Double Dissociation Between Overt and Covert Face Recognition

Total Page:16

File Type:pdf, Size:1020Kb

Double Dissociation Between Overt and Covert Face Recognition Double Dissociation between Overt and Covert Face Recognition Daniel Tranel, Hanna Damasio, and Antonio R. Damasio University of Iowa College of Medicine Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/7/4/425/1755262/jocn.1995.7.4.425.pdf by guest on 18 May 2021 Abstract W Some patients with face agnosia (prosopagnosia) caused by same familiar faces. Taken together, the two sets of results occipitotemporal damage produce discriminatory covert re- constitute a double dissociation: bilateral occipitotemporal sponses to the familiar faces that they fail to identify overtly. damage impairs recognition but allows SCR discrimination. For ex;miple, their average skin conductance responses (SCRs) whereas bilateral ventromedial damage causes the opposite. to familiar faces are significantly larger than average SCRs to The findings suggest that the neural systems that process the unfamiliar faces. In this study we describe the opposite disso- somatic-basedvalence of stimuli are separate from and parallel ciation in four patients with bilateral ventromedial frontal dam- to the neural systems that process the factual, nonsomatic age: Thc patients recognized the identity of familiar faces information associated with the same stimuli. H normally. yet failed to generate discriminatory SCRs to those formed consent prior to participating in these expcri- INTRODUCTION ments. All nine have normal intelligence, speech and language, and attention and orientation, and all have We and others have shown that patients with prosopag- stable, focal lesions. The neuropsychological and nosia caused by bilateral occipitotemporal lesions can neuroanatomical studies were conducted according to produce discriminatory skin conductance responses the standard protocols of the Benton Neuropsychology (SCRs) to familiar faces that are otherwise unrecognized, Laboratory and the Laboratory of Neuroimaging and a phenomenon that has been termed coverr face recog- Human Neuroanatomy (Damasio & Damasio, 1989; nition (Bauer, 1984; Bauer & Verfaellie, 1988; Tranel & Damasio & Frank, 1992; Tranel, 1995). The experiments Damasio, 1985,1988).In another series of investigations, described below were conducted when the subjects we have demonstrated that patients with bilateral ven- were in the “chronic epoch,” specifically, more than 1 tromedial frontal lobe lesions fail to produce SCRs to year after lesion onset. No additional normal control emotionally charged visual stimuli such as pictures of subjects were required for this study, because our labo- mutilation and social disaster (Damasio, Tranel, & ratory already has extensive normative data for overt and Damasio, 1991). The patients with frontal damage, how- covert face processing. ever, are not prosopagnosic: their recognition of familiar Demographic data and salient neuropsychological faces is entirely intact. characteristics of the subjects are presented in Table 1. Because many familiar faces have considerable emo- The descriptive terms for the face agnosic subjects are tional value (Tranel, Fowles, & Damasio, 1985), we pre- derived from Damasio, Tranel, and Damasio (1990). The dicted that patients with ventromedial frontal damage four ventromedial subjects had bilateral lesions involving would fail to generate discriminatory SCRs to familiar the ventral and mesial aspects of the orbital cortices, and faces, i.e., would nor discriminate faces covertly, despite the lower sector of the mesial frontal region. The five having normal face recognition. In the study described occipitotemporal subjects had bilateral damage to the below we confirm this prediction. posterior sector of the inferotemporal region, especially the inferior and mesial parts of this region, or to the METHOD ventral sector of visual association cortices. or both. Subjects The study involved nine subjects, four with ventromedial Experimental Design: Stimuli and Procedures frontal lesions and five with bilateral occipitotemporal lesions. The subjects were selected from the Division’s The experiments were designed to provide a contrast Patient Registry, and all of them provided written in- between overt and covert discrimination of familiar faces. 0 I995 Massachusetts Institute of Technology Journal of Cognitiile Neuroscience 7: 4,pp. 425-9.32 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.1995.7.4.425 by guest on 29 September 2021 Table 1. Subject Characteristics Sul~ects AKe/G‘ender/Handedrzess Neu ropsychologicul Features Ventromedial 1VR-3 18 Executive function impairments M K+20 Executive function impairments F1.- I 164 Executive function impairnients I IS-1065 Executive function impairments Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/7/4/425/1755262/jocn.1995.7.4.425.pdf by guest on 18 May 2021 Pure associative prosopagnosia; visual ohject ;ignosi;i: achromatopsia; alexia Pure associative prosopagnosia;achromatopsia; topographical agnosia Pure associative prosopagnosia; vistial object agnosia; topographical agnosia Mixed associative/apperceptive prosopagnosi;i;visu;il object agnosia; alexia; optic ataxia 1’s l)-X’h 27/M/K Apperceptive prosopagnosia, visual object agnosia Ot wt-l.ciw4 Experimeizts results. The subject was asked to n;ime each bce. or to provide a specitic description of the person whose face Stimuli. Three sets of stimuli were utilized. The first, was being shown. No time limit was imposed, and suh- termed “Retro~ade-r;amily,”comprised faces of family jects were encouraged to provide whatever information members and other close acquaintances of the subject, they could about each face. drawn from the retrograde compartment. The stimulus 2. Familiarity Ratirigs. The three sets of faces were set was customized for each subject, and the number of each intermixed, in random order, with 30 iinkimiliar stimuli varied slightly from one subject to another (spe- faces (nontargets). The complete sets were then shown cific numbers are provided in the Results tables). All faces to the subject one face at a time. For cadi t’acc. the (in this and the following two sets) were shown as subject was asked to rate the degree of f;iniiliarity, The black-and-white slides, with a neutral background and no rating scale has 6 points, ranging from 1 (“definite I-iniili- features below the neckline. arity”) to 6 (“definite unfamiliarit).”), with points in Ix- The second stimulus set, termed “Retrograde-Famous,’’ tween corresponding to lesser degrees of definitude. ’I‘he comprised eight faces of famous politicians or actors. midpoint of the scale is 3.5,and ratings from 1.00 to 3.i9 ‘lhcy were chosen because all were well-known to the denote ‘bniiliarity”of some degree, while ratings of 3.5 1 subjects, and should have been easily recognized. to 6.00 denote “unfamiliarity”of some degree. (The I;h- The third set, termed “Anterograde,”comprised eight miliarity RLitirzgs experiment was conducted rrfter the hces of persons with whom the subjects had had exten- covert-level experiment described below.) sive contact with since, but not before, the onset of their condition. For example, the set included faces of psy- chologists and physicians who had worked extensively Covert-Leiiel Experiment with the subjects. The three stimulus sets (Retrograde-Family, Retrograde- Famous, and Anterograde) described above for the Fu- Procediires miliari[v Ratings experiment were presented to each 1. Ideiztity Recognition. Each set of faces was shown subject, and skin conductance was monitored. No verbal to the subject, one at a time. The three stimulus sets were or motor response was required. The two retrograde sets presented in the same order for all subjects and all were presented at the same testing session (Family first, experiments: Retrograde-Family, Retrograde-Famous, and Famous second), and the Anterograde set was presented Anterograde. We deliberately used an invariant order, to at a subsequent session. The slides were presented in allow comparisons with previous work in our laboratory. random order for each subject and set.Skin conductance Experiments were conducted across different testing was recorded from the right and left hands, using our sessions, however, and we were careful to ascertain that standard techniques and equipment (Tranel Sr Damasio. fatigue and habituation effects were not influencing the 1989, 1994). Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.1995.7.4.425 by guest on 29 September 2021 Data Quantification and Analysis the ventromedial subjects on each dependent variable, in each of the three stimulus sets. Overt-I.cir1 Experiments Zdentijl$ Recognition. For each of the three stimulus RESULTS sets, the number of correct identifications was tallied. A correct identification was defined as a correct naming Overt-Level Experiments responsc, or a description that defined the individual Identity Recognition. For the two retrograde sets (Ta- being pictured in a unique manner, i.e., with charac- bles 2 and 3) and for the anterograde set (Table 4), the teristics that would distinguish that individual from all four ventromedial frontal subjects obtained Identity Rec- others ognition scores of 98.5,97.0,and 94.0%.By contrast, the five subjects with bilateral occipitotemporal lesions were Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/7/4/425/1755262/jocn.1995.7.4.425.pdf by guest on 18 May 2021 FurniliLirity Ratings. For each set, an average familiarity severely defective, obtaining respective scores of 9.0,5.2, rating was calculated for the target (T) and nontarget
Recommended publications
  • The Covert Learning of Affective Valence Does Not Require Structures in Hippocampal System Or Amygdala
    The Covert Learning of Affective Valence Does Not Require Structures in Hippocampal System or Amygdala Daniel Tranel and Antonio R. Damasio University of Iowa College of Medicine Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/5/1/79/1755039/jocn.1993.5.1.79.pdf by guest on 18 May 2021 Abstract Following bilateral damage to the entire medial temporal First, Boswell’s lesions guarantee that the entorhinal and peri- lobe and interconnected cortices in the anterior temporal and rhinal cortices, hippocampus, amygdala, and higher-order neo- medial frontal regions, patient Boswell developed a severe cortices in the anterior temporal region are not required to learning defect for all types and levels of Factual knowledge, support this form of covert learning. Second, this demonstra- including faces. In the experiments described here, however, tion is possible only in a patient such as Boswell, because in we demonstrate that Boswell can acquire a nonconscious bond individuals with normal or only partially impaired factual learn- between entirely new persons and the affective valence they ing, fact memory will contaminate the performance. display. The finding is important on the followng accounts. INTRODUCTION motor skills (Damasio et al., 1989). His amnesia can be summarized as follows: (1) In the anterograde compart- Patient Boswell is a 63-year-old man who has been se- ment, he has a severe defect for all types of material verely amnesic for 15 years, following herpes simplex (e.g., objects, faces, events, names) at unique and non- encephalitis. He has been investigated in our lalxmtories unique levels. Without rehearsal, new knowledge can be on numerous occasions, and descriptions of his basic retained only up to about 40 secs, beyond which it will neuroaiiatomical and neuropsychological profiles can be disappear, to all manner of observation, without a trace.
    [Show full text]
  • Postgraduate Training Program
    APPCN Neuropsychology Fellowship Program Roy J. and Lucille A. Carver College of Medicine Iowa City, IA 52242-1101 319-384-6050 Tel 319-384-7199 Fax [email protected] www.medicine.uiowa.edu POSTDOCTORAL FELLOWSHIP PROGRAM IN CLINICAL NEUROPSYCHOLOGY Department of Neurology (Benton Neuropsychology Laboratory), University of Iowa Carver College of Medicine Program Director: Daniel Tranel, PhD, ABPP/Cn Program Faculty: Steven W. Anderson, PhD, ABPP/Cn, Associate Professor of Neurology Joseph Barrash, PhD, ABPP/Cn, Professor of Clinical Neurology Natalie Denburg, PhD, Associate Professor of Neurology Robert D. Jones, PhD, ABPP/Cn, Professor of Clinical Neurology Updated November 7, 2018 APPCN Neuropsychology Fellowship Program University of Iowa Carver College of Medicine PROGRAM OVERVIEW The postdoctoral fellowship training program in clinical neuropsychology at the University of Iowa is administered through the Department of Neurology, in the University of Iowa Hospitals and Clinics. The Benton Neuropsychology Laboratory is the principal training site, and the program has a Major Area of Study in Clinical Neuropsychology. The Program is directed by Daniel Tranel, PhD. The Program has close ties to the University of Iowa Neuroscience PhD Program (http://neuroscience.grad.uiowa.edu), the Department of Neurosurgery (https://medicine.uiowa.edu/neurosurgery), the Department of Psychological and Brain Sciences (https://psychology.uiowa.edu), and the Iowa Neuroscience Institute (https://medicine.uiowa.edu/iowaneuroscience). The training program normally accepts one fellow each year, and emphasis is placed on individual instruction by maintaining a low fellow-to-faculty ratio. Our training model stems from the scientist-practitioner tradition, and conforms to the guidelines provided by the Houston Conference.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Daniel Tranel (Date of Preparation: May 12, 2017) I. PERSONAL DATA A. Date of Birth: 10/20/57 B. Citizenship Status: USA C. Current Address: Department of Neurology University of Iowa Hospitals and Clinics 200 Hawkins Drive Iowa City, IA 52242 (319) 384-6050 (319) 384-7199 (FAX) e-mail: [email protected] II. EDUCATION 1979 B.A. (Psychology) University of Notre Dame 1981 M.A. (Clinical Psychology) University of Iowa 1982 Ph.D. (Clinical Psychology) University of Iowa III. POST-GRADUATE EDUCATION 1983 Post-Doctoral Fellow (Behavioral Neurology) University of Iowa College of Medicine 1984 Post-Doctoral Associate (Clinical Neuropsychology) University of Iowa College of Medicine IV. ACADEMIC AND ADMINISTRATIVE APPOINTMENTS Academic 1985 Assistant Research Scientist, University of Iowa College of Medicine 1986 Assistant Professor of Neurology, University of Iowa College of Medicine 1987 Core Faculty, Neuroscience Program, University of Iowa College of Medicine 1990 Associate Professor of Neurology, University of Iowa College of Medicine 1994 Professor of Neurology, University of Iowa College of Medicine 1994 Professor of Psychology, University of Iowa (1994: Primary Member, Clinical Area) (2009: Primary Member, Behavioral and Cognitive Neuroscience Area) Training Faculty 2000 Mentor, Medical Student Training Program Faculty, University of Iowa College of Medicine 2000 Mentor, Doris Duke Charitable Foundation Clinical Research Fellowship Program for Medical Students, University of Iowa College of Medicine (Allyn Mark,
    [Show full text]
  • Duke University Dissertation Template
    Theories of Concepts and Ethics by John Jung Park Department of Philosophy Duke University Date:_______________________ Approved: ___________________________ David Wong, Supervisor ___________________________ Karen Neander ___________________________ Wayne Norman ___________________________ Daniel Weiskopf Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Philosophy in the Graduate School of Duke University 2013 i v ABSTRACT Theories of Concepts and Ethics by John Jung Park Department of Philosophy Duke University Date:_______________________ Approved: ___________________________ David Wong, Supervisor ___________________________ Karen Neander ___________________________ Wayne Norman ___________________________ Daniel Weiskopf An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Philosophy in the Graduate School of Duke University 2013 Copyright by John Jung Park 2013 Abstract Psychological concepts are mental representations that represent, refer to, or are about properties and categories. In the philosophy of mind/cognitive science, there are various theories of what kinds of knowledge, or information carrying mental states, constitute our concepts. In other words, such theories provide views on what concepts are. The knowledge stored in concepts is thought to be used in the higher cognitive competences such as in categorization, induction, deduction, and analogical reasoning when we think or reason about the extension of the concept. While most concept theories have primarily focused on concrete concepts such as CHAIR, TABLE and DOG, I take such modern theories and apply them to abstract moral concepts such as VIRTUE, RIGHT ACTION, and JUSTICE. I argue for a new overall theory of moral concepts that combines and includes four theories of concepts.
    [Show full text]
  • Postdoctoral Fellowship Program in Clinical Neuropsychology
    APPCN Neuropsychology Fellowship Program Roy J. and Lucille A. Carver College of Medicine Iowa City, IA 52242-1101 319-384-6050 Tel 319-384-7199 Fax [email protected] www.medicine.uiowa.edu POSTDOCTORAL FELLOWSHIP PROGRAM IN CLINICAL NEUROPSYCHOLOGY Benton Neuropsychology Laboratory Department of Neurology University of Iowa College of Medicine Program Director: Daniel Tranel, PhD, ABPP/Cn Program Faculty: Steven W. Anderson, PhD, ABPP/Cn, Associate Professor of Neurology Joseph Barrash, PhD, ABPP/Cn, Professor of Clinical Neurology Natalie Denburg, PhD, Associate Professor of Neurology Robert D. Jones, PhD, ABPP/Cn, Professor of Clinical Neurology Hannah Wadsworth, PhD, Assistant Professor of Clinical Neurology December 11, 2020 APPCN Neuropsychology Fellowship Program University of Iowa College of Medicine PROGRAM OVERVIEW The postdoctoral fellowship training program in clinical neuropsychology at the University of Iowa is administered through the Department of Neurology, in the University of Iowa Hospitals and Clinics. The Benton Neuropsychology Laboratory is the principal training site, and the program has a Major Area of Study in Clinical Neuropsychology. The Program is directed by Daniel Tranel, PhD. The Program has close ties to the University of Iowa Neuroscience PhD Program (http://neuroscience.grad.uiowa.edu), the Department of Neurosurgery (http://www.medicine.uiowa.edu/neurosurgery), the Department of Psychological and Brain Sciences (http://www.psychology.uiowa.edu), and the Iowa Neuroscience Institute ([email protected]). The training program normally accepts one fellow each year, and emphasis is placed on individual instruction by maintaining a low fellow-to-faculty ratio. Our training model stems from the scientist- practitioner tradition, and conforms to the guidelines provided by the Houston Conference.
    [Show full text]
  • A Framework for Digital Emotions
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 A Framework for Digital Emotions Meghan Rosatelli Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Interdisciplinary Arts and Media Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/239 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Copyright © 2011 by Meghan Rosatelli All rights reserved A Framework for Digital Emotions A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University by Meghan Elizabeth Rosatelli Bachelor of Arts, University of Colorado at Boulder, 2004 Master of Arts, Virginia Commonwealth University, 2007 Director: Dr. Richard Fine Professor, Department of English Virginia Commonwealth University Richmond, Virginia August 2011 TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………..……………..…iii LIST OF ABBREVIATIONS…………………………………………………………………….iv ABSTRACT……………………………………………………………………………………….v INTRODUCTION…………………………………………………………………………...……1 PART 1. A FRAMEWORK FOR DIGITAL EMOTIONS……….…………………….……….22 Chapter 1. Emotions are Fickle Things………………………………………………………..…23 Chapter 2. Emotions Put the “New” in “New Media”……………………………………….…..61
    [Show full text]
  • Recognition Without Awareness in a Patient with Simultanagnosia☆
    International Journal of Psychophysiology 72 (2009) 5–12 Contents lists available at ScienceDirect International Journal of Psychophysiology journal homepage: www.elsevier.com/locate/ijpsycho Recognition without awareness in a patient with simultanagnosia☆ Natalie L. Denburg ⁎, Robert D. Jones, Daniel Tranel Department of Neurology, Division of Behavioral Neurology and Cognitive Neuroscience, University of Iowa Roy J. and Lucille A. Carver College of Medicine, United States article info abstract Article history: We report a psychophysiological study of “recognition without awareness” in patient 2354, who had severe but Received 7 January 2008 circumscribed atrophy in the occipitoparietal region bilaterally (caused by visual-variant Alzheimer's disease, Accepted 1 February 2008 documented by structural and functional neuroimaging) and an accompanying Balint syndrome that prevented Available online 13 September 2008 her from recognizing the emotional valence of many highly charged negative visual scenes (e.g., a burned body). Despite this lack of overt recognition, patient 2354 nonetheless generated large amplitude skin conductance Keywords: Simultanagnosia responses to highly charged negative pictures, demonstrating the same kind of recognition without awareness Balint syndrome that has been reported previously in patients with bilateral occipitotemporal dysfunction and prosopagnosia [e.g., Covert Tranel, D., & Damasio, A. R. (1985). Knowledge without awareness: an autonomic index of facial recognition by Prosopagnosia prosopagnosics. Science, 228, 1453–1454.]. Our case complements both previous evidence of covert, nonconscious recognition in patients with prosopagnosia, and previous behavioral studies of patients with Balint syndrome that have shown evidence of “preattentive” visual processing. The findings add to the small but important set of empirical observations regarding nonconscious visual processing in neurological patients, and indicate that recognitionwithout awareness can occur in the setting of dorsal visual stream dysfunction and Balint syndrome.
    [Show full text]
  • Beyond Reasonable Doubt: Cognitive and Neuropsychological Implications for Religious Disbelief
    To be published in Neurology of Religion, Cambridge, Cambridge University Press Ed., A. Coles Beyond reasonable doubt: Cognitive and neuropsychological implications for religious disbelief Gordon Pennycook1, Daniel Tranel2,3, Kelsey Warner3, Erik W. Asp3,4,5 1Department of Psychology, Yale University, New Haven, CT, USA 2Department of Psychology, University of Iowa, Iowa City, IA, USA 3Department of Neurology, University of Iowa, Iowa City, IA, USA 4Department of Psychology, Hamline University, St. Paul, MN, USA 5Wesley & Lorene Artz Cognitive Neuroscience Research Center, Hamline University, St. Paul, MN, USA Corresponding author: Erik W. Asp, PhD Department of Psychology Hamline University GLC 117W 1536 Hewitt Ave., St. Paul, MN 55114 [email protected] The authors declare no conflict of interest. Journal articles and chapters on the cognitive science of religious belief often begin by highlighting the seeming ubiquity of supernatural beliefs (e.g., Pennycook et al., 2012). It is indeed rather striking that most of the world’s population share a similar sort of belief in a deity or greater power. According to Zuckerman (2007), approximately 90% of the world’s population believe in a deity. In 2011, more than 92% of Americans polled by Gallup answered “yes” when asked, “Do you believe in God?” – a number effectively unchanged since 1944 (96%, Gallup, 2011). These sorts of observations lead naturally to the conclusion that religious belief must be grounded in common and, perhaps, foundational cognitive mechanisms. We agree, though in this chapter we will instead emphasize religious doubt, a common experience among religious and non-religious alike (Hunsberger et al., 1993). In the same Gallup poll cited above, the number of respondents who answered “no” when asked, “Do you believe in God?” increased from 1% in 1944 to 7% in 2011.
    [Show full text]
  • Vol 38, No 1 Winter/Spring 2019
    THE SOCIETY FOR CLINICAL NEUROPSYCHOLOGY Division 40 of the American Psychological Association Volume 38, Number 1 Winter/Spring 2019 SCN Executive Committee 2018‐2019 President A LETTER FROM THE EDITOR Michael McCrea 2018‐19 President Elect Rodney Vanderploeg 2018‐19 Past President Dear members of the Society for Clinical Neuropsychology, Doug Johnson‐Greene 2018‐19 It is my pleasure to bring you the Winter/Spring edition of the Secretary Division 40 Newsletter. Amy Jak 2015‐21 Treasurer 2013 saw the publication of the DSM‐V, and within its pages, Justin Miller 2018‐21 dementia and amnestic disorders became major or mild Members at Large neurocognitive disorder. In late 2015, the Centers for Jennifer Koop 2018‐21 Medicare and Medicaid Services (CMS) mandated the Lisa Delano‐Wood 2017‐20 transition to the 10th revision of the International Statistical Teresa Deer 2016‐19 Classification of Diseases and Related Health Problems (ICD), Council Representatives bringing 5 times as many diagnostic codes as ICD‐9, and exponential complexity. Cynthia Kubu 2017‐19 Relatively speaking, the transition to 2019’s new CPT codes for neuropsychological Cheryl Silver 2015‐20* testing has caused minimal distress, thanks in no small part to the advocacy of Joanne Festa 2019‐21 APA’s Practice Organization and SCN’s Practice Advisory Committee, and the work Mike Basso 2019‐21 of Antonio Puente and Neil Pliskin. For guidance on the new codes and modernized Chairs of Standing Committees coding structure, as well as links to Puente & Pliskin’s instructive December 2018 Membership webinars, I highly recommend visiting: Eric Larson 2018‐20 https://www.apaservices.org/practice/reimbursement/health‐codes/testing.
    [Show full text]
  • Damage to Ventromedial Prefrontal Cortex Impairs Judgment of Harmful Intent
    Damage to Ventromedial Prefrontal Cortex Impairs Judgment of Harmful Intent The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Young, Liane, Antoine Bechara, Daniel Tranel, Hanna Damasio, Marc Hauser, and Antonio Damasio. “Damage to Ventromedial Prefrontal Cortex Impairs Judgment of Harmful Intent.” Neuron 65, no. 6 (March 2010): 845–851. © 2010 Elsevier Inc. As Published http://dx.doi.org/10.1016/j.neuron.2010.03.003 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/96062 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Neuron Clinical Study Damage to Ventromedial Prefrontal Cortex Impairs Judgment of Harmful Intent Liane Young,1,* Antoine Bechara,2 Daniel Tranel,3 Hanna Damasio,2 Marc Hauser,4 and Antonio Damasio2 1Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2Brain and Creativity Institute and Dornsife Center for Cognitive Neuroimaging, University of Southern California, Los Angeles, CA 90089, USA 3Departments of Neurology and Psychology, University of Iowa, Iowa City, IA 52242, USA 4Departments of Psychology and Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA *Correspondence: [email protected] DOI 10.1016/j.neuron.2010.03.003 SUMMARY of a failed murder attempt as permissible). Consequently, we suggest that the VMPC plays an integral role in processing nega- Moral judgments, whether delivered in ordinary expe- tively valenced intentions for moral judgment.
    [Show full text]
  • Impaired Judgments of Sadness but Not Happiness Following Bilateral Amygdala Damage
    Impaired Judgments of Sadness But Not Happiness Following Bilateral Amygdala Damage Ralph Adolphs* and Daniel Tranel Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/16/3/453/1758112/089892904322926782.pdf by guest on 18 May 2021 Abstract & Although the amygdala’s role in processing facial expres- damaged and 26 normal controls. Subjects were asked to rate sions of fear has been well established, its role in the the intensity and to label the stimuli. Subjects with unilateral processing of other emotions is unclear. In particular, evidence amygdala damage performed very comparably to controls. By for the amygdala’s involvement in processing expressions of contrast, subjects with bilateral amygdala damage showed a happiness and sadness remains controversial. To clarify this specific impairment in rating sad faces, but performed issue, we constructed a series of morphed stimuli whose normally in rating happy faces. Furthermore, subjects with emotional expression varied gradually from very faint to more right unilateral amygdala damage performed somewhat worse pronounced. Five morphs each of sadness and happiness, as than subjects with left unilateral amygdala damage. The well as neutral faces, were shown to 27 subjects with unilateral findings suggest that the amygdala’s role in processing of amygdala damage and 5 with complete bilateral amygdala emotional facial expressions encompasses multiple negatively damage, whose data were compared to those from 12 brain- valenced emotions, including fear and sadness. & INTRODUCTION such a role (Yang et al., 2002; Breiter et al., 1996). One A number of lesion and functional imaging studies have recent study in fact found amygdala activation (com- demonstrated the amygdala’s role in processing emo- pared with neutral faces) when viewing expressions of tional facial expressions, but its precise importance for fear, anger, sadness, or happiness (Yang et al., 2002).
    [Show full text]
  • Brett Schneider
    Schneider, Brett (NMS: 28281) Brett Schneider, M.S University of Wisconsin-Madison Telephone: 815-382-3123 Departments of Psychology & Psychiatry Email: [email protected] 6001 Research Park Blvd. Madison, WI 53719 Education University of Wisconsin-Madison, Anticipated June 2022 (Defense Date June 2021) Degree: Ph.D. in Clinical Psychology Dissertation Title: The Prevalence, Characteristics, Psychological Sequelae, and Neural Correlates of Traumatic Brain Injury among Individuals Incarcerated in Prison University of Wisconsin-Madison, Awarded May 2018 Degree: M.S., Clinical Psychology University of Iowa, Awarded May 2016 Degrees: B.S., Psychology (Honors), B.S., Biology (Neurobiology) Honors Thesis: The left temporal pole is a convergence region between semantic knowledge and name for concrete, unique entities Clinical Experience Neuropsychological Assessment 2019-present Medical College of Wisconsin Adult Neuropsychology Practicum Department of Neurology, Medical College of Wisconsin, WI Two-year advanced practicum rotation performing adult neuropsychological assessments in a neurology outpatient clinic. Patient referrals include memory disorders, traumatic brain injury, movement disorders, language disorders, serious psychiatric conditions, neuro-oncology, epilepsy, and other neurological conditions. Duties include independently administering comprehensive neuropsychological evaluations, clinical interviews, and writing integrated reports under the direct supervision of board-certified neuropsychologists. Supplemental didactic experiences include weekly neuropsychology seminar, case conference, neurology grand rounds, observing in-patient evaluations, and consensus epilepsy conference. Supervisors: Sara J. Swanson, Ph.D., ABPP-CN; Alissa M. Butts, Ph.D., ABPP- CN; Julie Bobholz, Ph.D., ABPP-CN; Julie Janecek, Ph.D., ABPP-CN; Michael McCrea, Ph.D.; Lindsey Nelson, Ph.D., ABPP-CN; Sara Pillay, Ph.D.; Laura Glass Umfleet, PsyD 2020-present William S.
    [Show full text]