenicdiabetesinsipidusbyaco-expressedreceptor polypeptide.EMBOJ.15:1283-1291.

SchönebergT.,SchulzA.,BiebermannH.,GrutersA.,GrimmT.,HubschmannK.,Filler G.,GudermannT.,andSchultzG.(1998)V2vasopressinreceptordysfunctionin nephrogenicdiabetesinsipiduscausedbydifferentmolecularmechanisms. Hum.Mutat. 12:196-205.

SchönebergT.,SchultzG.,andGudermannT.(1999)StructuralbasisofGprotein- coupledreceptors.Mol.CellEndocrinol.151:181-193.

SchollD.J.andWellsJ.N.(2000)Serineandalaninemutagenesisoftheninenative cysteinsresiduesofthehumanA 1adenosinereceptor. Biochem.Pharmacol.60:1647- 1654.

SchreiberR.E.,ProssnitzE.R.,YeR.D.,CochraneC.G.,andBokochG.M.(1994) DomainsofthehumanneutrophilN-formylpeptidereceptorinvolvedinGprotein coupling:Mappingwithreceptor-derivedpeptides.J.Biol.Chem.269:326-331.

SchüleinR.,LiebenhoffU.,MuellerH.,BirnbaumerM.,andRosenthalW.(1996) PropertiesofthehumanargininevasopressinV2receptoraftersite-directedmutagenesis ofitsputativepalmitoylationsite.Biochem.J.313:611-616.

SchüleinR.,HermosillaR.,OkscheA.,DeheM.,WiesnerB.,Krauseg.,andRosenthal W.(1998)Adileucinesequenceandanupstreamglutamateresidueintheintracellular carboxylterminusofthevasopressinV2receptorareessentialforcellsurfacetransportin COS.M6cells.Mol.Pharmacol.54:525-535.

SchüleinR.,ZuhlkeK.,OkscheA.,HermosillaR.,FurkertJ.,andRosenthalW.(2000) TheroleofconservedextracellularcysteineresiduesinvasopressinV2receptorfunction

201 6.References

andpropertiesoftwonaturallyoccurringmutantreceptorswithadditionalextracellular cysteineresidues.FEBS466:101-106.

SchulzA.,SchönebergT.,PaschkeR.,SchultzG.,andGudermannT.(1999b)Roleof thethirdintracellularloopfortheactivationofgonadotropinreceptors. Mol.Endocrinol. 13:181-190.

SchulzA.,GrosseR.,SchultzG,GudermannT.,andSchoenebergT.(2000)Structural implicationforreceptoroligomerizationfromfunctionalreconstitutionstudiesofmutant V2vasopressinreceptors.J.Biol.Chem.275:2381-2389.

SchwartzT.W.(1994)Locating ligand-bindingsitesin7-TMreceptorsbyprotein engineering.Curr.Opin.Biotechnol.5:434-444.

SegaloffD.L.andAscoliM.(1993)Thelutropin/choriogonadotropinreceptor...4years later.EndocrineRev.14:324-347.

SeiboldA., BrabetP.,RosenthalW.,andBirnbaumerM.(1992)Structureand chromosomallocalizationofthehumanantidiuretichormonereceptorgene. Am.J.Hum. Genet.51:1078-1083.

SeiboldA.,DagaragM.,andBirnbaumerM.(1998)MutationsoftheDRYmotifthat

preserveβ2-adrenoceptorcoupling.ReceptorsChannels5:375-385.

Serradeil-LeGalC.,LacourC.,ValetteG.,GarciaG.,FoulonL.,Galindo,G.,BankirL., PouzetB.,GuillonG.,BarberisC.,ChicotD.,JardS.,VilainP.,GarciaC.,MartyE., RaufasteD.,BrossardG.,NisatoD.,MaffrandJ.P.,andLeFurG.(1996) CharacterizationofSR121463A,ahighlypotentandselective,orallyactivevasopressin V2receptorantagonist.J.Clin.Invest.98:2729-2738.

Serradeil-LeGalC.,RaufasteD.,Double-CazanaveE.,GuillonG.,GarciaC.,PascalM., andMaffrandJ.P.(2000) BindingpropertiesofaselectivetritiatedvasopressinV2 receptorantagonist,[3H]-SR121463.KidneyInt.58:1613-1622.

SermasiE.,HowlJ.,WheatleyM.,andCooteJ.H.(1998)Localizationofarginine- vasopressinV1areceptorsonsympatho-adrenalpreganglionic. Exp.BrainRes.119:85- 91

SheikhS.P.,ZvyagaT.A.,LichtargeO.,SakmarT.P.,andBourneH.R.(1996) Rhodopsinactivationblockedbymetal-ion-bindingsiteslinkingtransmembranehelices CandF.Nature383:347-350.

Shen,D.,Jiang,M.,Hao,W.,Tao,L.,Salazar,M.,andFong,H.K.(1994)Ahuman opsin-relatedgenethatencodesaretinaldehyde-bindingprotein.Biochemistry33:13117- 13125.

202 6.References

ShenkerA.,LaueL.,KosugiS.,MerendinoJ.J.Jr,MinegishiT.,andCutlerG.B.Jr (1993) Aconstitutivelyactivatingmutationoftheluteinizinghormonereceptorin familialmaleprecociouspuberty.Nature365:652-654.

ShenkerA.(1995)Gprotein-coupledreceptorstructureandfunction:theimpactof disease-causingmutations.Bailliere’sClin.Endocrin.Metab.9:42-451.

Shenker,A.(1997)Disorderscausedbymutationsofthelutropin/choriogonadotropin receptorgene.In:ContemporaryEndocrinology:GProteins,Receptors,andDisease, Spiegel,A.M.(ed.),HumanaPress,Totowa(NJ).

ShiraiH.,TakahashiK.,KatadaT.,andInagamiT.(1995)MappingofGprotein couplingsitesoftheangiotensinIItype1receptor.Hypertension25(part2):726-730.

SikorskiR.S.andHieterP.(1989)Asystemofshuttlevectorsandyeaststrainsdesigned forefficientmanipulationofDNAinSaccharomycescerevisiae.Genetics122:19-27.

SingerI.,OsterJ.R.,andFishermanL.M.(1997)Themanagementofdiabetesinsipidus inadults.Arch.Intern.Med.157:1293-1301.

SmitM.J.,RooversE.,TimmermanH.,vandeVredeY.,AlewijnseA.E.andLeursR. (1996)TwodistinctpathwaysforhistamineH2receptordown-regulation.H2Leu124--> AlareceptormutantprovidesevidenceforacAMP-independentactionofH2agonists. J. Biol.Chem.271:7574-7582.

SnyderH.M.,NolandT.D.,andBreyerM.D.(1992)cAMP-dependentproteinkinase mediateshydrosmoticeffectofvasopressinincollectingducts. Am.J.Physiol. 263: C147-C153.

SommersC.M.,andDumontM.E.(1997)Geneticinteractionsamongthe transmembranesegmentsoftheGproteincoupledreceptorencodedbytheyeast STE2 gene.J.Mol.Biol.266:559-575.

SommersC.M.andDumontM.E.(1999)Geneticapproachesforstudyingthestructure andfunctionofGprotein-coupledreceptorsinyeast,inStructure-FunctionAnalysisofG Protein-CoupledReceptors(WessJ.,ed.),pp.141-166.Wiley-Liss,NewYork.

SondekJ.,BohmA.,LambrightD.G.,HammH.E.,andSiglerP.B.(1996)Crystal structureofaGproteinβγdimerat2.1Åresolution.Nature379:369-374.

SpaldingT.A.,BursteinE.S.,Brauner-OsborneH.,Hill-EubanksD.,andBrannM.R. (1995)Pharmacologyofaconstitutivelyactivemuscarinicreceptorgeneratedbyrandom mutagenesis.J.Pharmacol.Exp.Ther.275:1274-1279.

203 6.References

SpaldingT.A.,BursteinE.S.,WellsJ.W.,andBrannM.R.(1997)Constitutiveactivation oftheM 5muscarinicreceptorbyaseriesofmutationsattheextracellularendof transmembrane6.Biochemistry36:10109-10116.

SpiegelA.M.(1996)DefectsinGprotein-coupledsignaltransductioninhumandisease. Annu.Rev.Phyiol.58:143-170.

SprangS.R.(1997)Gproteinmechanisms:insightfromstructuralanalysis. Annu.Rev. Biochem.66:639-678.

StanasilaL.,LimW.K.,NeubigR.R.,andPattusF.(2000)Couplingefficacyand selectivityofthehuman µ-opioidreceptorexpressedasreceptor-G αfusionproteinsin Escherichiacoli.J.Neurochem.75(3):1190-1199.

StaplesR.R.,andDieckmannC.L.(1993) Generationoftemperature-sensitivecbp1 strainsofSaccharomycescerevisiaebyPCRmutagenesisandinvivorecombination: characteristicsofthemutantstrainsimplythatCBP1isinvolvedinstabilizationand processingofcytochromebpre-mRNA.Genetics135:981-991.

StraderC.D.,SigalI.S.,RegisterR.B.,CandeloreM.R.,RandsE.,andDixonR.A.(1987) Identificationofresiduesrequiredforligandbindingtothe β-adrenergicreceptor.Proc. Natl.Acad.Sci.USA84:4384-4388.

StraderC.D.,FongT.M.,TotaM.R.,UnderwoodD.,andDixonR.A.(1994)Structure andfunctionofGprotein-coupledreceptors.Annu.Rev.Biochem.63:101-132.

StraderC.D.,FongT.M.,GrazianoM.P.,andTotaM.R.(1995)ThefamilyofGprotein- coupledreceptors.FASEB9:745-754.

StrangeP.G.(1999)Gproteincoupledreceptors:conformationsandstates. Biochem. Pharmacol.58:1081-1088.

StrosbergA.D.(1991)Structure/functionrelationshipofproteinsbelongingtothefamily ofreceptorscoupledtoGTP-bindingproteins.Eur.J.Biochem.196:1-10.

SugimotoT.,SaitoM.,MochizukiS.,WatanabeY.,HashimotoS.,andKawashimaH. (1994)MolecularcloningandfunctionalexpressionofacDNAencodingthehumanV1b vasopressinreceptor.J.Biol.Chem.269:27088-27092.

SunaharaR.K.,DessauerC.W.,andGilmanA.G.(1996)Complexityanddiversityof mammalianadenylylcyclases.Annu.Rev.Pharmacol.Toxicol.36:461-480.

SurprenantA.,HorstmanD.A.,AkbaraliH.,andLimbirdL.E.(1992)Apointmutationof theα2-adrenoceptorthatblockscouplingtopotassiumbutnotcalciumcurrents. Science 257:977-980.

204 6.References

SwiftS.,SheridanP.J.,CovicL.,andKuliopulosA.(2000) PAR1thrombinreceptor-G proteininteractions.SeparationofbindingandcouplingdeterminantsintheG αsubunit. J.Biol.Chem.275:2627-2635.

TajimaT.,NakaeJ.,TakekoshiY.,TakahashiY.,YuriK.,NagashimaT.,andFujiedaK. (1996)ThreenovelAVPR2mutationsinthreeJapanesefamilieswithX-linked nephrogenicdiabetesinsipidus.Pediatr.Res.39:522-526.

TakagiY.,NinomiyaH.,SakamotoA.,MiwaS.,andMasakiT.(1995)Structuralbasis ofGproteinspecificityofhumanendothelinreceptors:Astudywithendothelin A/B chimeras.J.Biol.Chem.270:10072-10078.

TamakiT.,KiyomotoH.,HeH.,TomohiroA.,NishiyamaA.,AkiY.,KimuraS.,and AbeH.(1996)VasodilatationinducedbyvasopressinV2receptorstimulationinafferent arterioles.KidneyInt.49:722-729.

TaylorJ.M.,Jacob-MosierG.G.,LawtonR.G.,RemmersA.E.,andNeubigR.R.(1994) Bindingofanα2adrenergicreceptorthirdintracellularlooppeptidetoGβandtheamino terminusofGα.J.Biol.Chem.269:27618-27624.

TerrisJ.,EcelbargerC.A.,MarplesD.,KnepperM.A.,andNielsenS.(1995)Distribution ofaquaporin-4waterchannelexpressionwithinratkidney. Am.J.Physiol. 269:F775- F785.

ThibonnierM.,AuzanC.,MadhunZ.,WilkinsP.,Berti-MatteraL.,andClauserE. (1994)Molecularcloning,sequencing,andfunctionalexpressionofacDNAencoding thehumanV1avasopressinreceptor.J.Biol.Chem.269:3304-3310.

ThibonnierM.,Berti-MatteraL.N.,DulinN.,ConartyD.M.,andMatteraR.(1998) SignaltransductionpathwaysofthehumanV1-vascular,V2-renal,V3-pituitary vasopressinandoxytocinreceptors.Prog.BrainRes.119:147-161.

ThompsonJ.B.,WadeS.M.,HarrisonJ.K.,SalafrancaM.N.,andNeubigR.R.(1998)

CotransfectionofsecondandthirdintracellularloopfragmentsinhibitanAT 1areceptor activationofphopholipaseCinHEK-293cells.J.Pharmacol.Exp.Ther.285:216-222.

TribolletE.,BarberisC.,JardS.,Dubois-DauphinM,andDreifussJ.J.(1988) Localizationandpharmacologicalcharacterizationofhighaffinitybindingsitesfor vasopressinandoxytocinintheratbrainbylightmicroscopicautoradiography. Brain Res.442:105-118.

Trumpp-KallmeyerS.,HoflackJ.,BruinvelsA.,andHibertM.(1992) ModelingofG protein-coupledreceptors:applicationtodopamine,adrenaline,serotonin,acetylcholine, andmammalianopsinreceptors.J.Med.Chem.35:3448-3462.

205 6.References

TsuR.C.,HoM.K.C.,YungL.Y.,JoshiS.,andWongY.H.(1997)Roleofamino-and carboxyl-terminalregionsofG αzintherecognitionofG i-coupledreceptors. Mol. Pharmacol.52:38-45.

TsukaguchiH.,MatsubaraH.,TaketaniS.,MoriY.,SeidoT.,andInadaM.(1995) Binding-,intracellulartransport-,andbiosynthsis-defectivemutantsofthevasopressin type2receptorinpatientswithX-linkednephrogenicdiabetesinsipidus. J.Clin.Invest. 96:2043-2050.

UferE.,PostinaR.,GorbulevV,andFahrenholzF.(1995)Anextracellularresidue determinestheagonistspecificityofV2vasopressinreceptors.FEBSLett.362:19-23.

Ulloa-AguirreA.,StanislausD.,AroraV.,VaananenJ.,BrothersS.,JanovickJ.A.,and ConnP.M.(1998)Thethirdintracellularloopoftheratgonadotropin-releasinghormone receptorcouplesthereceptortoG s-andG q/11-mediatedsignaltransductionpathways: evidencefromloopfragmenttransfectioninGGH3cells.Endocrinology139:2472-2478.

UngerV.M.,HargraveP.A.,BaldwinJ.M.,andSchertlerG.F.X.(1997)Arrangementof rhodopsintransmembraneα-helices.Nature389:203-206.

UnsonC.G.,CypessA.M.,KimH.N.,GoldsmithP.K.,CarruthersC.J.L.,Merrifield R.B.,andSakmarT.P.(1995)Characterizationofdeletionandtruncationmutantsofthe ratglucagonreceptor:Seventransmembranesegmentsarenecessaryforreceptor transporttotheplasmamembraneandglucagonbinding. J.Biol.Chem. 270:27720- 27727.

VanLieburgA.F.VerdijkM.A.J.,SchouteF.,LigtenbergM.J.L.,vanOostB.a., WaldhauserF.,DobnerM.,MonnensL.A.H.,andKnoersN.V.A.M.(1995)Clinical phenotypeofnephrogenicdiabetesinsipidusinfemaleheterozygousforavasopressin type2receptormutation.Hum.Genet.96:70-78.

VanRheeA.M.andJacobsonK.A.(1996)MoleculararchitectureofGprotein-coupled receptors.DrugDev.Res.37:1-38.

VassartG.,DesarnaudL.,DuprezL.,EggerickxD.,LabbeO.,LibertF.,MollerauC., ParmaJ.,PaschkeR.,TonaccheraM.,VanderhaeghenP.,VanSandeJ.,DumontJ., ParmentierM.(1995)TheGprotein-coupledreceptorfamilyandoneofitsmembers,the TSHreceptor.Ann.NYAcad.Sci.766:23-30.

VenterJ.C.,AdamsM.D.,MyersE.W.,LiP.W.,MuralR.J.,SuttonG.G.,SmithH.O., YandellM.,EvansC.A.,HoltR.A.,GocayneJ.D.,AmanatidesP.,BallewR.M.,Huson D.H.,WortmanJ.R.,ZhangQ.,KodiraC.D.,ZhengX.H.,ChenL.,SkupskiM., SubramanianG.,ThomasP.D.,ZhangJ.,GaborMiklosG.L.,NelsonC.,BroderS.,Clark A.G.,NadeauJ.,McKusickV.A.,ZinderN.,LevineA.J.,RobertsR.J.,SimonM., SlaymanC.,HunkapillerM.,BolanosR.,DelcherA.,DewI.,FasuloD.,FlaniganM.,

206 6.References

FloreaL.,HalpernA.,HannenhalliS.,KravitzS.,LevyS.,MobarryC.,ReinertK., RemingtonK.,Abu-ThreidehJ.,BeasleyE.,BiddickK.,BonazziV.,BrandonR.,Cargill M.,ChandramouliswaranI.,CharlabR.,ChaturvediK.,DengZ.,DiFrancescoV.,Dunn P.,EilbeckK.,EvangelistaC.,GabrielianA.E.,GanW.,GeW.,GongF.,GuZ.,Guan P.,HeimanT.J.,HigginsM.E.,JiR.R.,KeZ.,KetchumK.A.,LaiZ.,LeiY.,LiZ.,LiJ., LiangY.,LinX.,LuF.,MerkulovG.V.,MilshinaN.,MooreH.M.,NaikA.K.,Narayan V.A.,NeelamB.,NusskernD.,RuschD.B.,SalzbergS.,ShaoW.,ShueB.,SunJ.,Wang Z.,WangA.,WangX.,WangJ.,WeiM.,WidesR.,XiaoC.,YanC.,YaoA.,YeJ., ZhanM.,ZhangW.,ZhangH.,ZhaoQ.,ZhengL.,ZhongF.,ZhongW.,ZhuS.,ZhaoS., GilbertD.,BaumhueterS.,SpierG.,CarterC.,CravchikA.,WoodageT.,AliF.,AnH., AweA.,BaldwinD.,BadenH.,BarnsteadM.,BarrowI.,BeesonK.,BusamD.,Carver A.,CenterA.,ChengM.L.,CurryL.,DanaherS.,DavenportL.,DesiletsR.,DietzS., DodsonK.,DoupL.,FerrieraS.,GargN.,GluecksmannA.,HartB.,HaynesJ.,Haynes C.,HeinerC.,HladunS.,HostinD.,HouckJ.,HowlandT.,IbegwamC.,JohnsonJ., KalushF.,KlineL.,KoduruS.,LoveA.,MannF.,MayD.,McCawleyS.,McIntoshT., McMullenI.,MoyM.,MoyL.,MurphyB.,NelsonK.,PfannkochC.,PrattsE.,PuriV., QureshiH.,ReardonM.,RodriguezR.,RogersY.H.,RombladD.,RuhfelB.,ScottR., SitterC.,SmallwoodM.,StewartE.,StrongR.,SuhE.,ThomasR.,TintN.N.,TseS., VechC.,WangG.,WetterJ.,WilliamsS.,WilliamsM.,WindsorS.,Winn-DeenE., WolfeK.,ZaveriJ.,ZaveriK.,AbrilJ.F.,GuigoR.,CampbellM.J.,SjolanderK.V., KarlakB.,KejariwalA.,MiH.,LazarevaB.,HattonT.,NarechaniaA.,DiemerK., MuruganujanA.,GuoN.,SatoS.,BafnaV.,IstrailS.,LippertR.,SchwartzR.,Walenz B.,YoosephS.,AllenD.,BasuA.,BaxendaleJ.,BlickL.,CaminhaM.,Carnes-StineJ., CaulkP.,ChiangY.H.,CoyneM.,DahlkeC.,MaysA.,DombroskiM.,DonnellyM.,Ely D.,EsparhamS.,FoslerC.,GireH.,GlanowskiS.,GlasserK.,GlodekA.,GorokhovM., GrahamK.,GropmanB.,HarrisM.,HeilJ.,HendersonS.,HooverJ.,JenningsD., JordanC.,JordanJ.,KashaJ.,KaganL.,KraftC.,LevitskyA.,LewisM.,LiuX.,Lopez J.,MaD.,MajorosW.,McDanielJ.,MurphyS.,NewmanM.,NguyenT.,NguyenN., NodellM.,PanS.,PeckJ.,PetersonM.,RoweW.,SandersR.,ScottJ.,SimpsonM., SmithT.,SpragueA.,StockwellT.,TurnerR.,VenterE.,WangM.,WenM.,WuD.,Wu M.,XiaA.,ZandiehA.,ZhuX.(2001)Thesequenceofthehumangenome.Science291: 1304-1351.

VerrallS.,IshiiM.,ChenM.,WangL.,TramT.,andCoughlinS.R.(1997)Thethrombin

receptorsecondcytoplasmicloopconferscouplingtoG q-likeGproteinsinchimeric receptors:AdditionalevidenceforacommontransmembranesignallingandGprotein couplingmechanisminGprotein-coupledreceptors.J.Biol.Chem.272:6898-6902.

VossT.,Wallner,E.,Czerniilofsky,A.P.,andFreissmuth,M.(1993)Amphipathic α- helicalstructuredoesnotpredicttheabilityofreceptor-derivedsyntheticpeptidesto interactwithguanine-nucleotidebindingregulatoryproteins. J.Biol.Chem. 268:4637- 4642.

207 6.References

WadeS.M.,LimW.K.,LanK.L.,ChungD.A.,NanamoriM.,andNeubigR.R.(1999)G i activatorregionofα2A-adrenergicreceptors:distinctbasicresiduesmediateG iversusG s activation.Mol.Pharmacol.56:1005-1013.

WakamatsuK.,OkadaA.,MiyazawaT.,OhyaM.,andHigashijimaT.(1992) Membrane-boundconformationofmastoparan-X,aGprotein-activatingpeptide. Biochemistry31:5654-5660.

WallM.A.,ColemanD.E.,LeeE.,Iniguez-LluhiJ.A.,PosnerB.A.,GilmanA.G.,and

Sprang,S.R.(1995)ThestructureoftheGproteinheterotrimerG αi1β1γ2.Cell83:1047- 1058.

WangC.,JayadevS.,andEscobedoJ.A.(1995)Identificationofadomaininthe angiotensinIItype1receptordeterminingGqcouplingbytheuseorreceptorchimeras.J. Biol.Chem.270:16677-16682.

WangH.,LipfertL.,MalbonC.C.,andBahouthS.(1989 )Site-directedanti-peptide antibodiesdefinethetopographyofthe β-adrenergicreceptor. J.Biol.Chem. 264: 14424-14431.

WangH.-L.(1997)BasicaminoacidsattheC-terminusofthethirdintracellularloopare requiredfortheactivationofphospholipaseCbycholecystokinin-Breceptors. J. Neurochem.68:1728-1735.

WangQ.,O’BrienP.J.,ChenC.X.,ChoD.S.,MurrayJ.M.,andNishikuraK.(2000) AlteredGprotein-couplingfunctionsofRNAeditingisoformsandsplicingvariant serotonin-2Creceptors.J.Neurochem.74:1290-1300.

WangZ.,WangH.,andAscoliM.(1993)Mutationofahighlyconservedacidicresidue presentinthesecondintracellularloopofGprotein-coupledreceptorsdoesnotimpair hormonebindingorsignaltransductionoftheluteinizinghormone/chorionic gonadotropinreceptor.Mol.Endocrinol.7:85-93.

WatsonS.andArkinstallS.(1994)in TheGProtein-LinkedReceptor-FactsBook (Watson,S.,andArkinstall,S.,eds)pp.1-291,AcademicPress,London.

WedegärtnerP.B.,WilsonP.T.,andBourneH.R.(1995)Lipidmodificationsoftrimeric Gproteins.J.Biol.Chem.270:503-506.

Wenzel-SeifertK.,andSeifertR.(2000)Molecularanalysisof β2-adrenoceptorcoupling toGs-,Gi-,andGq-proteins.Mol.Pharmacol.58:954-966.

WessJ.,BrannM.R.,andBonnerT.I.(1989)Identificationofasmallintracellularregion ofthemuscarinicM3receptorasadeterminantofselectivecouplingtoPIturnover.FEBS Lett.258:133-136.

208 6.References

WessJ.,BonnerT.I.,andBrannM.R.(1990a)ChimericM2/M3muscarinicreceptors:role ofcarboxylterminalreceptordomainsinselectivityofligandbindingandcouplingto phosphoinositidehydrolysis.Mol.Pharmacol.38:872-877.

WessJ.,BonnerT.I.,DörjeF.,andBrannM.R.(1990b)Delineationofmuscarinic receptorselectivityofcouplingtoguanine-nucleotidebindingproteinsandsecond messengers.Mol.Pharmacol.38:517-523.

WessJ.,NanavatiS.,VogelZ.,andMaggioR.(1993)Functionalroleofprolineand tryptophanresidueshighlyconservedamongGprotein-coupledreceptorsstudiedby

mutationalanalysisoftheM3muscarinicreceptor.EMBOJ.12:331-358

WessJ.(1996) Molecularbiologyofmuscarinicacetylcholinereceptors. Crit.Rev. Neurobiol.10:69-99

WessJ.(1997)Gprotein-coupledreceptors:Molecularmechanismsinvolvedinreceptor activationandselectivityofGproteinrecognition.FASEBJ.11:346-354.

Wess,J.(1998) Molecularbasisofreceptor/Gprotein-couplingselectivity. Pharmacol. Ther.80:231-264.

WonerowP.,SchönebergT.,SchultzG.,GudermannT.,andPaschkeR.(1998) Deletionsinthethirdintracellularloopofthethyrotropinreceptor.Anewmechanismfor constitutiveactivation.J.Biol.Chem.273:7900-7905.

WongS.K.-F.,ParkerE.M.,andRossE.M.(1990)Chimericmuscariniccholinergic: β-

adrenergicreceptorsthatactivateG sinresponsetomuscarinicagonists .J.Biol.Chem. 265:6219-6224.

WongS.K.-F.andRossE.M.(1994)Chimericmuscariniccholinergic: β-adrenergic receptorsthatarefunctionallypromiscuousamongGproteins. J.Biol.Chem. 269: 18968-18976.

WuD.,LaRosaG.J.,andSimonM.I.(1993)Gprotein-coupledsignaltransduction pathwaysforinterleukin-8.Science261:101-103.

WuV.,YangM.,McRobertsJ.A.,RenJ.,SeensaluR.,ZengN.,DagragM.,Birnbaumer M.,andWalshJ.H.(1997)Firstintracellularloopofthehumancholecystokinin-A receptorisessentialforcyclicAMPsignallingintransfectedHEK-293cells. J.Biol. Chem.272:9037-9042.

YangK.,FarrensD.L.,HubbellW.L.,andKhoranaH.G.(1996)Structureandfunctionin rhodopsin.SinglecysteinesubstitutionmutantsinthecytoplasmicinterhelicalE-Floop regionshowposition-specificeffectsintransducinactivation. Biochemistry 35:12464- 12469.

209 6.References

YasuiM.ZeleninS.M.,CelsiG.,andAperiaA.(1997)Adenylatecyclase-coupled vasopressinreceptoractivatesAQP-2promoterviaadualeffecton CREand AP1 elements.Am.J.Physiol.272:F443-F450.

YokoyamaK.,YamaguchiA.,IzumiM.,ItohT.,AndoA.,ImaiE.,KamadaT.,and UedaN.(1996)Alow-affinityvasopressinV2-receptorgeneinakindredwithX-linked nephrogenicdiabetesinsipidus.J.Am.Soc.Nephrol.7:410-414.

YunJ.,SchönebergT.,LiuJ.,SchulzA.,EcelbargerC.A.,PromeneurD.,NielsenS., ShengH.,GrinbergA.,DengC.,andWessJ.(2000)Generationandphenotypeofmice harboringanonsensemutationintheV2vasopressinreceptorgene. J.Clin.Invest.106: 1361-1371.

ZengF.Y.,HoppA.,SoldnerA.,andWessJ.(1999a)Useofadisulfidecross-linking strategytostudymuscarinicreceptorstructureandmechanismsofactivation. J.Biol. Chem.274:16629-16640.

ZengF.Y.,SoldnerA.,SchönebergT.,andWessJ.(1999b)Conservedextracellular cysteinepairintheM 3muscarinicacetylcholinereceptorisessentialforproperreceptor cellsurfacelocalizationbutnotforGproteincoupling.J.Neurochem.72:2404-2414.

ZhangJ.,BarakL.S.,AnborghP.H.,LaporteS.A.,CaronM.G.,andFergusonS.S.(1999) CellulartraffickingofGprotein-coupledreceptor/ β-arrestinendocyticcomplexes. J. Biol.Chem.274:10999-11006.

ZhangM.,ZhaoX.,ChenH.C.,CattK.J.,andHunyadyL.(2000)ActivationoftheAT 1 angiotensinreceptorisdependentonadjacentapolarresiduesinthecarboxylterminusof thethirdcytoplasmicloop.J.Biol.Chem.275:15782-15788.

ZhuS.Z.,WangS.Z.,HuJ.,andel-FakahanyE.E.(1994)Anarginineresidueconserved inmostGprotein-coupledreceptorsisessentialforthefunctionoftheM 1muscarinic receptor.Mol.Pharmacol.45:517-523.

ZhuX.,andWessJ.(1998)TruncatedV2vasopressinreceptorsasnegativeregulatorsof wildtypeV2receptorfunction.Biochemistry37:15773-15784.

ZuscikM.J.,PorterJ.E.,GaivinR.,andPerezD.M.(1998)Identificationofaconserved switchresidueresponsibleforselectiveconstitutiveactivationofthe β2-adrenergic receptor.J.Biol.Chem.273:3401-3407.

210 7.ListofAbbreviations 7.ListofAbbreviations

[3H]AVP [3H]-8-arginine-vasopressin [3H]NMS [3H]-N-methylscopolamine [35S]GTPγS [35S]-guanosine-5’-O-(3-thiotriphosphate) ACTH adrenocortiotropichormone AQP(2-4) aquaporin-(2-4) AT amino-1,2,4-triazole ATP adenosine5’triphosphate AVP 8-D-arginine-vasopressin

Bmax maximumnumberofbindingsites bp basepair BSA bovineserumalbumin cAMP cyclicadenosine3’,5’-monophosphate CCK cholecystokinin CDI central/hypothalamicdiabetesinsipidus CG choriogonadotropin cpm countsperminute cGMP cyclicguanosine5’monophophate Ci(1-3) C-terminaldomainofthe(first–third) intracellularloop Ci4 C-terminaldomainofthecytoplamictail COS-7 Africangreenmonkeykidneycell CR(1-33) chimericreceptor(1-33) CYC1 geneencodingcytochrome-coxidase DAG diacylgycerol dDAVP deamino-8-D-Arginine-vasopressin, desmopressin DEAE-dextran diethylaminoethyldextran DI diabetesinsipidus DMEM Dulbecco’smodifiedEagle’smedium DMSO dimethylsulfoxide DNA deoxyribonucleicacid DTT dithiothreitol e(1-3)loop (first–third)extracellularloop

EC50 concentrationofdrugatwhichhalf- maximaleffectoccurs ECL enhancedchemiluminescence E.coli Escherichiacoli EDTA ethylenediaminetetraaceticacid

Emax maximallypossibleeffect ET endothelin FCS fetalcalfserum FSH follicle-stimulatinghormone Gprotein guaninenucleotidebindingprotein GABA γ-aminobutyricacid GDP guanosine5’-diphophate

212 7.ListofAbbreviations

GPCR Gprotein-coupledreceptor GPD geneencodingglyceraldehyde-3-phosphate dehydrogenase GRK Gprotein-coupledreceptorkinase GTP guanosine5’-triphosphate GTPase guanosine5’-triphosphatase HA hemagglutinin HBSS Hank’sbalancedsaltsolution i(1-3)loop (first–third)intracellularloop IBMX 3-isobutyl-1-methylxanthin

IP3 phosphatidylinositol-1,4,5-trisphophate

KD equilibriumdissociationconstant;ligand concentrationatwhich50%ofbindingsites areoccupied LH luteinizinghormone LVP 8-lysine-vasopressin MAD multiwavelengthanomalousdiffraction MAPkinase mitogen-activatedproteinkinase MGluR metabotropicglutamatereceptor mRNA messengerribonucleicacid MSH melanocyte-stimulatinghormone NDI nephrogenicdiabetesinsipidus Ni(1-3) N-terminalportionofthe(first-third) intracellularloop Ni4 N-terminalportionofthecytoplasmictail NMR nuclearmagneticresonance OT oxytocin PBS phosphate-bufferedsaline PCR polymerasechainreaction PEG polyethyleneglycol PG prostaglandin PI phosphoinositide

PIP2 phophatidyl-4,5-bisphosphate PKA,C proteinkinaseA,C PLC phospholipaseC PMSF phenylmethylsulfonylfluoride PTX pertussistoxin RGSproteins regulatorofGproteinsignalingproteins RM(1-4) mutantreceptorisolatedinyeastgenetic Screen RNA ribonucleicacid SC syntheticcomplete S.cerevisiae Saccharomycescerevisiae SDS sodiumdodecylsulfate SV40 Simianvirus40

213 7.ListofAbbreviations

TCA trichloroaceticacid TM transmembrane TSH thyroid-stimulatinghormone UTP uridine5’-triphosphate XNDI X-linkednephrogenicdiabetesinsipidus wt wildtype YNB yeastnitrogenbase

214 8.BibliographyandCurriculumVitae 8.BibliographyandCurriculumVitae

Publications

ErlenbachI.,andWessJ.(1998)MolecularbasisofV2vasopressinreceptor/G scoupling selectivity.J.Biol.Chem.273:26549-26558.

ErlenbachI.,KostenisE.,SchmidtC., HamdanF.F.,PauschM.H.,andWessJ.(2001)

FunctionalexpressionofM 1,M 3andM 5 muscarinicacetylcholinereceptorsin yeast.J.Neurochem.77:1327-1337.

ErlenbachI.,KostenisE.,SchmidtC., Serradeil-LeGalC.,RaufasteD.,DumontM., PauschM.H.,andWessJ.(2001)Singleaminoacidsubstitutionanddeletions thataltertheGproteincouplingpropertiesoftheV2vasopressinreceptor identifiedinyeastbyreceptorrandom mutagenesis.J.Biol.Chem.276:29382- 29392.

Abstracts/Posterpresentations

ErlenbachI.,andJ.Wess,“IdentificationofstructuralelementsthatdeterminetheG proteincouplingselectivityoftheV2vasopressinreceptor,”AmericanSocietyfor BiochemistryandMolecularBiology(ASBMB) ,Abstractno.855,Washington, DC,May1998.

ErlenbachI.,KostenisE.,SchmidtC., PauschM.H.,andJ. Wess,“Gproteincoupling

propertiesoftheM 3 muscarinicacetylcholineandV2 vasopressinreceptors expressedinyeast,” NationalInstitutesofHealth,AnnualResearchFestival, Bethesda,MD,September1999.

ErlenbachI., KostenisE.,SchmidtC., HamdanF.F., PauschM.H.,andJ.Wess,

“FunctionalexpressionofM 1,M 3andM 5muscarinicacetylcholinereceptorsin yeast,”SubtypesofMuscarinicReceptors,9 thInternationalSymposium,Houston, TX,October2000.

216 8.BibliographyandCurriculumVitae

IsoldeErlenbach geboreninTrier 18.März1971

Grundschule 1977-1981,Speicher Gymnasium 1981-1990,Trier Abitur Juni1990

Studium

PharmaziestudiumanderUniversitätBonn Wintersemester1991- Sommersemester1995

ErsterAbschnittderPharmazeutischenPrüfung September1993 ZweiterAbschnittderPharmazeutischenPrüfung Oktober1995

Pharmaziepraktikumam November1995-April1996 DeutschenKrebsforschungszentrum,Heidelberg Abteilung:CarcinogeneseundDifferenzierung unterLeitungvonProf.N.Fusenig

PharmaziepraktikumbeiHerrnJ.Reischmannin Mai1996-Oktober1996 derCzerny-Apotheke,Heidelberg

DritterAbschnittderPharmazeutischenPrüfung November1996

ApprobationalsApothekerin Dezember1996

MitarbeitinderArbeitsgruppevonDr.habil.J.Wess Mai1997-März1998 amNationalInstituteofDiabetesand DigestiveandKidneyDiseases,Bethesda,USA

AnfertigungdervorliegendenDissertationunterLeitung seitApril1998 vonProf.Dr.Dr.Dres.h.c.E.MutschlerimLabor vonDr.habil.J.WessamNationalInstituteofDiabetes andDigestiveandKidneyDiseases,Bethesda,USA

Praktika

Herz-Jesu-Krankenhaus,Trier Dezember1990-Februar1991 (Gynäkologie)

217 8.BibliographyandCurriculumVitae

Krankenhausapotheke März1992 desBrüderkrankenhauses,Trier

BischöflichesMuseum,Trier August1992 (Restaurierung)

FamulaturinderSchwanen-Apotheke, Februar1993-April1993 Speicher

MitarbeitinderArbeitsgruppevonDr.M.Dumont, Januar1999-März1999 UniversityofRochesterSchoolofMedicine andDentistry,Rochester,NY,USA

Auslandsaufenthalte

AupairinWinchester,Südengland Juli1990-November1990

StudienaufenthaltundTeilnahmeam Februar1997-April1997 Entwicklungshilfeprojekt“DesarrollodelPueblo” inXela,Guatemala

218