Fast Computation of Hermite Normal Forms of Random Integer Matrices ∗ Clément Pernet A,1, William Stein B, ,2 a Grenoble Université, INRIA-MOAIS, LIG; 51, Avenue J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
User's Guide to Pari-GP
User's Guide to PARI / GP C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier Laboratoire A2X, U.M.R. 9936 du C.N.R.S. Universit´eBordeaux I, 351 Cours de la Lib´eration 33405 TALENCE Cedex, FRANCE e-mail: [email protected] Home Page: http://www.parigp-home.de/ Primary ftp site: ftp://megrez.math.u-bordeaux.fr/pub/pari/ last updated 5 November 2000 for version 2.1.0 Copyright c 2000 The PARI Group Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions, or translations, of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. PARI/GP is Copyright c 2000 The PARI Group PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER. Table of Contents Chapter 1: Overview of the PARI system . 5 1.1 Introduction . 5 1.2 The PARI types . 6 1.3 Operations and functions . 9 Chapter 2: Specific Use of the GP Calculator . 13 2.1 Defaults and output formats . 14 2.2 Simple metacommands . 20 2.3 Input formats for the PARI types . 23 2.4 GP operators . -
On the Computation of the HNF of a Module Over the Ring of Integers of A
On the computation of the HNF of a module over the ring of integers of a number field Jean-Fran¸cois Biasse Department of Mathematics and Statistics University of South Florida Claus Fieker Fachbereich Mathematik Universit¨at Kaiserslautern Postfach 3049 67653 Kaiserslautern - Germany Tommy Hofmann Fachbereich Mathematik Universit¨at Kaiserslautern Postfach 3049 67653 Kaiserslautern - Germany Abstract We present a variation of the modular algorithm for computing the Hermite normal form of an K -module presented by Cohen [7], where K is the ring of integers of a numberO field K. An approach presented in [7] basedO on reductions modulo ideals was conjectured to run in polynomial time by Cohen, but so far, no such proof was available in the literature. In this paper, we present a modification of the approach of [7] to prevent the coefficient swell and we rigorously assess its complexity with respect to the size of the input and the invariants of the field K. Keywords: Number field, Dedekind domain, Hermite normal form, relative extension of number fields arXiv:1612.09428v1 [math.NT] 30 Dec 2016 2000 MSC: 11Y40 1. Introduction Algorithms for modules over the rational integers such as the Hermite nor- mal form algorithm are at the core of all methods for computations with rings Email addresses: [email protected] (Jean-Fran¸cois Biasse), [email protected] (Claus Fieker), [email protected] (Tommy Hofmann) Preprint submitted to Elsevier April 22, 2018 and ideals in finite extensions of the rational numbers. Following the growing interest in relative extensions, that is, finite extensions of number fields, the structure of modules over Dedekind domains became important. -
An Application of the Hermite Normal Form in Integer Programming
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector An Application of the Hermite Normal Form in Integer Programming Ming S. Hung Graduate School of Management Kent State University Kent, Ohio 44242 and Walter 0. Rom School of Business Administration Cleveland State University Cleveland, Ohio 44115 Submitted by Richard A. Brualdi ABSTRACT A new algorithm for solving integer programming problems is developed. It is based on cuts which are generated from the Hermite normal form of the basis matrix at a continuous extreme point. INTRODUCTION We present a new cutting plane algorithm for solving an integer program. The cuts are derived from a modified version of the usual column tableau used in integer programming: Rather than doing a complete elimination on the rows corresponding to the nonbasic variables, these rows are transformed into the Her-mite normal form. There are two major advantages with our cutting plane algorithm: First, it uses all integer operations in the computa- tions. Second, the cuts are deep, since they expose vertices of the integer hull. The Her-mite normal form (HNF), along with the basic properties of the cuts, is developed in Section I. Sections II and III apply the HNF to systems of equations and integer programs. A proof of convergence for the algorithm is presented in Section IV. Section V discusses some preliminary computa- tional experience. LINEAR ALGEBRA AND ITS APPLlCATlONS 140:163-179 (1990) 163 0 Else&r Science Publishing Co., Inc., 1990 655 Avenue of the Americas, New York, NY 10010 0024-3795/90/$3.50 164 MING S. -
Fast, Deterministic Computation of the Hermite Normal Form and Determinant of a Polynomial Matrix✩
Journal of Complexity 42 (2017) 44–71 Contents lists available at ScienceDirect Journal of Complexity journal homepage: www.elsevier.com/locate/jco Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrixI George Labahn a,∗, Vincent Neiger b, Wei Zhou a a David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1 b ENS de Lyon (Laboratoire LIP, CNRS, Inria, UCBL, Université de Lyon), Lyon, France article info a b s t r a c t Article history: Given a nonsingular n × n matrix of univariate polynomials over Received 19 July 2016 a field K, we give fast and deterministic algorithms to compute Accepted 18 March 2017 its determinant and its Hermite normal form. Our algorithms use Available online 12 April 2017 ! Oe.n dse/ operations in K, where s is bounded from above by both the average of the degrees of the rows and that of the columns Keywords: of the matrix and ! is the exponent of matrix multiplication. The Hermite normal form soft- notation indicates that logarithmic factors in the big- Determinant O O Polynomial matrix are omitted while the ceiling function indicates that the cost is Oe.n!/ when s D o.1/. Our algorithms are based on a fast and deterministic triangularization method for computing the diagonal entries of the Hermite form of a nonsingular matrix. ' 2017 Elsevier Inc. All rights reserved. 1. Introduction n×n For a given nonsingular polynomial matrix A in KTxU , one can find a unimodular matrix U 2 n×n KTxU such that AU D H is triangular. -
A Formal Proof of the Computation of Hermite Normal Form in a General Setting?
REGULAR-MT: A Formal Proof of the Computation of Hermite Normal Form In a General Setting? Jose Divason´ and Jesus´ Aransay Universidad de La Rioja, Logrono,˜ La Rioja, Spain fjose.divason,[email protected] Abstract. In this work, we present a formal proof of an algorithm to compute the Hermite normal form of a matrix based on our existing framework for the formal- isation, execution, and refinement of linear algebra algorithms in Isabelle/HOL. The Hermite normal form is a well-known canonical matrix analogue of reduced echelon form of matrices over fields, but involving matrices over more general rings, such as Bezout´ domains. We prove the correctness of this algorithm and formalise the uniqueness of the Hermite normal form of a matrix. The succinct- ness and clarity of the formalisation validate the usability of the framework. Keywords: Hermite normal form, Bezout´ domains, parametrised algorithms, Linear Algebra, HOL 1 Introduction Computer algebra systems are neither perfect nor error-free, and sometimes they return erroneous calculations [18]. Proof assistants, such as Isabelle [36] and Coq [15] allow users to formalise mathematical results, that is, to give a formal proof which is me- chanically checked by a computer. Two examples of the success of proof assistants are the formalisation of the four colour theorem by Gonthier [20] and the formal proof of Godel’s¨ incompleteness theorems by Paulson [39]. They are also used in software [33] and hardware verification [28]. Normally, there exists a gap between the performance of a verified program obtained from a proof assistant and a non-verified one. -
3. Gaussian Elimination
3. Gaussian Elimination The standard Gaussian elimination algorithm takes an m × n matrix M over a field F and applies successive elementary row operations (i) multiply a row by a field element (the in- verse of the left-most non-zero) (ii) subtract a multiple of one from another (to create a new left-most zero) (iii) exchange two rows (to bring a new non- zero pivot to the top) to produce M ′ in reduced row echelon form: • any all-zero rows at bottom • one at left-most position in non-zero row • number of leading zeroes strictly increas- ing. 76 Comments − Complexity O(n3) field operations if m<n. − With little more bookkeeping we can ob- tain LUP decomposition: write M = LUP with L lower triangular, U upper triangular, P a permutation matrix. − Standard applications: • solving system M·x = b of m linear equa- tions in n − 1 unknowns xi, by applying Gaussian elimination to the augmented matrix M|b; • finding the inverse M −1 of a square in- vertible n × n matrix M, by applying Gaussian elimination to the matrix M|In; • finding the determinant det M of a square matrix, for example by using det M = det L det U det P . • find bases for row space, column space (image), null space, find rank or dimen- sion, dependencies between vectors: min- imal polynomials. 77 Fraction-free Gaussian elimination When computing over a domain (rather than a field) one encounters problems entirely analo- gous to that for the Euclidean algorithm: avoid- ing fractions (and passing to the quotient field) leads to intermediate expression swell. -
The Sage Project: Unifying Free Mathematical Software to Create a Viable Alternative to Magma, Maple, Mathematica and MATLAB
The Sage Project: Unifying Free Mathematical Software to Create a Viable Alternative to Magma, Maple, Mathematica and MATLAB Bur¸cinEr¨ocal1 and William Stein2 1 Research Institute for Symbolic Computation Johannes Kepler University, Linz, Austria Supported by FWF grants P20347 and DK W1214. [email protected] 2 Department of Mathematics University of Washington [email protected] Supported by NSF grant DMS-0757627 and DMS-0555776. Abstract. Sage is a free, open source, self-contained distribution of mathematical software, including a large library that provides a unified interface to the components of this distribution. This library also builds on the components of Sage to implement novel algorithms covering a broad range of mathematical functionality from algebraic combinatorics to number theory and arithmetic geometry. Keywords: Python, Cython, Sage, Open Source, Interfaces 1 Introduction In order to use mathematical software for exploration, we often push the bound- aries of available computing resources and continuously try to improve our imple- mentations and algorithms. Most mathematical algorithms require basic build- ing blocks, such as multiprecision numbers, fast polynomial arithmetic, exact or numeric linear algebra, or more advanced algorithms such as Gr¨obnerbasis computation or integer factorization. Though implementing some of these basic foundations from scratch can be a good exercise, the resulting code may be slow and buggy. Instead, one can build on existing optimized implementations of these basic components, either by using a general computer algebra system, such as Magma, Maple, Mathematica or MATLAB, or by making use of the many high quality open source libraries that provide the desired functionality. These two approaches both have significant drawbacks. -
Computational Group Theory With
computational group theory with GAP 1 GAP in SageMath the GAP system combinatorics and list manipulations integer matrices and normal forms 2 Computing with Groups permutation groups group libraries algebraic extensions 3 Rubik Magic’s Cube building a GUI six rotations as group actions analyzing Rubik’s magic cube with GAP MCS 507 Lecture 36 Mathematical, Statistical and Scientific Software Jan Verschelde, 18 November 2019 Scientific Software (MCS 507) computational group theory with GAP L-36 18November2019 1/45 computational group theory with GAP 1 GAP in SageMath the GAP system combinatorics and list manipulations integer matrices and normal forms 2 Computing with Groups permutation groups group libraries algebraic extensions 3 Rubik Magic’s Cube building a GUI six rotations as group actions analyzing Rubik’s magic cube with GAP Scientific Software (MCS 507) computational group theory with GAP L-36 18November2019 2/45 the GAP system GAP stands for Groups, Algorithms and Programming. GAP is free software, under the GNU Public License. Development began at RWTH Aachen (Joachim Neubüser), version 2.4 was released in 1988, 3.1 in 1992. Coordination was transferred to St. Andrews (Steve Linton) in 1997, version 4.1 was released in 1999. Release 4.4 was coordinated in Fort Collins (Alexander Hulpke). We run GAP explicitly in SageMath via 1 the class Gap, do help(gap); or 2 opening a Terminal Session with GAP, type gap_console(); in a SageMath terminal. Scientific Software (MCS 507) computational group theory with GAP L-36 18November2019 3/45 using -
A Pari/GP Tutorial by Robert B
1 A Pari/GP Tutorial by Robert B. Ash, Jan. 2007 The Pari/GP home page is located at http://pari.math.u-bordeaux.fr/ 1. Pari Types There are 15 types of elements (numbers, polynomials, matrices etc.) recognized by Pari/GP (henceforth abbreviated GP). They are listed below, along with instructions on how to create an element of the given type. After typing an instruction, hit return to execute. A semicolon at the end of an instruction suppresses the output. To activate the program, type gp, and to quit, type quit or q \ 1. Integers Type the relevant integer, with a plus or minus sign if desired. 2. Rational Numbers Type a rational number as a fraction a/b, with a and b integers. 3. Real Numbers Type the number with a decimal point to make sure that it is a real number rather than an integer or a rational number. Alternatively, use scientific notation, for example, 8.46E17 The default precision is 28 significant digits. To change the precision, for example to 32 digits, type p 32. \ 4. Complex Numbers Type a complex number as a + b I or a + I b, where a and b are real numbers, rational numbers or integers. ∗ ∗ 5. Integers Modulo n To enter n mod m, type Mod(n, m). 6. Polynomials Type a polynomial in the usual way, but don’t forget that must be used for multiplica- tion. For example, type xˆ3 + 3*xˆ2 -1/7*x +8. ∗ 7. Rational Functions Type a ratio P/Q of polynomials P and Q. -
An Open Source Approach Using Sage
An Introduction to Algebraic, Scientific, and Statistical Computing: an Open Source Approach Using Sage William A. Stein April 11, 2008 Abstract This is an undergraduate textbook about algebraic, scientific, and statistical computing using the free open source mathematical software system Sage. Contents 1 Computing with Sage 6 1.1 Installing and Using Sage ...................... 6 1.1.1 Installing Sage ........................ 6 1.1.2 The command line and the notebook ............ 8 1.1.3 Loading and saving variables and sessions ......... 13 1.2 Python: the Language of Sage .................... 15 1.2.1 Lists, Tuples, Strings, Dictionaries and Sets ........ 15 1.2.2 Control Flow ......................... 24 1.2.3 Errors Handling ....................... 24 1.2.4 Classes ............................ 26 1.3 Cython: Compiled Python ...................... 28 1.3.1 The Cython project ..................... 28 1.3.2 How to use Cython: command line, notebook ....... 28 1.4 Optimizing Sage Code ........................ 28 1.4.1 Example: Optimizing a Function Using A Range of Man- ual Techniques ........................ 28 1.4.2 Optimizing Using the Python profile Module ..... 37 1.5 Debugging Sage Code ........................ 39 1.5.1 Be Skeptical! ......................... 40 1.5.2 Using Print Statements ................... 41 1.5.3 Debugging Python using pdb ................ 41 1.5.4 Debugging Using gdb .................... 41 1.5.5 Narrowing down the problem ................ 42 1.6 Source Control Management ..................... 42 1.6.1 Distributed versus Centralized ............... 42 1.6.2 Mercurial ........................... 42 1.7 Using Mathematica, Matlab, Maple, etc., from Sage ....... 42 2 Algebraic Computing 43 2.1 Groups, Rings and Fields ...................... 43 2.1.1 Groups ............................ 43 2.1.2 Rings ............................ -
Equivalences for Linearizations of Matrix Polynomials
Equivalences for Linearizations of Matrix Polynomials Robert M. Corless∗1, Leili Rafiee Sevyeri†1, and B. David Saunders‡2 1David R. Cheriton School of Computer Science, University of Waterloo ,Canada 2Department of Computer and Information Sciences University of Delaware Abstract One useful standard method to compute eigenvalues of matrix poly- nomials P (z) ∈ Cn×n[z] of degree at most ℓ in z (denoted of grade ℓ, for short) is to first transform P (z) to an equivalent linear matrix poly- nomial L(z) = zB − A, called a companion pencil, where A and B are usually of larger dimension than P (z) but L(z) is now only of grade 1 in z. The eigenvalues and eigenvectors of L(z) can be computed numerically by, for instance, the QZ algorithm. The eigenvectors of P (z), including those for infinite eigenvalues, can also be recovered from eigenvectors of L(z) if L(z) is what is called a “strong linearization” of P (z). In this paper we show how to use algorithms for computing the Hermite Normal Form of a companion matrix for a scalar polynomial to direct the dis- covery of unimodular matrix polynomial cofactors E(z) and F (z) which, via the equation E(z)L(z)F (z) = diag(P (z), In,..., In), explicitly show the equivalence of P (z) and L(z). By this method we give new explicit constructions for several linearizations using different polynomial bases. We contrast these new unimodular pairs with those constructed by strict arXiv:2102.09726v1 [math.NA] 19 Feb 2021 equivalence, some of which are also new to this paper. -
A Tutorial for PARI / GP
A Tutorial for PARI / GP C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier Laboratoire A2X, U.M.R. 9936 du C.N.R.S. Universit´eBordeaux I, 351 Cours de la Lib´eration 33405 TALENCE Cedex, FRANCE e-mail: [email protected] Home Page: http://pari.math.u-bordeaux.fr/ Primary ftp site: ftp://pari.math.u-bordeaux.fr/pub/pari/ last updated September 17, 2002 (this document distributed with version 2.2.7) Copyright c 2000–2003 The PARI Group ° Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions, or translations, of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. PARI/GP is Copyright c 2000–2003 The PARI Group ° PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER. This booklet is intended to be a guided tour and a tutorial to the GP calculator. Many examples will be given, but each time a new function is used, the reader should look at the appropriate section in the User’s Manual for detailed explanations. Hence although this chapter can be read independently (for example to get rapidly acquainted with the possibilities of GP without having to read the whole manual), the reader will profit most from it by reading it in conjunction with the reference manual.