Glossary of Symbols

Total Page:16

File Type:pdf, Size:1020Kb

Glossary of Symbols Glossary of Symbols B(x; r) ball of radius r > 0 centered at x 2 @ boundary 37 C generic notation for a category 3 Cop opposite category of C 6 CG category of compactly generated spaces together with 111 continuous maps CGWH category of compactly generated weakly Hausdorff spaces 111 together with continuous maps; a convenient category of spaces CH category of compact Hausdorff spaces together with 99 continuous maps C complex numbers 22 CX the (reduced) cone of a (pointed) space X 124 Dn closed unit ball in Rn 3 ? the empty set 1 an epimorphism 14 k generic notation for a field 5 Fld category of fields 16 Grp category of groups 5 fˆ shorthand for the adjunct of a map f in some adjunction 92 ' homotopy 34 hTop homotopy category of spaces 5 hTop∗ homotopy category of pointed spaces 121 Z integers: :::; −2; −1; 0; 1; 2;::: 22 L a R generic notation indicating that the functors L and R form an 92 adjunction lp for 1 ≤ p ≤ 1, the normed vector space of (R-valued) 23 sequences which converge in the p-norm M f mapping cylinder of f 130 a monomorphism 14 148 Glossary of Symbols Nat(F; G) natural transformations between functors F; G : C ! D. alt: 12 DC(F; G) N natural numbers: 0; 1; 2;::: 22 P f mapping path space of f 130 πn for each n 2 N, the nth homotopy functor defined by 121 n [S ; −]: Top∗ ! Set π1 denotes the functor sending spaces to fundamental 119, 120 group(oid)s possibly relative to a subspace or a point RMod category of modules over a ring R 5 R real numbers 2 n RP n-dimensional real projective space 29 Set category of sets 5 Set∗ category of pointed sets 5 ΣX the reduced suspension of a pointed space X 124 spec R set of prime ideals of (a ring) R 22 S n n-sphere 3 SX the suspension of a space X 125 Tx the open neighborhoods of x in the topology T 2 Top category of topological spaces 5 Top∗ category of pointed spaces 5 T generic notation for a topology 1 Vectk category of k-vector spaces 5 WH category of weakly Hausdorff spaces together with 111 continuous maps X∗ dual space of an R-module X. alt: hom(X; R) 17.
Recommended publications
  • Sheaves and Homotopy Theory
    SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case.
    [Show full text]
  • Topological Paths, Cycles and Spanning Trees in Infinite Graphs
    Topological Paths, Cycles and Spanning Trees in Infinite Graphs Reinhard Diestel Daniela K¨uhn Abstract We study topological versions of paths, cycles and spanning trees in in- finite graphs with ends that allow more comprehensive generalizations of finite results than their standard notions. For some graphs it turns out that best results are obtained not for the standard space consist- ing of the graph and all its ends, but for one where only its topological ends are added as new points, while rays from other ends are made to converge to certain vertices. 1Introduction This paper is part of an on-going project in which we seek to explore how standard facts about paths and cycles in finite graphs can best be generalized to infinite graphs. The basic idea is that such generalizations can, and should, involve the ends of an infinite graph on a par with its other points (vertices or inner points of edges), both as endpoints of paths and as inner points of paths or cycles. To implement this idea we define paths and cycles topologically: in the space G consisting of a graph G together with its ends, we consider arcs (homeomorphic images of [0, 1]) instead of paths, and circles (homeomorphic images of the unit circle) instead of cycles. The topological version of a spanning tree, then, will be a path-connected subset of G that contains its vertices and ends but does not contain any circles. Let us look at an example. The double ladder L shown in Figure 1 has two ends, and its two sides (the top double ray R and the bottom double ray Q) will form a circle D with these ends: in the standard topology on L (to be defined later), every left-going ray converges to ω, while every right- going ray converges to ω.
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • A TEXTBOOK of TOPOLOGY Lltld
    SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Homology of Path Complexes and Hypergraphs
    Homology of path complexes and hypergraphs Alexander Grigor’yan Rolando Jimenez Department of Mathematics Instituto de Matematicas University of Bielefeld UNAM, Unidad Oaxaca 33501 Bielefeld, Germany 68000 Oaxaca, Mexico Yuri Muranov Shing-Tung Yau Faculty of Mathematics and Department of Mathematics Computer Science Harvard University University of Warmia and Mazury Cambridge MA 02138, USA 10-710 Olsztyn, Poland March 2019 Abstract The path complex and its homology were defined in the previous papers of authors. The theory of path complexes is a natural discrete generalization of the theory of simplicial complexes and the homology of path complexes provide homotopy invariant homology theory of digraphs and (nondirected) graphs. In the paper we study the homology theory of path complexes. In particular, we describe functorial properties of paths complexes, introduce notion of homo- topy for path complexes and prove the homotopy invariance of path homology groups. We prove also several theorems that are similar to the results of classical homology theory of simplicial complexes. Then we apply obtained results for construction homology theories on various categories of hypergraphs. We de- scribe basic properties of these homology theories and relations between them. As a particular case, these results give new homology theories on the category of simplicial complexes. Contents 1 Introduction 2 2 Path complexes on finite sets 2 3 Homotopy theory for path complexes 8 4 Relative path homology groups 13 5 The path homology of hypergraphs. 14 1 1 Introduction In this paper we study functorial and homotopy properties of path complexes that were introduced in [7] and [9] as a natural discrete generalization of the notion of a simplicial complex.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
    Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds.
    [Show full text]
  • Homotopy Theory of Infinite Dimensional Manifolds?
    Topo/ogy Vol. 5. pp. I-16. Pergamon Press, 1966. Printed in Great Britain HOMOTOPY THEORY OF INFINITE DIMENSIONAL MANIFOLDS? RICHARD S. PALAIS (Received 23 Augrlsf 1965) IN THE PAST several years there has been considerable interest in the theory of infinite dimensional differentiable manifolds. While most of the developments have quite properly stressed the differentiable structure, it is nevertheless true that the results and techniques are in large part homotopy theoretic in nature. By and large homotopy theoretic results have been brought in on an ad hoc basis in the proper degree of generality appropriate for the application immediately at hand. The result has been a number of overlapping lemmas of greater or lesser generality scattered through the published and unpublished literature. The present paper grew out of the author’s belief that it would serve a useful purpose to collect some of these results and prove them in as general a setting as is presently possible. $1. DEFINITIONS AND STATEMENT OF RESULTS Let V be a locally convex real topological vector space (abbreviated LCTVS). If V is metrizable we shall say it is an MLCTVS and if it admits a complete metric then we shall say that it is a CMLCTVS. A half-space in V is a subset of the form {v E V(l(u) L 0} where 1 is a continuous linear functional on V. A chart for a topological space X is a map cp : 0 + V where 0 is open in X, V is a LCTVS, and cp maps 0 homeomorphically onto either an open set of V or an open set of a half space of V.
    [Show full text]
  • Introduction to Topology
    Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX 1 Chapter 1. Metric Spaces 1. De¯nition and Examples. As the course progresses we will need to review some basic notions about sets and functions. We begin with a little set theory. Let S be a set. For A; B ⊆ S, put A [ B := fs 2 S j s 2 A or s 2 Bg A \ B := fs 2 S j s 2 A and s 2 Bg S ¡ A := fs 2 S j s2 = Ag 1.1 Theorem. Let A; B ⊆ S. Then S ¡ (A [ B) = (S ¡ A) \ (S ¡ B). Exercise 1. Let A ⊆ S. Prove that S ¡ (S ¡ A) = A. Exercise 2. Let A; B ⊆ S. Prove that S ¡ (A \ B) = (S ¡ A) [ (S ¡ B). (Hint: Either prove this directly as in the proof of Theorem 1.1, or just use the statement of Theorem 1.1 together with Exercise 1.) Exercise 3. Let A; B; C ⊆ S. Prove that A M C ⊆ (A M B) [ (B M C), where A M B := (A [ B) ¡ (A \ B). 1.2 De¯nition. A metric space is a pair (X; d) where X is a non-empty set, and d is a function d : X £ X ! R such that for all x; y; z 2 X (1) d(x; y) ¸ 0, (2) d(x; y) = 0 if and only if x = y, (3) d(x; y) = d(y; x), and (4) d(x; z) · d(x; y) + d(y; z) (\triangle inequality"). In the de¯nition, d is called the distance function (or metric) and X is called the underlying set.
    [Show full text]