Using the GNU Compiler Collection

Total Page:16

File Type:pdf, Size:1020Kb

Using the GNU Compiler Collection Using the GNU Compiler Collection Richard M. Stallman Last updated 21 May 2002 for MIPS SDE v5.0 / gcc-2.96 Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1998, 1999 Free Software Foundation, Inc. For MIPS SDE v5.0 / GCC Version 2.96 Published by the Free Software Foundation 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA Last printed April, 1998. Printed copies are available for $50 each. ISBN 1-882114-37-X Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the sections entitled “GNU General Public License” and “Funding for Free Software” are included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that the sections entitled “GNU General Public License” and “Funding for Free Software”, and this permission notice, may be included in transla- tions approved by the Free Software Foundation instead of in the original English. Introduction 1 Introduction This manual documents how to run the GNU compiler, as well as its new features and incom- patibilities, and how to report bugs. It corresponds to GCC version 2.96. 2 Using the GNU Compiler Collection Chapter 1: Compile C, C++, Objective C, Fortran, Java or CHILL 3 1 Compile C, C++, Objective C, Fortran, Java or CHILL Several versions of the compiler (C, C++, Objective C, Fortran, Java and CHILL) are integrated; this is why we use the name “GNU Compiler Collection”. GCC can compile programs written in any of these languages. The Fortran and CHILL compilers are described in separate manuals. The Java compiler currently has no manual documenting it. “GCC” is a common shorthand term for the GNU Compiler Collection. This is both the most general name for the compiler, and the name used when the emphasis is on compiling C programs (as the abbreviation formerly stood for “GNU C Compiler”). When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is only one compiler, it is also accurate to call it “GCC” no matter what the language context; however, the term “G++” is more useful when the emphasis is on compiling C++ programs. We use the name “GCC” to refer to the compilation system as a whole, and more specifically to the language-independent part of the compiler. For example, we refer to the optimization options as affecting the behavior of “GCC” or sometimes just “the compiler”. Front ends for other languages, such as Ada 95 and Pascal exist but have not yet been integrated into GCC. These front-ends, like that for C++, are built in subdirectories of GCC and link to it. The result is an integrated compiler that can compile programs written in C, C++, Objective C, or any of the languages for which you have installed front ends. In this manual, we only discuss the options for the C, Objective-C, and C++ compilers and those of the GCC core. Consult the documentation of the other front ends for the options to use when compiling programs written in other languages. G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your C++ program source. There is no intermediate C version of the program. (By contrast, for example, some other implementations use a program that generates a C program from your C++ source.) Avoiding an intermediate C representation of the program means that you get better object code, and better debugging information. The GNU debugger, GDB, works with this information in the object code to give you comprehensive C++ source-level editing capabilities (see section “C and C++” in Debugging with GDB). 4 Using the GNU Compiler Collection Chapter 2: GCC Command Options 5 2 GCC Command Options When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The “overall options” allow you to stop this process at an intermediate stage. For example, the ‘-c’ option says not to run the linker. Then the output consists of object files output by the assembler. Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other options control the assembler and linker; most of these are not documented here, since you rarely need to use any of them. Most of the command line options that you can use with GCC are useful for C programs; when an option is only useful with another language (usually C++), the explanation says so explicitly. If the description for a particular option does not mention a source language, you can use that option with all supported languages. See Section 2.3 [Compiling C++ Programs], page 10, for a summary of special options for com- piling C++ programs. The gcc program accepts options and file names as operands. Many options have multiletter names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very different from ‘-d -r’. You can mix options and other arguments. For the most part, the order you use doesn’t matter. Order does matter when you use several options of the same kind; for example, if you specify ‘-L’ more than once, the directories are searched in the order specified. Many options have long names starting with ‘-f’ or with ‘-W’—for example, ‘-fforce-mem’, ‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of these two forms, whichever one is not the default. 2.1 Option Summary Here is a summary of all the options, grouped by type. Explanations are in the following sections. Overall Options See Section 2.2 [Options Controlling the Kind of Output], page 8. -c -S -E -o ®le -pipe -pass-exit-codes -v --help -x language C Language Options See Section 2.4 [Options Controlling C Dialect], page 11. -ansi -fstd -fallow-single-precision -fcond-mismatch -fno-asm -fno-builtin -ffreestanding -fhosted -fsigned-bitfields -funsigned-bitfields -fsigned-char -funsigned-char -fwritable-strings -traditional -traditional-cpp -trigraphs C++ Language Options See Section 2.5 [Options Controlling C++ Dialect], page 15. -fno-access-control -fcheck-new -fconserve-space -fdollars-in-identifiers -fno-elide-constructors -fexternal-templates -ffor-scope -fno-for-scope -fno-gnu-keywords -fguiding-decls -fhonor-std -fhuge-objects -fno-implicit-templates -finit-priority -fno-implement-inlines -fname-mangling-version-n 6 Using the GNU Compiler Collection -fno-default-inline -fno-operator-names -fno-optional-diags -fpermissive -frepo -fstrict-prototype -fsquangle -ftemplate-depth-n -fuse-cxa-atexit -fvtable-thunks -nostdinc++ -Wctor-dtor-privacy -Wno-deprecated -Weffc++ -Wno-non-template-friend -Wnon-virtual-dtor -Wold-style-cast -Woverloaded-virtual -Wno-pmf-conversions -Wreorder -Wsign-promo -Wsynth Warning Options See Section 2.6 [Options to Request or Suppress Warnings], page 21. -fsyntax-only -pedantic -pedantic-errors -w -W -Wall -Waggregate-return -Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment -Wconversion -Werror -Wformat -Wid-clash-len -Wimplicit -Wimplicit-int -Wimplicit-function-declaration -Wimport -Werror-implicit-function-declaration -Wfloat-equal -Winline -Wlarger-than-len -Wlong-long -Wmain -Wmissing-declarations -Wmissing-noreturn -Wparentheses -Wparentheses-else -Wpointer-arith -Wredundant-decls -Wreturn-type -Wlongjmp-clobbers -Wshadow -Wsign-compare -Wstrict-prototypes -Wswitch -Wtraditional -Wmultichar -Wno-import -Wpacked -Wpadded -Wparentheses -Wpointer-arith -Wredundant-decls -Wreturn-type -Wshadow -Wsign-compare -Wswitch -Wtrigraphs -Wundef -Wuninitialized -Wunknown-pragmas -Wunreachable-code -Wunused -Wunused-function -Wunused-label -Wunused-parameter -Wunused-variable -Wunused-value -Wwrite-strings C-only Warning Options -Wbad-function-cast -Wmissing-prototypes -Wnested-externs -Wstrict-prototypes -Wtraditional Debugging Options See Section 2.7 [Options for Debugging Your Program or GCC], page 29. -dletters -fdump-unnumbered -fdump-translation-unit-®le -fpretend-float -fprofile-arcs -ftest-coverage -g -glevel -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2 -ggdb -gstabs -gstabs+ -gxcoff -gxcoff+ -p -pg -print-file-name=library -print-libgcc-file-name -print-prog-name=program -print-search-dirs -save-temps -time Optimization Options See Section 2.8 [Options that Control Optimization], page 33. -falign-functions=n -falign-labels=n -falign-loops=n -falign-jumps=n -fbranch-probabilities -fcaller-saves -fcse-follow-jumps -fcse-skip-blocks -flive-range -fdelayed-branch -fdelete-null-pointer-checks -fexpensive-optimizations -ffast-math -ffloat-store -fforce-addr -fforce-mem -fno-math-errno -fdata-sections -ffunction-sections -fgcse -finline-functions -finline-limit=n -fkeep-inline-functions Chapter 2: GCC Command Options 7 -fmove-all-movables -fno-default-inline -fno-defer-pop -fno-function-cse -fno-inline -fno-peephole -fomit-frame-pointer -foptimize-register-moves -foptimize-sibling-calls -fregmove -frerun-cse-after-loop -frerun-loop-opt -freduce-all-givs -fschedule-insns -fschedule-insns2 -fssa -fstrength-reduce -fstrict-aliasing -fthread-jumps -funroll-all-loops -funroll-loops -O -O0 -O1 -O2 -O3 -Os Preprocessor Options See Section 2.9 [Options Controlling the Preprocessor], page 40. -Aquestion(answer) -C -dD -dM -dN -Dmacro[=defn] -E -H -idirafter dir -include ®le -imacros ®le -iprefix ®le -iwithprefix dir -iwithprefixbefore dir -isystem dir -isystem-c++ dir -M -MD -MM -MMD -MG -nostdinc -P -trigraphs -undef -Umacro -Wp,option Assembler Option See Section 2.10 [Passing Options to the Assembler], page 43. -Wa,option Linker Options See Section 2.11 [Options for Linking], page 43. object-®le-name -llibrary -nostartfiles -nodefaultlibs -nostdlib -s -static -shared -symbolic -Wl,option -Xlinker option -u symbol Directory Options See Section 2.12 [Options for Directory Search], page 46.
Recommended publications
  • Red Hat Enterprise Linux 6 Developer Guide
    Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Dave Brolley William Cohen Roland Grunberg Aldy Hernandez Karsten Hopp Jakub Jelinek Developer Guide Jeff Johnston Benjamin Kosnik Aleksander Kurtakov Chris Moller Phil Muldoon Andrew Overholt Charley Wang Kent Sebastian Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Edition 0 Author Dave Brolley [email protected] Author William Cohen [email protected] Author Roland Grunberg [email protected] Author Aldy Hernandez [email protected] Author Karsten Hopp [email protected] Author Jakub Jelinek [email protected] Author Jeff Johnston [email protected] Author Benjamin Kosnik [email protected] Author Aleksander Kurtakov [email protected] Author Chris Moller [email protected] Author Phil Muldoon [email protected] Author Andrew Overholt [email protected] Author Charley Wang [email protected] Author Kent Sebastian [email protected] Editor Don Domingo [email protected] Editor Jacquelynn East [email protected] Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
    [Show full text]
  • Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .........................
    [Show full text]
  • A Java Implementation of a Portable Desktop Manager Scott .J Griswold University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 1998 A Java Implementation of a Portable Desktop Manager Scott .J Griswold University of North Florida Suggested Citation Griswold, Scott .,J "A Java Implementation of a Portable Desktop Manager" (1998). UNF Graduate Theses and Dissertations. 95. https://digitalcommons.unf.edu/etd/95 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 1998 All Rights Reserved A JAVA IMPLEMENTATION OF A PORTABLE DESKTOP MANAGER by Scott J. Griswold A thesis submitted to the Department of Computer and Information Sciences in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences UNIVERSITY OF NORTH FLORIDA DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES April, 1998 The thesis "A Java Implementation of a Portable Desktop Manager" submitted by Scott J. Griswold in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences has been ee Date APpr Signature Deleted Dr. Ralph Butler Thesis Advisor and Committee Chairperson Signature Deleted Dr. Yap S. Chua Signature Deleted Accepted for the Department of Computer and Information Sciences Signature Deleted i/2-{/1~ Dr. Charles N. Winton Chairperson of the Department Accepted for the College of Computing Sciences and E Signature Deleted Dr. Charles N. Winton Acting Dean of the College Accepted for the University: Signature Deleted Dr.
    [Show full text]
  • Bash Shell Scripts
    Bash Shell Scripts Writing Bash shell scripts Bash shell scripts are text files Text files most efficiently built with programming editors (emacs or vi) File must be executable and in search path chmod 700 my_script PATH environment variable may not include .! An example shell script: #!/bin/bash #My first script echo "Hello World!" Bash Shell Scripts Writing Bash shell scripts Compile a Verilog file with vlog #!/bin/bash if [ ! d work ] ; then echo work does not exist, making it vlib work fi if [ ! s adder.v ] ; then vlog adder.v fi work directory must exist before compilation Get scripts via wget, eg: wget http://web.engr.oregonstate.edu/~traylor/ece474/script --- Bash Shell Scripts Writing Bash shell scripts File attribute checking #!/bin/bash if [ ! s junk_dir ] ; then mkdir junk_dir fi Spaces around brackets are needed! File attribute checking d exists and is a directory e, a file exists f exists and is a regular file s file exists and is not empty --- Bash Shell Scripts Writing Bash shell scripts Compile Verilog then run a simultion #!/bin/bash if [ ! -d "work" ] ; then vlib work fi if [ -s "adder.v" ] ; then vlog adder.v #runs simulation with a do file and no GUI vsim adder -do do.do quiet c else echo verilog file missing fi --- Bash Shell Scripts Writing Bash shell scripts vsim command and arguments vsim entity_name do dofile.do quiet -c -quiet (do not report loading file messages) -c (console mode, no GUI) -do (run vsim from a TCL do file) +nowarnTFMPC (don’t warn about mismatched ports, scary) +nowarnTSCALE (don’t warn about timing mismatches) Try vsim help for command line arguements --- Bash Shell Scripts Writing Bash Shell Scripts (TCL Script) In another text file, we create a TCL script with commands for the simulator.
    [Show full text]
  • Introduction to Linux by Lars Eklund Based on Work by Marcus Lundberg
    Introduction to Linux By Lars Eklund Based on work by Marcus Lundberg ● What is Linux ● Logging in to UPPMAX ● Navigate the file system ● “Basic toolkit” What is Linux ● The Linux Operating system is a UNIX like UNIX compatible Operating system. ● Linux is a Kernel on which many different programs can run. The shell(bash, sh, ksh, csh, tcsh and many more) is one such program ● Linux has a multiuser platform at its base which means permissions and security comes easy. Many Flavours Connect to UPPMAX ● (Download XQuartz or other X11 server for Mac OS ) ● Linux and MacOS: – start Terminal – $ ssh -X [email protected] Connect to UPPMAX for windows users ● Download a X-server such as GWSL or X-ming or VcXsrv or an other of your choosing ● Install WSL and a Distribution such as ubuntu or a ssh program such as MobaXTerm ● Connect to $ ssh -X [email protected] Windows links ● https://sourceforge.net/projects/vcxsrv/ ● https://mobaxterm.mobatek.net/ ● https://opticos.github.io/gwsl/ ● https://sourceforge.net/projects/xming/ ● https://docs.microsoft.com/en-us/windows/wsl/install-wi n10 ● Don’t forget to update to wsl2 X11-forwarding graphics from the command line ● Graphics can be sent through the SSH connection you’re using to connect - Use ssh -Y or ssh -X ● MacOS users will need to install XQuartz. ● When starting a graphical program, a new window will open, but your terminal will be “locked”. - Run using & at the end to run it as a background proccess e.g. “gedit &” - Alternatively, use ctrl-z to put gedit to sleep and
    [Show full text]
  • Bringing GNU Emacs to Native Code
    Bringing GNU Emacs to Native Code Andrea Corallo Luca Nassi Nicola Manca [email protected] [email protected] [email protected] CNR-SPIN Genoa, Italy ABSTRACT such a long-standing project. Although this makes it didactic, some Emacs Lisp (Elisp) is the Lisp dialect used by the Emacs text editor limitations prevent the current implementation of Emacs Lisp to family. GNU Emacs can currently execute Elisp code either inter- be appealing for broader use. In this context, performance issues preted or byte-interpreted after it has been compiled to byte-code. represent the main bottleneck, which can be broken down in three In this work we discuss the implementation of an optimizing com- main sub-problems: piler approach for Elisp targeting native code. The native compiler • lack of true multi-threading support, employs the byte-compiler’s internal representation as input and • garbage collection speed, exploits libgccjit to achieve code generation using the GNU Com- • code execution speed. piler Collection (GCC) infrastructure. Generated executables are From now on we will focus on the last of these issues, which con- stored as binary files and can be loaded and unloaded dynamically. stitutes the topic of this work. Most of the functionality of the compiler is written in Elisp itself, The current implementation traditionally approaches the prob- including several optimization passes, paired with a C back-end lem of code execution speed in two ways: to interface with the GNU Emacs core and libgccjit. Though still a work in progress, our implementation is able to bootstrap a func- • Implementing a large number of performance-sensitive prim- tional Emacs and compile all lexically scoped Elisp files, including itive functions (also known as subr) in C.
    [Show full text]
  • Ethereal Developer's Guide Draft 0.0.2 (15684) for Ethereal 0.10.11
    Ethereal Developer's Guide Draft 0.0.2 (15684) for Ethereal 0.10.11 Ulf Lamping, Ethereal Developer's Guide: Draft 0.0.2 (15684) for Ethere- al 0.10.11 by Ulf Lamping Copyright © 2004-2005 Ulf Lamping Permission is granted to copy, distribute and/or modify this document under the terms of the GNU General Public License, Version 2 or any later version published by the Free Software Foundation. All logos and trademarks in this document are property of their respective owner. Table of Contents Preface .............................................................................................................................. vii 1. Foreword ............................................................................................................... vii 2. Who should read this document? ............................................................................... viii 3. Acknowledgements ................................................................................................... ix 4. About this document .................................................................................................. x 5. Where to get the latest copy of this document? ............................................................... xi 6. Providing feedback about this document ...................................................................... xii I. Ethereal Build Environment ................................................................................................14 1. Introduction .............................................................................................................15
    [Show full text]
  • The GNU Compiler Collection on Zseries
    The GNU Compiler Collection on zSeries Dr. Ulrich Weigand Linux for zSeries Development, IBM Lab Böblingen [email protected] Agenda GNU Compiler Collection History and features Architecture overview GCC on zSeries History and current status zSeries specific features and challenges Using GCC GCC optimization settings GCC inline assembly Future of GCC GCC and Linux Apache Samba mount cvs binutils gdb gcc Linux ls grep Kernel glibc DB2 GNU - essentials UDB SAP R/3 Unix - tools Applications GCC History Timeline January 1984: Start of the GNU project May 1987: Release of GCC 1.0 February 1992: Release of GCC 2.0 August 1997: EGCS project announced November 1997: Release of EGCS 1.0 April 1999: EGCS / GCC merge July 1999: Release of GCC 2.95 June 2001: Release of GCC 3.0 May/August 2002: Release of GCC 3.1/3.2 March 2003: Release of GCC 3.3 (estimated) GCC Features Supported Languages part of GCC distribution: C, C++, Objective C Fortran 77 Java Ada distributed separately: Pascal Modula-3 under development: Fortran 95 Cobol GCC Features (cont.) Supported CPU targets i386, ia64, rs6000, s390 sparc, alpha, mips, arm, pa-risc, m68k, m88k many embedded targets Supported OS bindings Unix: Linux, *BSD, AIX, Solaris, HP/UX, Tru64, Irix, SCO DOS/Windows, Darwin (MacOS X) embedded targets and others Supported modes of operation native compiler cross-compiler 'Canadian cross' builds GCC Architecture: Overview C C++ Fortran Java ... front-end front-end front-end front-end tree Optimizer rtx i386 s390 rs6000 sparc ... back-end back-end back-end
    [Show full text]
  • GNU Emacs Manual
    GNU Emacs Manual GNU Emacs Manual Sixteenth Edition, Updated for Emacs Version 22.1. Richard Stallman This is the Sixteenth edition of the GNU Emacs Manual, updated for Emacs version 22.1. Copyright c 1985, 1986, 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \The GNU Manifesto," \Distribution" and \GNU GENERAL PUBLIC LICENSE," with the Front-Cover texts being \A GNU Manual," and with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled \GNU Free Documentation License." (a) The FSF's Back-Cover Text is: \You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development." Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301 USA ISBN 1-882114-86-8 Cover art by Etienne Suvasa. i Short Contents Preface ::::::::::::::::::::::::::::::::::::::::::::::::: 1 Distribution ::::::::::::::::::::::::::::::::::::::::::::: 2 Introduction ::::::::::::::::::::::::::::::::::::::::::::: 5 1 The Organization of the Screen :::::::::::::::::::::::::: 6 2 Characters, Keys and Commands ::::::::::::::::::::::: 11 3 Entering and Exiting Emacs ::::::::::::::::::::::::::: 15 4 Basic Editing
    [Show full text]
  • Introduction to GNU Octave
    Introduction to GNU Octave Hubert Selhofer, revised by Marcel Oliver updated to current Octave version by Thomas L. Scofield 2008/08/16 line 1 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 8 6 4 2 -8 -6 0 -4 -2 -2 0 -4 2 4 -6 6 8 -8 Contents 1 Basics 2 1.1 What is Octave? ........................... 2 1.2 Help! . 2 1.3 Input conventions . 3 1.4 Variables and standard operations . 3 2 Vector and matrix operations 4 2.1 Vectors . 4 2.2 Matrices . 4 1 2.3 Basic matrix arithmetic . 5 2.4 Element-wise operations . 5 2.5 Indexing and slicing . 6 2.6 Solving linear systems of equations . 7 2.7 Inverses, decompositions, eigenvalues . 7 2.8 Testing for zero elements . 8 3 Control structures 8 3.1 Functions . 8 3.2 Global variables . 9 3.3 Loops . 9 3.4 Branching . 9 3.5 Functions of functions . 10 3.6 Efficiency considerations . 10 3.7 Input and output . 11 4 Graphics 11 4.1 2D graphics . 11 4.2 3D graphics: . 12 4.3 Commands for 2D and 3D graphics . 13 5 Exercises 13 5.1 Linear algebra . 13 5.2 Timing . 14 5.3 Stability functions of BDF-integrators . 14 5.4 3D plot . 15 5.5 Hilbert matrix . 15 5.6 Least square fit of a straight line . 16 5.7 Trapezoidal rule . 16 1 Basics 1.1 What is Octave? Octave is an interactive programming language specifically suited for vectoriz- able numerical calculations.
    [Show full text]
  • Lecture 1: Introduction to UNIX
    The Operating System Course Overview Getting Started Lecture 1: Introduction to UNIX CS2042 - UNIX Tools September 29, 2008 Lecture 1: UNIX Intro The Operating System Description and History Course Overview UNIX Flavors Getting Started Advantages and Disadvantages Lecture Outline 1 The Operating System Description and History UNIX Flavors Advantages and Disadvantages 2 Course Overview Class Specifics 3 Getting Started Login Information Lecture 1: UNIX Intro The Operating System Description and History Course Overview UNIX Flavors Getting Started Advantages and Disadvantages What is UNIX? One of the first widely-used operating systems Basis for many modern OSes Helped set the standard for multi-tasking, multi-user systems Strictly a teaching tool (in its original form) Lecture 1: UNIX Intro The Operating System Description and History Course Overview UNIX Flavors Getting Started Advantages and Disadvantages A Brief History of UNIX Origins The first version of UNIX was created in 1969 by a group of guys working for AT&T's Bell Labs. It was one of the first big projects written in the emerging C language. It gained popularity throughout the '70s and '80s, although non-AT&T versions eventually took the lion's share of the market. Predates Microsoft's DOS by 12 years! Lecture 1: UNIX Intro The Operating System Description and History Course Overview UNIX Flavors Getting Started Advantages and Disadvantages Lecture Outline 1 The Operating System Description and History UNIX Flavors Advantages and Disadvantages 2 Course Overview Class Specifics 3
    [Show full text]
  • Emacspeak User's Guide
    Emacspeak User's Guide Jennifer Jobst Revision History Revision 1.3 July 24,2002 Revised by: SDS Updated the maintainer of this document to Sharon Snider, corrected links, and converted to HTML Revision 1.2 December 3, 2001 Revised by: JEJ Changed license to GFDL Revision 1.1 November 12, 2001 Revised by: JEJ Revision 1.0 DRAFT October 19, 2001 Revised by: JEJ This document helps Emacspeak users become familiar with Emacs as an audio desktop and provides tutorials on many common tasks and the Emacs applications available to perform those tasks. Emacspeak User's Guide Table of Contents 1. Legal Notice.....................................................................................................................................................1 2. Introduction.....................................................................................................................................................2 2.1. What is Emacspeak?.........................................................................................................................2 2.2. About this tutorial.............................................................................................................................2 3. Before you begin..............................................................................................................................................3 3.1. Getting started with Emacs and Emacspeak.....................................................................................3 3.2. Emacs Command Conventions.........................................................................................................3
    [Show full text]