Golden Canyon Trail Guide

Total Page:16

File Type:pdf, Size:1020Kb

Load more

olden Canyon preserves geologic stories closely at the walls of the canyon, you will see a steeped in change. Like pages in a book, coating of mud that indicates the height of the Long Gone Lake G it’s rocks tell tales of ancient times when water that has moved through these narrows. 4 As you walk up Golden Canyon, you a lake once covered this land; they also speak of Flash floods like these have been shaping the travel through an ancient, changing landscape. violent flash floods racing down the canyon. canyons of Death Valley for millions of years. Look closely at the rocks exposed in the Golden Canyon is a fascinating showcase of the canyon walls. The conglomerate layers effects of water in an arid land. containing large boulders have given way to Former Fans light-colored deposits of silt and clay. Such Before You Start... 2 Look closely at the rock exposed in the fine-grained sediment typifies debris deposited canyon walls. Notice that the layers are at the bottom of a calm lake. These mudstones Before you enter the canyon, look across Death composed of sediment that ranges in size from are thought to be of similar age to the Valley toward the Panamint Mountains. Great boulders to fine-grained sand and silt. Does it conglomerate described at Stop 3. In crossing aprons of rocky debris partially bury this majestic remind you of the debris at the canyon’s mouth? the boundary between these different rock range in its own eroded remains. Deposited by Estimated to be about five million years old, these layers, you have walked across an alluvial fan periodic floods, this blanket of sediment is rocks tell of a former alluvial fan. Burial and and into a lake! actually composed of many individual, fan- cementation transformed the loose material into shaped deposits that radiate from each mountain a solid conglomerate. Subsequent uplift and Ripples in Time canyon. Geologists come from throughout the erosion have exposed these deposits. world to study these magnificent alluvial fans. Imagine standing at the edge of the lake What was the source for the material that 5 that once covered this area. Light sparkles off And you are standing on one. Flash floods composes these older alluvial fans? These layers shimmering water, and shorebirds skitter through emerge from the narrow mouth of Golden Canyon of conglomerate become thinner farther to the the shallows. Small waves gently lap at the shore, and suddenly spread out into the open valley east, suggesting they eroded from mountains to forming ripples in the loose sand. Amazing! It below. As the torrent slows, the water rapidly the west. Within this conglomerate is the story was so different than Death Valley today! dumps its mixture of silt, sand, gravel and cobbles. of a former landscape that predated Golden Imagine the size of the floods required to move Canyon and the dramatic basin of Death Valley. Examine the surfaces of the tilted rock layers in the larger boulders! Although these dynamic the canyon walls around you. Do you observe fans shift with each flood, their basic patterns the undulating pattern? These ripple marks remain consistent. The Restless Earth formed at the lakeshore about five million years 3 What existed before Death Valley? The ago. Preservation of their delicate pattern required rocks of Golden Canyon provide evidence of an rapid burial beneath another layer of sediment. older basin. The tilted layers surrounding you In other places in Death Valley, fascinating fossil An Abrasive Situation were nearly horizontal when they were initially footprints of large mammals are exposed in such 1 The flat, dark layer in front of you is not deposited. Why do these layers tilt so steeply lake deposits. a natural geologic formation. A road once entered now? Movement along the major faults of Death Golden Canyon, but what has destroyed the Valley has created a large fold centered near the Salt of the Earth pavement here? In February 1976, a four-day Texas Springs Campground. In the process, these storm dropped 2.3 inches (5.7cm) of rain at basin sediments have been uplifted and tilted, 6 In this section of canyon wall, you can Furnace Creek. On the last day of the storm, a and erosion now carries sediment out to a new see deposits of white minerals. These delicate violent downpour caused a surge of water, mud, valley floor. Tilted layers of rock are relatively crystals grew as mineral-laden water evaporated. and rock to flow through these narrows. common in Death Valley; tortured rocks have Please treat the crystals with care so other hikers can see them too. Such sediment-laden floods work like sandpaper, been fractured, faulted, and folded because of cutting away and undermining the rocky canyon the dynamic tectonic activity that continues to Mineral deposits similar to these are currently walls. In narrows such as these, floodwaters are shape this restless land. forming on the floor of Death Valley. Water carries constricted and the speed increases. If you look dissolved sodium, chlorine, sulfur, calcium, boron and other elements from the surrounding mountains. The arid climate rapidly evaporates Red Cathedral water from the valley floor, concentrating these 9 Notice the change from the relatively elements into new minerals such as halite (table gentle yellow slopes in the foreground to the Golden salt), gypsum, and borax. Observe these steeper red cliffs beyond. More resistant to interesting formations at the salt flats near erosion than the soft yellow mudstone, the rocks Badwater or the Devil’s Golf Course. of Red Cathedral form steep cliffs. These cliffs are composed of conglomerate similar to that Canyon A Recipe For Badlands exposed near the mouth of Golden Canyon, and they are also the debris of a former alluvial fan. trail guide 7 Why are these hills so barren? Extreme Oxidation of iron creates the red color, like the heat is only part of the answer. The story of these process that forms rust. For an impressive view “badlands” begins and ends with water. These of Red Cathedral’s fluted walls, hike another ¼ lakebed deposits contain impermeable clay, so mile up the main wash, keeping to the right at any rainfall quickly moves downhill. In addition, forks in the drainage. the combination of steep slopes and sporadic As you continue your exploration of the but intense storms increases rapid surface run- rugged mountains, canyons, salt flats, and other off. Nature’s way of efficiently removing so much landforms of Death Valley National Park, notice water is the formation of the numerous gullies the many geologic clues that are clearly exposed and ravines that characterize the badlands. in this desert land. As you have seen here in Unable to survive in this inhospitable Golden Canyon, processes working today have environment, plants are limited to the gravel also been working in the past. These same washes and banks. For the plants, these hills are processes will continue into the future, shaping indeed bad land. and changing this dynamic landscape. It’s All Downhill Beyond Golden Canyon Entering a canyon during a rare desert 8 Hikers wanting to continue beyond Golden rainstorm can be dangerous. Besides the threat Canyon have several options. From the end of of flash floods, falling rocks can be an unexpected andering through twisting narrows and the interpretive trail (Stop 10), a marked trail leads hazard. Rocks loosened by rainwater tumble off Wcolorful rock formations, this self- to Zabriskie Point. This will be a total of 2.5 cliffs and steep slopes, crashing toward the guided, interpretive trail leads to a spectacular miles (4 km) one-way from the parking lot with a narrow canyon bottom. Hikers beware! view of Manly Beacon and Red Cathedral. total elevation gain of 950 feet (290m). Come rain or shine, rocks are destined to make Another option off this side trail is to follow their way to lower elevations. Water and gravity Distance: ........... 2 miles (3.2 km) round trip Gower Gulch back down to the valley. Some work together to move the rock, but other forces Elevation Gain: ... 300 feet (91m) rock scrambling is required to climb down two can help start the process. Regional stresses dry falls. A path from the mouth of Gower Gulch Difficulty: .......... The gradual and steady fracture the rock, and deposits of salt within the heads north along the base of the mountains back uphill grade is rocky and uneven, so please cracks may grow and expand to further break the to the parking lot. This entire loop is 4 miles (6.4 walk carefully. Sturdy shoes are advised. rock apart. As large blocks of rock are broken up, km) round trip and gains a total of 500 feet (152m). Warnings: .......... On hot days, be sure to water and gravity are able to transport the smaller carry and drink plenty of water. pieces more easily. Death Valley National Park Death Valley National Park.
Recommended publications
  • Geomorphic Classification of Rivers

    Geomorphic Classification of Rivers

    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources

    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources

    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
  • Landforms & Bodies of Water

    Landforms & Bodies of Water

    Name Date Landforms & Bodies of Water - Vocab Cards hill noun a raised area of land smaller than a mountain. We rode our bikes up and down the grassy hill. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: island noun a piece of land surrounded by water on all sides. Marissa's family took a vacation on an island in the middle of the Pacific Ocean. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 1 lake noun a large body of fresh or salt water that has land all around it. The lake freezes in the wintertime and we go ice skating on it. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: landform noun any of the earth's physical features, such as a hill or valley, that have been formed by natural forces of movement or erosion. I love canyons and plains, but glaciers are my favorite landform. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 2 mountain noun a land mass with great height and steep sides. It is much higher than a hill. Someday I'm going to hike and climb that tall, steep mountain. Synonyms: peak Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: ocean noun a part of the large body of salt water that covers most of the earth's surface.
  • Dayton Valley Development Guidelines Final Draft

    Dayton Valley Development Guidelines Final Draft

    FINAL DRAFT Dayton Valley Development Guidelines Supplement to the Dayton Valley Area Drainage Master Plan prepared for August Lyon County | Storey County | 2019 Carson Water Subconservancy District i FINAL DRAFT Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Background and Rationale ............................................................................................................ 3 1.1.1 More Frequent Flooding ....................................................................................................... 3 1.1.2 Larger Flood Peaks ................................................................................................................ 3 1.1.3 Scour and Erosion ................................................................................................................. 3 1.1.4 Flow Diversion ....................................................................................................................... 3 1.1.5 Flow Concentration ............................................................................................................... 3 1.1.6 Expanded Floodplains ........................................................................................................... 3 1.1.7 Reduced Surface Storage ...................................................................................................... 3 1.1.8 Decreased Ground Water Recharge ....................................................................................
  • TWIN VALLEY TRAIL MILEAGE One of the Best Fossil Collecting Spots in Ohio, Including Species Dating Back 450 Million Years

    TWIN VALLEY TRAIL MILEAGE One of the Best Fossil Collecting Spots in Ohio, Including Species Dating Back 450 Million Years

    Overnight Parking at Sled Hill Parking Lot for Twin Valley Backpack Trail Users 0.45 1.81 Map design provided by Great Miami Outfitters. Downtown Miamisburg greatmiamioutfitters.com 0.69 0.6 0.1 0.11 0.13 1.5 0.07 0.11 Twin Valley Overnight Parking 0.13 at Spillway Parking Lot for 0.06 Welcome Center Twin Valley Backpack Trail Users TWINVALLEY 0.1 0.16 Dam Old Mill Spillway Frontcountry Camp 0.38 TRAIL Bob Siebenthaler Natural Area 0.26 0.92 1.1 Limestone 0.07 0.27 Outcrops GERMANTOWN& 0.1 0.1 0.84 TWINCREEKMETROPARKS 0.49 0.7 0.39 1.6 0.7 POINTS OF INTEREST Shimps Hollow Frontcountry Camp 1 TWIN VALLEY WELCOME CENTER In late summer 2015, Five Rivers MetroParks will begin 0.1 transitioning the Germantown Nature Center to Water Availability Cedar Ridge is a dry camp a new welcome center. Hikers will be able to get Cedar Ridge Nearest Water Backcountry Natural Source water, use restrooms and take shelter from inclement Campsites · South on the main trail (Twin Creek) weather 24/7 at the center. Visit metroparks.org/ tvwelcomecenter for more info and dates. .6 2 OLD FOREST The largest tract of old woods in Montgomery County, it provides habitat to many species, including orchids, brown creepers and summer taningers. Water Availability Oak Ridge has a seasonal stream and pond Nearest Water 3 VALLEY OVERLOOK Seasonal potable water · Nature Center/Picnic This platform offers spectacular views of Twin 0.58 Creek Valley and Germantown MetroPark. 4 DAM SPILLWAY 1.03 The spillway provides crucial water storage depth in case of extreme flooding.
  • Classifying Rivers - Three Stages of River Development

    Classifying Rivers - Three Stages of River Development

    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
  • Chapter 11 – Glossary of Terms

    Chapter 11 – Glossary of Terms

    CHAPTER 11 GLOSSARY OF TERMS WORD DEFINITION SOURCE Active Channel The channel that contains the discharge Leopold where channel maintenance is most effective, sediment are actively transported and deposited, and that are capable of containing most flows. Active channels are located within the area bounded by bankfull stages. Active Flood plain Low lying areas built by watercourse Collaborative, sediment depositions between top of bank Leopold that are adjacent to a watercourse and that have been constructed by the present river in the present climate. These areas are susceptible to frequent inundation during moderate and higher flows when the active channel’s capacity is exceeded. Active floodplains are most prominent along low- gradient, meandering reaches and are often absent or undistinguishable along steeper sloped stream channels. Active Recreation Includes sports fields, recreation centers, tot San Jose lots, play equipment, multi-use courts, etc. Riparian Should not be located within riparian area. Corridor Policy USER MANUAL: GUIDELINES + STANDARDS FOR LAND USE NEAR STREAMS 11.1 GLOSSARY OF TERMS GLOSSARY OF TERMS WORD DEFINITION SOURCE Bankfull stage Bankfull stage is the point at which the flow Water just begins to enter the active floodplain. Resources Accurate measurements have been Protection conducted on gaged streams, however, in Collaborative, absence of historical hydrological records Leopold there are a number of field indicators that can be used to identify bankfull stages with a great deal of accuracy: • An abrupt change in the slope of the stream channel, usually from a vertical plane to a horizontal plane on top of the floodplain. • The bankfull stage is usually marked by a change in vegetation such as the change from gravel bars to forbs, herbs, or grasses.
  • 17 Major Drainage Basins

    17 Major Drainage Basins

    HUC 8 HYDROLOGIC UNIT NAME CLINTON 04120101 Chautauqua-Conneaut FRANKLIN 04150409 CHAMPLAIN MASSENA FORT COVINGTON MOOERS ST LAWRENCE CLINTON 04120102 Cattaraugus BOMBAY WESTVILLE CONSTABLE CHATEAUGAY NYS Counties & BURKE LOUISVILLE 04120103 Buffalo-Eighteenmile BRASHER 04150308 CHAZY ALTONA ELLENBURG BANGOR WADDINGTON NORFOLK MOIRA 04120104 Niagara ESSEX MALONE DEC Regions JEFFERSON 6 04150307 BEEKMANTOWN MADRID 05010001 Upper Allegheny LAWRENCE BELLMONT STOCKHOLM DANNEMORA BRANDON DICKINSON PLATTSBURGH LEWIS OGDENSBURG CITY LISBON 05010002 Conewango 5 PLATTSBURGH CITY HAMILTON POTSDAM SCHUYLER FALLS SARANAC 05010004 French WARREN OSWEGATCHIE DUANE OSWEGO 04150306 PERU 04130001 Oak Orchard-Twelvemile CANTON PARISHVILLE ORLEANS WASHINGTON NIAGARA DE PEYSTER ONEIDA MORRISTOWN HOPKINTON WAVERLY PIERREPONT FRANKLIN 04140101 Irondequoit-Ninemile AUSABLE MONROE WAYNE BLACK BROOK FULTON SARATOGA DEKALB HERKIMER BRIGHTON GENESEE SANTA CLARA CHESTERFIELD 04140102 Salmon-Sandy ONONDAGA NYS Major 04150406 MACOMB 04150304 HAMMOND ONTARIO MADISON MONTGOMERY RUSSELL 04150102 Chaumont-Perch ERIE SENECA CAYUGA SCHENECTADY HERMON WILLSBORO ST ARMAND WILMINGTON JAY WYOMING GOUVERNEUR RENSSELAER ALEXANDRIA CLARE LIVINGSTON YATES 04130002 Upper Genesee OTSEGO ROSSIE COLTON CORTLAND ALBANY ORLEANS 04150301 04150404 SCHOHARIE ALEXANDRIA LEWIS 7 EDWARDS 04150408 CHENANGO FOWLER ESSEX 04130003 Lower Genesee 8 TOMPKINS CLAYTON SCHUYLER 9 4 THERESA 04150302 TUPPER LAKE HARRIETSTOWN NORTH ELBA CHAUTAUQUA CATTARAUGUS PIERCEFIELD 02050104 Tioga ALLEGANY STEUBEN
  • Drainage Basin Morphology in the Central Coast Range of Oregon

    Drainage Basin Morphology in the Central Coast Range of Oregon

    AN ABSTRACT OF THE THESIS OF WENDY ADAMS NIEM for the degree of MASTER OF SCIENCE in GEOGRAPHY presented on July 21, 1976 Title: DRAINAGE BASIN MORPHOLOGY IN THE CENTRAL COAST RANGE OF OREGON Abstract approved: Redacted for privacy Dr. James F. Lahey / The four major streams of the central Coast Range of Oregon are: the westward-flowing Siletz and Yaquina Rivers and the eastward-flowing Luckiamute and Marys Rivers. These fifth- and sixth-order streams conform to the laws of drain- age composition of R. E. Horton. The drainage densities and texture ratios calculated for these streams indicate coarse to medium texture compa- rable to basins in the Carboniferous sandstones of the Appalachian Plateau in Pennsylvania. Little variation in the values of these parameters occurs between basins on igneous rook and basins on sedimentary rock. The length of overland flow ranges from approximately i mile to i mile. Two thousand eight hundred twenty-five to 6,140 square feet are necessary to support one foot of channel in the central Coast Range. Maximum elevation in the area is 4,097 feet at Marys Peak which is the highest point in the Oregon Coast Range. The average elevation of summits in the thesis area is ap- proximately 1500 feet. The calculated relief ratios for the Siletz, Yaquina, Marys, and Luckiamute Rivers are compara- ble to relief ratios of streams on the Gulf and Atlantic coastal plains and on the Appalachian Piedmont. Coast Range streams respond quickly to increased rain- fall, and runoff is rapid. The Siletz has the largest an- nual discharge and the highest sustained discharge during the dry summer months.
  • Hydrogeology of Cave, Dry Lake and Delamar Valleys

    Hydrogeology of Cave, Dry Lake and Delamar Valleys

    HYDROGEOLOGY OF CAVE, DRY LAKE AND DELAMAR VALLEYS IMPACTS OF PUMPING UNDERGROUND WATER RIGHT APPLICATIONS #53987 THROUGH 53092 Presented to the Office of the Nevada State Engineer On behalf of Great Basin Water Network June, 2011 Prepared by: ________________________________________________ Thomas Myers, Ph.D. Hydrologic Consultant Reno, NV June 17, 2011 Date Table of Contents INTRODUCTION .......................................................................................................................... 1 Hydrology of the Study Area .......................................................................................................... 3 Geology ....................................................................................................................................... 3 Hydrogeology ............................................................................................................................. 8 Conceptual Flow Model .............................................................................................................. 9 Water Balance ......................................................................................................................... 9 Recharge Estimates ............................................................................................................... 10 Discharge Estimates .............................................................................................................. 13 Interbasin Flow Estimate .....................................................................................................
  • The World's History, 3Rd Ed. Ch. 3: River Valley Civilizations

    The World's History, 3Rd Ed. Ch. 3: River Valley Civilizations

    Chapter 3: River Valley Civilizations Nile Valley and Indus Valley Developed civilization or learned ideas from Mesopotamia? Each civilization has a distinct pattern that is different from the one in Mesopotamia Nile state more important than cities Lack of evidence leaves questions about Indus valley civilization Egypt: The Gift of the Nile Egypt: The Gift of the Nile Nile naturally irrigated cropland with predictable, annual flooding River also facilitated man-made irrigation systems Adjacent deserts protected Egypt from invasion Waterfalls hindered invasion from the south Stability meant long-term indigenous government A View of Egypt by Satellite The Fertile Nile Valley The Annual Flooding of the Nile Nile Irrigation-the Shaduf Egypt: The Gift of the Nile Earliest Egypt: Before the Kings Agriculture sustained life Grasses ground into food, 12,000 B.C.E. Seeds ground into flour, 6000 B.C.E. Saharan drought led to more Nile settlement String of villages along Nile by 3600 B.C.E. Walled towns emerged by 3300 B.C.E., along with evidence of social stratification Ancient Egyptian Housing Middle Class Homes Peasant Homes Egypt: The Gift of the Nile The Written Record Writing emerged at same time as in Sumer Writing based on system of hieroglyphics written on papyrus Writing used for business and government to 2400 B.C.E. Emergence of literature aided reconstruction of Egyptian history and culture Scenes of Ancient Egyptian Daily Life Making Ancient Egyptian Beer Making Ancient Egyptian Wine Egypt: The Gift of the Nile Unification and the Rule of Kings 3100 B.C.E unification established unified Egypt from peoples who came to the Nile and melded into a single ethnicity Menes often seen as first king, but there is support for kings 200 years earlier Kings came to be seen as divine Kings balanced nature and invited Nile to flood Egyptian Social Hierarchy Some Famous Egyptian Pharaohs Tutankhamon 1336-1327 B.
  • 4 River Valley Civilizations

    4 River Valley Civilizations

    RIVER VALLEY CIVILIZATIONS 4 River Valley Civilizations ◆ Fertile Crescent – Mesopotamia – Tigris – Euphrates ◆ Egyptian Civilization – Nile River Valley (upper and lower Nile) ◆ Indus River – Harrapan – Mohen-jo Daro ◆ Huang He – Yellow River later civilizations focused on both Yangtze and Yellow River – First dynasty is Xia then Shang Why were river valleys important? Farming - large amounts of people could be fed Trade - goods and ideas to move from place to place. Cities - grow up in these valleys and became the centers of civilizations. QUESTIONS TO KEEP IN MIND: How did geography impact the first civilizations? How did changes in the Neolithic Revolution lead to the development of River Valley Civilizations? KEY VOCABULARY Civilization – form of culture in which some people live in cities and have complex social institutions, use some form of writing, and are skilled in science, art, and technology Empire – group of territories or nations ruled by a single ruler or government Theocracy – government headed by religious leaders or a leader regarded as a god Polytheistic – belief in many gods Monotheistic – belief in only one god THE RISE OF CIVILIZATION Arose in 4 separate river valleys around 3500 B.C. Fertile soil, mild climate, waterway for transportation, water for crops & drinking Provided for abundant crops and food surpluses MESOPOTAMIA (3500 B.C.E.-1700 B.C.E.) • The Land between the Tigris and Euphrates Rivers –Also called The Fertile Crescent –First civilization was SUMER GOVERNMENT • City-states • Each had its own ruler