STELLARATOR BETA LIMITS with EXTENDED MHD MODELING USING NIMROD by Torrin A. Bechtel a Dissertation Submitted in Partial Fulfill

Total Page:16

File Type:pdf, Size:1020Kb

STELLARATOR BETA LIMITS with EXTENDED MHD MODELING USING NIMROD by Torrin A. Bechtel a Dissertation Submitted in Partial Fulfill STELLARATOR BETA LIMITS WITH EXTENDED MHD MODELING USING NIMROD by Torrin A. Bechtel A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN–MADISON 2021 Date of final oral examination: 4/14/21 The dissertation is approved by the following members of the Final Oral Committee: Chris C. Hegna, Professor, Engineering Physics Carl R. Sovinec, Professor, Engineering Physics David T. Anderson, Professor, Electrical Engineering Paul W. Terry, Professor, Physics © Copyright by Torrin A. Bechtel 2021 All Rights Reserved i abstract The nonlinear, extended MHD code NIMROD is employed to simulate self-consistent stellarator behavior at high beta. Finite anisotropic thermal conduction allows for sustained pressure gradients within regions of stochastic magnetic field. The con- figuration under investigation is an `=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are generated from vacuum fields using a volumetric heating source and temperature dependent resistivity. With realis- tic parameters the configuration is unstable to interchange, which acts to limit the achievable beta. Simulations performed in a single field period domain do not ex- hibit a complete crash from the instability, but otherwise closely match theorized linear and nonlinear interchange behavior. In more dissipative regimes where in- stability is suppressed, steady-state solutions are obtained. A conventional equi- librium beta limit is observed due to pressure induced stochastic magnetic field formation. The parametric dependence of the equilibrium limit is examined in detail. Equilibrium results are compared with several reduced models for effec- tive collisional transport across stochastic magnetic fields and with the HINT code. Collisionality independent models suggest realistic parallel thermal conduction is below the Braginskii prediction, but require further development to allow appli- cation to stochastic fields. ii acknowledgments First and foremost, I would like to thank my advisors, Prof. Chris Hegna and Prof. Carl Sovinec, for their support and guidance during my PhD. They have always made themselves available when I needed assistance. It was an honor to learn from such brilliant physicists. I would also like to thank Dr. Jake King and the rest of the NIMROD team for all of their support behind the scenes. The perpetual maintenance and improvements to the code base were essential to my scientific progress. I am grateful to Dr. Mark Schlutt, Dr. Jonathan Hebert, and Dr. Nick Roberds who laid the foundation for this work and were instrumental in helping me get started. It was a pleasure be- ing able to learn the basics of stellarator design from Prof. Jim Hanson, Dr. Greg Hartwell, and the CTH team to whom I am highly appreciative. Additionally, I would like to thank all of the people who have offered useful insight and perspec- tives including Prof. Jim Callen, Prof. Eric Held, Dr. Jeong-Young Ji, my previous ERB officemates, former roommates, and graduate colleagues. Without the support of my friends and family, this accomplishment would not have been possible. I owe a special thanks to my mother, who has been preparing me for this even before I could walk, and to my father, who has aspired to keep an open mind. I am very thankful to the rest of my family who have always been there for me as well. In particular, I would like to thank Erin Middlemas for always believing in me. You have inspired me to be a better person in every way. Finally, I would like to thank my dear friend Dr. X for having my back through many highs and lows. My life wouldn’t be the same without you. This work could not have been performed with the immense computational resources provided by the high performance computing centers at the University of Wisconsin (CHTC) and NERSC (a DOE Office of Science user facility). I would like to thank all of the staff who keep these systems operating and accessible day and night. Both of the centers are funded through a broad tax base which is made possible by the public support of science. Thank you! iii contents Abstract i Contents iii 1 Introduction 1 I Background 3 2 High Beta Stability 4 2.1 Ideal MHD Stability ............................ 5 2.2 Resistive Interchange Theory ........................ 10 2.3 Simulated Stellarator Instabilities ...................... 13 2.4 High Beta Stellarator Experiments ..................... 19 3 Stochastic Field Transport 25 3.1 Ideal Equilibrium Limit ........................... 26 3.2 Non-Ideal Extensions ............................ 27 3.3 Realistic Equilibrium Beta Limit ...................... 28 3.4 Parallel Thermal Transport Models ..................... 39 3.5 Effective Transport In Stochastic Fields ................... 41 3.6 Stochastic Field Analysis in Stellarators . 48 4 NIMROD Modeling 52 4.1 Available Physics .............................. 52 4.2 Numerical Methods ............................. 54 4.3 Stellarator Simulations ........................... 56 4.4 Previous Stellarator Applications ...................... 58 4.5 Ongoing Development ........................... 63 iv II Setup 65 5 Vacuum Configuration 66 5.1 Improvements to CTH ........................... 66 5.2 New Configuration Design ......................... 68 6 Simulation Methods 76 6.1 Model .................................... 76 6.2 Initial Condition and Sources ........................ 80 6.3 Vacuum Initialization ............................ 82 6.4 Plasma Density Redistribution ....................... 89 6.5 Resolution and Convergence ........................ 91 6.6 Low Resolution Simulations ........................ 95 7 Heat Confinement Analysis 103 7.1 Flux Surface Identification . 103 7.2 Plasma Beta Calculation . 108 7.3 Effective Diffusivity in Simulation . 110 7.4 Magnetic Fieldline Diffusion . 111 7.5 Kolmogorov Length Scale Computation . 114 III Results 119 8 Interchange Instability 120 8.1 Simulation Characteristics . 120 8.2 Theory Based Analysis . 134 9 Equilibrium Transport 143 9.1 Beta Limit Dependencies . 144 9.2 Fieldline Proxies ............................... 153 9.3 Low Collisionality Extensions . 173 v 10 Comparison With HINT 182 11 Conclusion 187 11.1 Summary of Results ............................. 187 11.2 Outstanding Questions . 188 11.3 Future Directions .............................. 190 IV Appendices 192 A Rotational Transform Calculations 193 B Vacuum Field Prescription Comparison 197 B.1 Comparison of Different Initializations . 197 B.2 New Coilset For External Comparison . 202 References 208 1 1 introduction A confined plasma with both high temperature and density is essential to self sus- tained nuclear fusion; also known as burning fusion. While sustained burning fusion is currently only possible within massive solar objects, its creation within laboratories could be used for energy production, neutron breeding and improved understanding of astrophysical systems. The biggest challenge to creating fusion in a lab is the confinement of a plasma which is sufficiently hot, but has a man- ageable size. Many different confinement schemes have been proposed, each with their own benefits and downsides. With the primary goal of long term, steady state operation and minimal risk from disruptive instabilities, the stellarator magnetic confinement is a natural choice. The defining feature of a stellarator is that the magnetic field required to sta- bly confine a plasma is provided entirely by external coils. Plasma current is often minimized by design in these configurations. As a result, current driven instabili- ties are effectively eliminated and no inductive systems are required. The primary trade-off is the loss of a direct symmetry in the magnetic field. The axisymmetry of tokamaks and other magnetic configurations both simplifies analysis and reduces losses from plasma drifts. Some quasi-symmetry properties can be recovered with careful design in stellarators, but the fully 3D nature makes the potential operating space vastly more complex. Confining plasma is the first step to achieving burning fusion, but the required temperature and density can only be achieved if the confinement is efficient enough. This is frequently parameterized for magnetic confinement by the plasma beta. Beta is the ratio of thermal or internal pressure, p, to the pressure exerted by the ex- 2 2 ternally applied magnetic fields, B =2µ0. It therefore takes the form β = 2µ0p=B , which is dimensionless and generally expressed as a percentage. Maximizing beta is a common goal for all magnetic confinement schemes. In tokamaks, pressure and current driven instabilities take control of the plasma at high beta and are re- sponsible the Troyon beta limit. The lack of large current in stellarators means that the Troyon limit is not applicable and different mechanisms are believed to 2 be responsible for the beta limit. Theoretical examination of stellarator beta limits, however, have only been performed with highly simplified plasma models. The intention of this work is to advance the understanding of high beta stellarators by analyzing simulations with more complete physics. In the first part of this document, we outline the present understanding of stel- larator behavior at high beta. Chapter 2 considers instabilities which have been observed in stellarators from theory, simulations, and experiments. In chapter 3 we discuss the transport effects produced by changes in stellarator equilibrium and how they can lead to a soft beta limit. We introduce the NIMROD
Recommended publications
  • Magnetohydrodynamics - Overview
    Center for Turbulence Research 361 Proceedings of the Summer Program 2006 Magnetohydrodynamics - overview Magnetohydrodynamics (MHD) is the study of the interaction of electrically conduct- ing fluids and electromagnetic forces. MHD problems arise in a wide variety of situations ranging from the explanation of the origin of Earth's magnetic field and the prediction of space weather to the damping of turbulent fluctuations in semiconductor melts dur- ing crystal growth and even the measurement of the flow rates of beverages in the food industry. The description of MHD flows involves both the equations of fluid dynamics - the Navier-Stokes equations - and the equations of electrodynamics - Maxwell's equa- tions - which are mutually coupled through the Lorentz force and Ohm's law for moving electrical conductors. Given the vast range of Reynolds numbers and magnetic Reynolds numbers characterising astrophysical, geophysical, and industrial MHD problems it is not feasible to devise an all-encompassing numerical code for the simulation of all MHD flows. The challenge in MHD is rather to combine a judicious application of analytical tools for the derivation of simplified equations with accurate numerical algorithms for the solution of the resulting mathematical models. The 2006 summer program provided a unique opportunity for scientists and engineers working in different sub-disciplines of MHD to interact with each other and benefit from the numerical capabilities available at the Center for Turbulence Research. In materials processing such as the growth of semiconductor crystals or the continuous casting of steel turbulent flows are often undesirable. The application of steady magnetic fields provides a convenient means for the contactless damping of turbulent fluctuations and for the laminarisation of flows.
    [Show full text]
  • Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Capstone Design Expo Posters College of Engineering 2015 Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University Brian Hortelano Virginia Commonwealth University Yonathan Kassaye Virginia Commonwealth University See next page for additional authors Follow this and additional works at: https://scholarscompass.vcu.edu/capstone Part of the Engineering Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/capstone/40 This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux, and Nick Reuter This poster is available at VCU Scholars Compass: https://scholarscompass.vcu.edu/capstone/40 Team Members: Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux Inertial Electrostatic Faculty Advisor: Dr. Sama Bilbao Y Leon, Mr. James G. Miller Sponsor: Confinement Fusor Dominion Virginia Power What is Fusion? Shielding Computational Modeling Because the D-D fusion reaction One of the potential uses of the fusor will be to results in the production of neutrons irradiate materials and see how they behave after and X-rays, shielding is necessary to certain levels of both fast and thermal neutron protect users from the radiation exposure. To reduce the amount of time and produced by the fusor. A Monte Carlo resources spent testing, a computational model n-Particle (MCNP) model was using XOOPIC, a particle interaction software, developed to calculate the necessary was developed to model the fusor.
    [Show full text]
  • A Mathematical Introduction to Magnetohydrodynamics
    Typeset in LATEX 2" July 26, 2017 A Mathematical Introduction to Magnetohydrodynamics Omar Maj Max Planck Institute for Plasma Physics, D-85748 Garching, Germany. e-mail: [email protected] 1 Contents Preamble 3 1 Basic elements of fluid dynamics 4 1.1 Kinematics of fluids. .4 1.2 Lagrangian trajectories and flow of a vector field. .5 1.3 Deformation tensor and vorticity. 14 1.4 Advective derivative and Reynolds transport theorem. 17 1.5 Dynamics of fluids. 20 1.6 Relation to kinetic theory and closure. 24 1.7 Incompressible flows . 32 1.8 Equations of state, isentropic flows and vorticity. 34 1.9 Effects of Euler-type nonlinearities. 35 2 Basic elements of classical electrodynamics 39 2.1 Maxwell's equations. 39 2.2 Lorentz force and motion of an electrically charged particle. 52 2.3 Basic mathematical results for electrodynamics. 57 3 From multi-fluid models to magnetohydrodynamics 69 3.1 A model for multiple electrically charged fluids. 69 3.2 Quasi-neutral limit. 74 3.3 From multi-fluid to a single-fluid model. 82 3.4 The Ohm's law for an electron-ion plasma. 86 3.5 The equations of magnetohydrodynamics. 90 4 Conservation laws in magnetohydrodynamics 95 4.1 Global conservation laws in resistive MHD. 95 4.2 Global conservation laws in ideal MHD. 98 4.3 Frozen-in law. 100 4.4 Flux conservation. 105 4.5 Topology of the magnetic field. 109 4.6 Analogy with the vorticity of isentropic flows. 117 5 Basic processes in magnetohydrodynamics 119 5.1 Linear MHD waves.
    [Show full text]
  • Stability Study of the Cylindrical Tokamak--Thomas Scaffidi(2011)
    Ecole´ normale sup erieure´ Princeton Plasma Physics Laboratory Stage long de recherche, FIP M1 Second semestre 2010-2011 Stability study of the cylindrical tokamak Etude´ de stabilit´edu tokamak cylindrique Author: Supervisor: Thomas Scaffidi Prof. Stephen C. Jardin Abstract Une des instabilit´es les plus probl´ematiques dans les plasmas de tokamak est appel´ee tearing mode . Elle est g´en´er´ee par les gradients de courant et de pression et implique une reconfiguration du champ magn´etique et du champ de vitesse localis´ee dans une fine r´egion autour d’une surface magn´etique r´esonante. Alors que les lignes de champ magn´etique sont `al’´equilibre situ´ees sur des surfaces toriques concentriques, l’instabilit´econduit `ala formation d’ˆıles magn´etiques dans lesquelles les lignes de champ passent d’un tube de flux `al’autre, rendant possible un trans- port thermique radial important et donc cr´eant une perte de confinement. Pour qu’il puisse y avoir une reconfiguration du champ magn´etique, il faut inclure la r´esistivit´edu plasma dans le mod`ele, et nous r´esolvons donc les ´equations de la magn´etohydrodynamique (MHD) r´esistive. On s’int´eresse `ala stabilit´ede configurations d’´equilibre vis-`a-vis de ces instabilit´es dans un syst`eme `ala g´eom´etrie simplifi´ee appel´ele tokamak cylindrique. L’´etude est `ala fois analytique et num´erique. La solution analytique est r´ealis´ee par une m´ethode de type “couche limite” qui tire profit de l’´etroitesse de la zone o`ula reconfiguration a lieu.
    [Show full text]
  • Magnetohydrodynamics 1 19.1Overview
    Contents 19 Magnetohydrodynamics 1 19.1Overview...................................... 1 19.2 BasicEquationsofMHD . 2 19.2.1 Maxwell’s Equations in the MHD Approximation . ..... 4 19.2.2 Momentum and Energy Conservation . .. 8 19.2.3 BoundaryConditions. 10 19.2.4 Magneticfieldandvorticity . .. 12 19.3 MagnetostaticEquilibria . ..... 13 19.3.1 Controlled thermonuclear fusion . ..... 13 19.3.2 Z-Pinch .................................. 15 19.3.3 Θ-Pinch .................................. 17 19.3.4 Tokamak.................................. 17 19.4 HydromagneticFlows. .. 18 19.5 Stability of Hydromagnetic Equilibria . ......... 22 19.5.1 LinearPerturbationTheory . .. 22 19.5.2 Z-Pinch: Sausage and Kink Instabilities . ...... 25 19.5.3 EnergyPrinciple ............................. 28 19.6 Dynamos and Reconnection of Magnetic Field Lines . ......... 29 19.6.1 Cowling’stheorem ............................ 30 19.6.2 Kinematicdynamos............................ 30 19.6.3 MagneticReconnection. 31 19.7 Magnetosonic Waves and the Scattering of Cosmic Rays . ......... 33 19.7.1 CosmicRays ............................... 33 19.7.2 Magnetosonic Dispersion Relation . ..... 34 19.7.3 ScatteringofCosmicRays . 36 0 Chapter 19 Magnetohydrodynamics Version 1219.1.K.pdf, 7 September 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 19.1 Reader’s Guide This chapter relies heavily on Chap. 13 and somewhat on the treatment of vorticity • transport in Sec. 14.2 Part VI, Plasma Physics (Chaps. 20-23) relies heavily on this chapter. • 19.1 Overview In preceding chapters, we have described the consequences of incorporating viscosity and thermal conductivity into the description of a fluid. We now turn to our final embellishment of fluid mechanics, in which the fluid is electrically conducting and moves in a magnetic field.
    [Show full text]
  • Application of High Performance Computing for Fusion Research Shimpei Futatani
    Application of high performance computing for fusion research Shimpei Futatani Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain The study of the alternative energy source is one of the absolutely imperative research topics in the world as our present energy sources such as fossil fuels are limited. This work is dedicated to the nuclear fusion physics research in close collaboration with existing experimental fusion devices and the ITER organization (www.iter.org) which is an huge international nuclear fusion R&D project. The goal of the ITER project is to demonstrate a clean and safe energy production by nuclear fusion which is the reaction that powers the sun. One of the ideas of the nuclear fusion on the earth is that the very high temperature ionized particles, forming a plasma can be controlled by a magnetic field, called magnetically confined plasma. This is essential, because no material can be sustained against such high temperature reached in a fusion reactor. Tokamak is a device which uses a powerful magnetic field to confine a hot plasma in the shape of a torus. It is a demanding task to achieve a sufficiently good confinement in a tokamak for a ‘burning plasma’ due to various kinds of plasma instabilities. One of the critical unsolved problems is MHD (MagnetoHydroDynamics) instabilities in the fusion plasmas. The MHD instabilities at the plasma boundary damages the plasma facing component of the fusion reactor. One of techniques to control the MHD instabilities is injection of pellets (small deuterium ice bodies). The physics of the interaction between pellet ablation and MHD dynamics is very complex, and uncertainties still remain regarding the theoretical physics as well as the numerical modelling point of view.
    [Show full text]
  • Identification of the Sequence of Steps Intrinsic to Spheromak Formation
    Identification of the Sequence of Steps Intrinsic to Spheromak Formation P.M. Bellan, S. You, and G. S. Yun California Institute of Technology Pasadena, CA 91125, USA Abstract. A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation. Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows. Keywords: spheromak, magnetohydrodynamics, kink, jet PACS: 52.55.Ip, 52.35.Py, 52.55.Wq, 52.59.Dk INTRODUCTION which is rich in toroidal field energy (typical poloidal currents are 100 kA) but poor in poloidal field energy. Spheromaks are toroidal MHD equilibria incorporating Spheromak formation involves conversion of toroidal nested poloidal magnetic flux surfaces suitable for magnetic flux into poloidal magnetic flux while confining a fusion plasma. Unlike tokamaks, conserving magnetic helicity (but not conserving spheromaks are a self-organizing, minimum-energy magnetic energy).
    [Show full text]
  • Low Beta Confinement in a Polywell Modelled with Conventional Point Cusp Theories Matthew Carr, David Gummersall, Scott Cornish
    Low beta confinement in a Polywell modelled with conventional point cusp theories Matthew Carr, David Gummersall, Scott Cornish, and Joe Khachan Nuclear Fusion Physics Group, School of Physics A28, University of Sydney, NSW 2006, Australia (Dated: 11 September 2011) The magnetic field structure in a Polywell device is studied to understand both the physics underlying the electron confinement properties and its estimated performance compared to other cusped devices. Analytical expressions are presented for the mag- netic field in addition to expressions for the point and line cusps as a function of device parameters. It is found that at small coil spacings it is possible for the point cusp losses to dominate over the line cusp losses, leading to longer overall electron confinement. The types of single particle trajectories that can occur are analysed in the context of the magnetic field structure which results in the ability to define two general classes of trajectories, separated by a critical flux surface. Finally, an expres- sion for the single particle confinement time is proposed and subsequently compared with simulation. 1 I. THE POLYWELL CONCEPT The Polywell fusion reactor is a hybrid device that combines elements of inertial elec- trostatic confinement (IEC)1{3 and cusped magnetic confinement fusion4,5. In IEC fusion devices two spherically concentric gridded electrodes create a radial electric field that acts as an electrostatic potential well6{10. The radial electric field accelerates ions to fusion rel- evant energies and confines them in the central grid region. These gridded systems have suffered from substantial energy loss due to ion collisions with the metal grid.
    [Show full text]
  • Peaceful Uses of Atomic Energy, Held in Point of Discussions Back in 1958
    INTERNATIONAL ATOMIC ENERGY AGENCY Wagramer Strasse 5, P.O. Box 100 A-1400 Vienna, Austria www.iaea.org CONTENT Guenter Mank, Head, Physics Section Alan Aqrawi, Physics Section Division of Physical and Chemical Sciences Division of Physical and Chemical Sciences Department of Nuclear Sciences and Applications Department of Nuclear Sciences and Applications CREDITS Photography: UNOG Archives Geneva (page 4,5,6,16,17,20,24,25,26), Nuclear Fusion Institute RRC "Kurchatov Institute" Russia (page 9,18,19), KFA Kernforschungsanlage Juelich Germany (page 10,11,15), ORNL Oak Ridge National Laboratory USA (page 6), IAEA Archives Vienna (page 8). DESIGN Alan Aqrawi © IAEA, 2008 INDEX FOREWORD Foreword “Celebrating fifty years of fusion… Foreword 2 …entering into the burning plasma era.” Energy in all its forms has always driven been achieved every 1.8 years. New human development. New technologies in developments in science and engineering energy production, starting from the use of fire have led to an optimized magnetic prototype The 2nd Geneva Conference - Introduction 4 itself, have driven economic and social reactor, with corresponding cost savings. development. In the mid-1950s, nuclear Inertial confinement experiments have energy created new hope for an abundant achieved similar progress. The culmination of source of that energy for the world. international collaborative efforts in fusion is the start of construction of the International Declassification 6 To promote this groundbreaking technology, Thermonuclear Experimental Reactor (ITER), and to host a neutral ground for substantive the biggest scientific endeavour the world has scientific debate, the United Nations in 1955 ever seen involving States with more than half organized the first of a series of conferences of the world’s population.
    [Show full text]
  • Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert
    SE0100262 TRITA-A Report ISSN 1102-2051 VETENSKAP OCH ISRN KTH/ALF/--01/4--SE IONST KTH Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert Research and Training programme on CONTROLLED THERMONUCLEAR FUSION AND PLASMA PHYSICS (Association EURATOM/NFR) FUSION PLASMA PHYSICS ALFV N LABORATORY ROYAL INSTITUTE OF TECHNOLOGY SE-100 44 STOCKHOLM SWEDEN PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK TRITA-ALF-2001-04 ISRN KTH/ALF/--01/4--SE Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert VETENSKAP OCH KONST Stockholm, June 2001 The Alfven Laboratory Division of Fusion Plasma Physics Royal Institute of Technology SE-100 44 Stockholm, Sweden (Association EURATOM/NFR) Printed by Alfven Laboratory Fusion Plasma Physics Division Royal Institute of Technology SE-100 44 Stockholm PLASMA PHYSICS AND CONTROLLED FUSION RESEARCH DURING HALF A CENTURY Bo Lehnert Alfven Laboratory, Royal Institute of Technology S-100 44 Stockholm, Sweden ABSTRACT A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades.
    [Show full text]
  • Stellarator Research Opportunities
    Stellarator Research Opportunities A report of the National Stellarator Coordinating Committee [1] This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.
    [Show full text]
  • Simulation Magnéto-Hydro-Dynamiques Des Edge-Localised-Modes Dans Un Tokamak
    Laboratoire de Physique des Interactions Institut de Recherche sur la Fusion par Ioniques et Moléculaires (PIIM) confinement Magnétique (IRFM) Université de Provence CEA Cadarache Thèse de doctorat de l’Université de Provence Simulation Magnéto-Hydro-Dynamiques des Edge-Localised-Modes dans un tokamak Présentée par Stanislas PAMELA Soutenue le 27 Septembre 2010 devant le jury composé de : Pr. Howard WILSON Professeur au Department of Physics Rapporteur University of York, United-Kingdom Dr. Hinrich LUTJENS Docteur d’état, Chargé de Recherche au CNRS Rapporteur CPHT, Ecole Polytechnique, Palaiseau Dr. Xavier LITAUDON Chef-Adjoint du Service de Chauffage et Président du Jury Confinement du Plasma, IRFM, CEA Cadarache Pr. Sadruddin BENKADDA Professeur au Laboratoire PIIM, Directeur de Recherche Directeur de thèse CNRS, Université de Provence, Aix-Marseille I Dr. Guido HUYSMANS Chercheur au Service de Chauffage et Responsable CEA Confinement du Plasma, IRFM, CEA Cadarache Pr. Peter BEYER Professeur au Laboratoire PIIM Invité Université de Provence, Aix-Marseille I Dr. Pierre RAMET Maître de Conférences, LABRI, INRIA Invité Université de Bordeaux I TABLE OF CONTENTS 1. Introduction ----------------------------------------------------------------------------------- 1 1.1 Nuclear Fusion ----------------------------------------------------------------------- 1 1.1.1 Fusion Energy ------------------------------------------------------------- 1 1.1.2 Energy Confinement ----------------------------------------------------- 2 1.1.3 Inertial and Magnetic
    [Show full text]