Populationlevel Thermal Performance of a Coldwater Ectotherm Is Linked To

Total Page:16

File Type:pdf, Size:1020Kb

Populationlevel Thermal Performance of a Coldwater Ectotherm Is Linked To fwb_58_11_oc_fwb_55_9_oc.qxd 9/12/2013 11:23 AM Page 1 Freshwater Biology Freshwater Biology Volume 58, Number 11, November 2013 CONTENTS Original Articles 2325 Johan Watz, Eva Bergman, John J. Piccolo and Freshwater Biology 2215 Blake R. Hossack, Winsor H. Lowe, Larry Greenberg: Effects of ice cover on the diel Edited by Alan G. Hildrew and Colin R. Townsend Molly A. H. Webb, Mariah J. Talbott, behaviour and ventilation rate of juvenile Associate Editors: Roger I. Jones, Richard K. Johnson Kevin M. Kappenman and Paul Stephen Corn: brown trout Population-level thermal performance of a 2333 Marcus Lukas, Paul C. Frost and Alexander cold-water ectotherm is linked to ontogeny and Wacker: The neonate nutrition hypothesis: early local environmental heterogeneity feeding affects the body stoichiometry of 2226 Cesc Múrria, Núria Bonada, Miquel A. Arnedo, Daphnia offspring Narcís Prat and Alfried P. Vogler: Higher b- and 2345 Yoshito Mitsuo, Mitsuru Ohira, Hiroshi Tsunoda Volume 58 g-diversity at species and genetic levels in and Masahide Yuma: Movement patterns of headwaters than in mid-order streams in small benthic fish in lowland headwater Number 11 Hydropsyche (Trichoptera) streams 2237 P. Gikuma-Njuru, S. J. Guildford, R. E. Hecky and 2355 Ashley K. Baldridge and David M. Lodge: November 2013 H. J. Kling: Strong spatial differentiation of N Intraguild predation between spawning Volume 58, Number 11, November 2013, pp. 2215–2438 and P deficiency, primary productivity and smallmouth bass (Micropterus dolomieu) and community composition between Nyanza Gulf nest-raiding crayfish (Orconectes rusticus): and Lake Victoria (Kenya, East Africa) and the implications for bass nesting success implications for nutrient management 2366 Yuyu Wang, Yifei Jia, Lei Guan, Cai Lu, 2253 Mariana A. Micheli-Campbell, Hamish Guangchun Lei, Li Wen and Guanhua Liu: A. Campbell, Marilyn Connell, Ross G. Dwyer and Optimising hydrological conditions to sustain Craig E. Franklin: Integrating telemetry with a wintering waterbird populations in Poyang predictive model to assess habitat preferences Lake National Natural Reserve: implications and juvenile survival in an endangered for dam operations freshwater turtle 2380 Jonathan W. Witt, Rebecca E. Forkner and Richard 2264 Soren M. Brothers, Sabine Hilt, Stephanie Meyer T. Kraus: Habitat heterogeneity and intraguild and Jan Köhler: Plant community structure interactions modify distribution and injury determines primary productivity in shallow, rates in two coexisting genera of damselflies eutrophic lakes 2389 Shawn P. Devlin, M. Jake Vander Zanden and 2277 Vidya J. Washington, Gavin Lear, Yvonne Vadeboncoeur: Depth-specific variation Martin W. Neale and Gillian D. Lewis: in carbon isotopes demonstrates resource Environmental effects on biofilm bacterial partitioning among the littoral zoobenthos communities: a comparison of natural and 2401 Tessa M. Bradford, Matthew J. Morgan, Zygmunt anthropogenic factors in New Zealand Lorenz, Diana M. Hartley, Christopher M. Hardy streams and Roderick L. Oliver: Microeukaryote 2287 William D. Bovill, Barbara J. Downes and Jill community composition assessed by Lancaster: A test of the preference–performance pyrosequencing is associated with light hypothesis with stream insects: selective availability and phytoplankton primary oviposition affects the hatching success of production along a lowland river caddisfly eggs 2414 Mattias K. Ekvall, Javier de la Calle Martin, 2299 Alex C. Y. Yeung and David Dudgeon: Elisabeth J. Faassen, Susanne Gustafsson, Miquel A manipulative study of macroinvertebrate Lürling and Lars-Anders Hansson: Synergistic grazers in Hong Kong streams: do snails and species-specific effects of climate change compete with insects? and water colour on cyanobacterial toxicity and 2310 Colin M. Wahl, Allison Neils and David Hooper: bloom formation Impacts of land use at the catchment scale 2423 Jennifer Courtwright and Christine L. May: constrain the habitat benefits of stream riparian Importance of terrestrial subsidies for native buffers brook trout in Appalachian intermittent streams FRONT COVER: A Rocky Mountain tailed frog (Ascaphus montanus) tadpole in Glacier National Park, Montana, U.S.A. Photo credit: J. Joseph Giersch (USGS) From: Hossack et al., p. 2215 For submission instructions, subscription and all other information, visit: wileyonlinelibrary.com/journal/fwb This journal is available online at Wiley Online Library. Visit wileyonlinelibrary.com/journal/fwb to search the articles and register for table of contents e-mail alerts. ISSN 0046–5070 wileyonlinelibrary.com/journal/fwb Freshwater Biology (2013) 58, 2215–2225 doi:10.1111/fwb.12202 Population-level thermal performance of a cold-water ectotherm is linked to ontogeny and local environmental heterogeneity BLAKE R. HOSSACK* ,WINSORH.LOWE† , MOLLY A. H. WEBB‡ ,MARIAHJ.TALBOTT‡ ,KEVINM. KAPPENMAN‡ AND PAUL STEPHEN CORN* *U.S. Geological Survey, Northern Rocky Mountain Science Center, Aldo Leopold Wilderness Research Institute, Missoula, MT, U.S.A. †Division of Biological Sciences, University of Montana, Missoula, MT, U.S.A. ‡U.S. Fish and Wildlife Service, Bozeman Fish Technology Center, Bozeman, MT, U.S.A. SUMMARY 1. Negative effects of global warming are predicted to be most severe for species that occupy a nar- row range of temperatures, have limited dispersal abilities or have long generation times. These are characteristics typical of many species that occupy small, cold streams. 2. Habitat use, vulnerabilities and mechanisms for coping with local conditions can differ among populations and ontogenetically within populations, potentially affecting species-level responses to climate change. However, we still have little knowledge of mean thermal performance for many ver- tebrates, let alone variation in performance among populations. Assessment of these sources of varia- tion in thermal performance is critical for projecting the effects of climate change on species and for identifying management strategies to ameliorate its effects. 3. To gauge how populations of the Rocky Mountain tailed frog (Ascaphus montanus) might respond to long-term effects of climate change, we measured the ability of tadpoles from six populations in Glacier National Park (Montana, U.S.A.) to acclimate to a range of temperatures. We compared sur- vival among populations according to tadpole age (1 year or 2 years) and according to the mean and variance of late-summer temperatures in natal streams. 4. The ability of tadpoles to acclimate to warm temperatures increased with age and with variance in late-summer temperature of natal streams. Moreover, performance differed among populations from the same catchment. 5. Our experiments with a cold-water species show that population-level performance varies across small geographic scales and is linked to local environmental heterogeneity. This variation could influence the rate and mode of species-level responses to climate change, both by facilitating local persistence in the face of changes in thermal conditions and by providing thermally tolerant colonists to neighbouring populations. Keywords: acclimation, adaptation, amphibian, climate change, development (Janzen, 1967; Deutsch et al., 2008). However, habitat Introduction use, vulnerabilities and mechanisms for coping with Increases in temperature driven by climate change are local conditions can differ among populations and by likely to have especially large negative effects on species age and developmental stage within populations, poten- that are specialised to occupy narrow thermal ranges, tially affecting species-level responses to climate change acclimate poorly or possess limited dispersal abilities (Kingsolver et al., 2011; Radchuk, Turlure & Schtickzelle, Correspondence: Blake R. Hossack, U.S. Geological Survey, Northern Rocky Mountain Science Center, Aldo Leopold Wilderness Research Institute, 790 East Beckwith Avenue, Missoula, MT 59801, U.S.A. E-mail: [email protected] Published 2013. This article is a U.S. Government work and is in the public domain in the USA. 2215 2216 B. R. Hossack et al. 2013). For many species, there is still limited knowledge of A. truei and other stream amphibians in the Pacific of thermal performance, including these basic sources of Northwest have sourced animals from a single intraspecific variation. Yet understanding this variation population (de Vlaming & Bury, 1970; Brown, 1975; is critical to projecting how climate change will affect Bury, 2008), precluding measurement of variation populations, species’ distributions and ecosystem func- among populations. Without more knowledge of the tion. Understanding this variation is also a key step in thermal performance of stream amphibians, and of vari- identifying management strategies to prevent population ation in performance among populations, we cannot losses. begin to assess the threat posed by increased tempera- Freshwater ectotherms limited to cold environments tures, or the potential efficacy of conservation measures are especially vulnerable to climate warming because that are often based around co-occurring species (e.g. compared with species that evolved in environments economically important fish). with greater thermal variation, they have narrow thermal We used laboratory experiments to assess differences breadths and smaller thermal safety margins. In the in thermal performance among populations of Rocky northern Rocky Mountains (U.S.A.), increased stream Mountain tailed frog (Ascaphus montanus) in Glacier temperatures
Recommended publications
  • Ascaphus Truei) Across
    LIFE HISTORY OF THE COASTAL TAILED FROG (ASCAPHUS TRUEI) ACROSS AN ELEVATIONAL GRADIENT IN NORTHERN CALIFORNIA By Adrian Daniel Macedo A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. John O. Reiss, Committee Chair Dr. Daniel C. Barton, Committee Member Dr. Karen L. Pope, Committee Member Dr. Sharyn B. Marks, Committee Member Dr. Erik Jules, Program Graduate Coordinator December 2019 ABSTRACT LIFE HISTORY OF THE COASTAL TAILED FROG (ASCAPHUS TRUEI) ACROSS AN ELEVATIONAL GRADIENT IN NORTHERN CALIFORNIA Adrian D. Macedo The life history of a species is described in terms of its growth, longevity, and reproduction. Unsurprisingly, life history traits are known to vary in many taxa across environmental gradients. In the case of amphibians, species at high elevations and latitudes tend to have shorter breeding seasons, shorter activity periods, longer larval periods, reach sexual maturity at older ages, and produce fewer and larger clutches per year. The Coastal Tailed Frog (Ascaphus truei) is an ideal species for the study of geographic variation in life history because it ranges across most of the Pacific Northwest from northern California into British Columbia, and along its range it varies geographically in larval period and morphology. During a California Department of Fish and Wildlife restoration project in the Trinity Alps Wilderness, I had incidental captures of Coastal Tailed Frog larvae and adults. To date, no population across the species’ range has been described above 2000m. These populations in the Trinity Alps range from 150m to over 2100m in elevation, and those that are in the higher part of the range are likely living at the species’ maximum elevational limit.
    [Show full text]
  • ROCKY MOUNTAIN TAILED FROG Ascaphus Montanus
    ROCKY MOUNTAIN T AILED FROG Ascaphus montanus Original prepared by Linda A. Dupuis Species Information copper bar or triangle between the eyes and snout, with green undertones (Metter 1964a). Taxonomy Tadpoles are roughly 11 mm in length upon hatching, and can reach up to 65 mm long prior to Phylogenetic studies have determined that tailed metamorphosis (Brown 1990). They possess a wide frogs belong in their own monotypic family, flattened oral disc modified into a suction mouth for Ascaphidae (Green et al. 1989; Jamieson et al. 1993). clinging to rocks in swift currents and grazing Recent phylogeographic analysis has determined that periphyton (Metter 1964a, 1967; Nussbaum et al. coastal and inland assemblages of the tailed frog are 1983), a ventrally flattened body, and a laterally sufficiently divergent to warrant designation as two compressed tail bordered by a low dorsal fin. They distinct species: Ascaphus truei and Ascaphus are black or light brownish-grey, often with fine montanus (Nielson et al. 2001). The divergence of black speckling; lighter flecks may or may not be coastal and inland populations is likely attributable present (Dupuis, pers. obs.). The tadpoles usually to isolation in refugia in response to the rise of the possess a white dot (ocellus) on the tip of the tail Cascade Mountains during the late Miocene to early and often have a distinct copper-coloured bar or Pliocene (Nielson et al. 2001). triangle between the eyes and snout. Hatchlings lack The Coastal Tailed Frog and Rocky Mountain Tailed pigmentation, and are most easily characterized by Frog are the only members of the family Ascaphidae the large, conspicuous yolk sac in the abdomen.
    [Show full text]
  • Riparian Management and the Tailed Frog in Northern Coastal Forests
    Forest Ecology and Management 124 (1999) 35±43 Riparian management and the tailed frog in northern coastal forests Linda Dupuis*,1, Doug Steventon Centre for Applied Conservation Biology, Department of Forest Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 Ministry of Forests, Prince Rupert Region, Bag 5000, Smithers, BC, Canada V0J 2N0 Received 28 July 1998; accepted 19 January 1999 Abstract Although the importance of aquatic environments and adjacent riparian habitats for ®sh have been recognized by forest managers, headwater creeks have received little attention. The tailed frog, Ascaphus truei, inhabits permanent headwaters, and several US studies suggest that its populations decline following clear-cut logging practices. In British Columbia, this species is considered to be at risk because little is known of its abundance, distribution patterns in the landscape, and habitat needs. We characterized nine logged, buffered and old-growth creeks in each of six watersheds (n 54). Tadpole densities were obtained by area-constrained searches. Despite large natural variation in population size, densities decreased with increasing levels of ®ne sediment (<64 mm diameter), rubble, detritus and wood, and increased with bank width. The parameters that were correlated with lower tadpole densities were found at higher levels in clear-cut creeks than in creeks of other stand types. Tadpole densities were signi®cantly lower in logged streams than in buffered and old-growth creeks; thus, forested buffers along streams appear to maintain natural channel conditions. To prevent direct physical damage and sedimentation of channel beds, we suggest that buffers be retained along permanent headwater creeks. Creeks that display characteristics favoring higher tadpole densities, such as those that have coarse, stable substrates, should have management priority over less favorable creeks.
    [Show full text]
  • Amphibian Protocol the Survey Protocols Below Are from BC Frog Watch
    Amphibian Protocol The survey protocols below are from BC Frog Watch: http://www.env.gov.bc.ca/wld/frogwatch/frogwatching/how.htm Because populations fluctuate each year in relation to climatic conditions, such as snowpack or spring rains, long-term data are required to accurately assess the status of a species or the productivity of a wetland. There are a number of techniques that can be used to monitor amphibians. The two described below can be used alone or in combination. Please note: Any protocol that involves wading in a wetland must consider the possibility of the transmission of infection from one area to another. Consult the BC Disinfection Protocol. Call Surveys This technique is used to survey frogs and toads, species which vocalize during the breeding season. Surveyors visit the monitoring site(s) in spring and listen for calling males , (this is a link to a recording of each species’ breeding call) recording the species and approximate number of each. Repeat surveys increase the probability that species will be detected. Define a survey transect along or through your wetland. Describe in enough detail that someone else can follow the same route. It can be along the edge of open water or any other route that makes sense. Use GPS locations to confirm the route if possible. Follow the same transect on each survey. This technique is relatively easy, inexpensive, and takes little training, but only one life stage can be surveyed and the technique is only effective for some species and geographic locations (see Table 1 below). Questions you can answer with this technique: • What species of frog and toad call at this site in any given year? • Do the same species breed at the site each year? • Approximately how many males are in the breeding population at this site in any given year? • When does breeding take place at this site each year and how long does it last? Visual Surveys All life stages can be surveyed visually at breeding sites or along roads and much information is gleaned from this survey technique.
    [Show full text]
  • Rocky Mountain Tailed Frog (Ascaphus Montanus) in Canada
    Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Recovery Strategy for the Rocky Mountain Tailed Frog (Ascaphus montanus) in Canada Rocky Mountain Tailed Frog 2015 Recommended citation: Environment Canada. 2015. Recovery Strategy for the Rocky Mountain Tailed Frog (Ascaphus montanus) in Canada. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. 20 pp. + Annex. For copies of the recovery strategy, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: Purnima Govindarajulu Également disponible en français sous le titre « Programme de rétablissement de la grenouille-à-queue des Rocheuses (Ascaphus montanus) au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. All rights reserved. ISBN 978-0-660-03404-1 Catalogue no. En3-4/210-2015E-PDF Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://www.registrelep-sararegistry.gc.ca RECOVERY STRATEGY FOR THE ROCKY MOUNTAIN TAILED FROG (Ascaphus montanus) IN CANADA 2015 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of British Columbia has given permission to the Government of Canada to adopt the Recovery Plan for the Rocky Mountain Tailed Frog (Ascaphus montanus) in British Columbia (Part 2) under Section 44 of the Species at Risk Act.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • (Ascaphus Truei), Red-Legged Frogs (Rana
    Amphibian Distribution Summary Mendocino Redwood Company Distribution of Coastal Tailed Frogs (Ascaphus truei), Red-Legged Frogs (Rana aurora and Rana draytonii), and Southern Torrent Salamanders (Rhyacotriton variegatus) on Mendocino Redwood Company Forestlands. Fisheries Department Mendocino Redwood Company, LLC PO Box 489 Fort Bragg, CA 95437 Amphibian Distribution Summary Mendocino Redwood Company INTRODUCTION This report summarizes the results of the current distribution of coastal tailed frogs (Ascaphus truei), red-legged frogs (Rana aurora and Rana draytonii), and southern torrent salamanders (Rhyacotriton variegatus) on Mendocino Redwood Company forestlands. All of the acreage owned by MRC with suitable habitat was surveyed for the presence of these species. Coastal Tailed Frogs (Ascaphus truei) Coastal tailed frogs are uniquely adapted to life in cold, fast-flowing, high-gradient, perennial mountain streams and to some extent utilize trout-bearing streams (Nussbaum et al. 1983). Coastal tailed frogs prefer streams with dense, shaded habitat, low sediment loads, cool temperatures, high ambient humidity levels, and high water quality over much of their range (Bury and Corn 1988, Corn and Bury 1989, Welsh 1990, Hayes 1996). Diller and Wallace (1999) examined larval distribution of coastal tailed frogs related to channel bed characteristics. Larvae were “positively associated with cobble, boulder, and gravel substrates with lower embeddedness, and negatively associated with fine substrates.” Coastal tailed frogs are restricted to a narrow range of habitat types, in part because it requires cold temperatures and has one of the narrowest ranges of temperature tolerances of any frog species. This species typically lives in waters between 5o to 16oC (41o to 61oF) (Marshall et al.
    [Show full text]
  • Factors Influencing Rocky Mountain Tailed Frog (Ascaphus Montanus) Distribution and Abundance
    Factors Influencing Rocky Mountain Tailed Frog (Ascaphus montanus) Distribution and Abundance Jason L. Jones, Charles R. Peterson, and Colden V. Baxter Department of Biological Sciences Campus Box 8007 Idaho State University Pocatello, ID 83209-8007 February 2006 Progress Report for Summer 2005: Montana Fish, Wildlife, and Parks and Potlatch Corporation TABLE OF CONTENTS Content Page Abstract 3 Introduction 4 Background 4 Hypotheses 6 Importance 9 Methods 10 Study Area 10 Study Design 11 Environmental Variables 13 Periphyton Measurements 14 Tailed Frog Measurements 14 Statistical Analysis 15 Results & Discussion 16 Sampling Efficiency 16 Spatial Scaling 17 Environmental Variables 17 Periphyton 18 Tailed Frogs 18 Significance & Future Directions 21 Literature Cited 23 Tables 26 Figures 28 Appendicies 41 2 ABSTRACT The goal of this study is to examine the factors influencing the distribution and abundance of Rocky Mountain tailed frog tadpoles. Nearly all the research evaluating the influence of physical habitat variables and food on tadpoles has focused on the coastal tailed frog. Few studies have evaluated the spatial context of these limiting factors with regard to Ascahpid tadpole occurrence and age class distribution. To determine what factors influenced tadpole occurrence and abundance we addressed four questions (see Jones et al. 2005) relating to tadpole distribution in a stream network. Between June 28th and August 10th, 2005, we conducted this study in two different watersheds: the South Fork of the Flathead River watershed in northwestern Montana, and Mica Creek watershed in northern Idaho. In each watershed, we sampled tailed frog tadpoles in 5 randomly selected 1 m transect belts across ≥ 24 stream reaches, starting in the headwaters and continuing to the largest stream order in the watershed.
    [Show full text]
  • List of Species Included in ACE-II Native and Harvest Species Richness Counts (Appendix C)
    Appendix C. Species included in native and harvest species richness counts. Animal Species Included in the Range Analysis....... ............................ ................................. C-01 Animal Species with Range Models Not Included in the Analysis......................... ................. C-20 Animal Species without Range Models, therefore not Included in the Analysis......... ............ C-20 Fish Species Included in the Range Analysis.................................................................... ....... C-30 Fish with Ranges not Included in the Analysis because neither Native nor Harvest................ C-33 Native Plants Species Included in the Range Analysis............................................................. C-34 CWHR Species and ACEII hexagon analysis of ranges. Of the 1045 species in the current CWHR species list used in ACE-II, 694 had range models digitized for use. Of those, 688 are included in this hexagon analysis of the state of Cailfornia, with 660 of those classified as native to California. There were no additional species picked up offshore due to the use of hexagon centroid points. Animal species INCLUDED in this analysis. CODE COMMON NAME SCIENTIFIC NAME A001 CALIFORNIA TIGER SALAMANDER Ambystoma californiense NATIVE A002 NORTHWESTERN SALAMANDER Ambystoma gracile NATIVE A003 LONG-TOED SALAMANDER Ambystoma macrodactylum NATIVE A047 EASTERN TIGER SALAMANDER Ambystoma tigrinum INTROD A021 CLOUDED SALAMANDER Aneides ferreus NATIVE A020 SPECKLED BLACK SALAMANDER Aneides flavipunctatus NATIVE A022
    [Show full text]
  • Anurans of Idaho Recent Taxonomic Changes
    Anurans of Idaho Fa mil y Genera Species Ascaphidae Tailed Frog Ascaphus 1 Bufonidae True Toads Bufo 2 Pelobatidae Spadefoots Spea(Scaphiopus) 1 Hylidae Tree frogs Pseudacris 2 Ranidae True Frogs Rana 4 Recent Taxonomic Changes 1983 2002 Leiopelmatidae Ascaphidae Ascaphus truei Ascaphus montanus Tailed Frog Rocky Mountain Tailed Frog Hylidae Hylidae Hyla regilla Pseudacris regilla Pacific Treefrog Pacific Treefrog Pseudacris triseriata Pseudacris maculata Striped Chorus Frog Boreal Chorus Frog Ranidae Ranidae Rana pretiosa Rana luteiventris Spotted Frog Columbia Spotted Frog Frog and Toad Characteristics • Size • Color pattern • Body shape • Head shape • Skin texture • Tympanum • Dorsolateral folds • Eye size and placement • Pupil shape • Glands • Toe shape and length • Tubercles 1 Tailed Frog Distribution Family Ascaphidae Tailed Frog (Ascaphus montanus) • Max length= 2 inches (51 mm) •brown to gray • Smooth to warty skin • tympanum absent • vertical pupils •5th toe wider than others • male with “tail ” Tailed Frog Habitat 2 Tailed Frog Eggs Tailed Frog (Ascaphus montanus) Tadpoles Family Pelobatidae Great Basi n Spadefoot (Spea intermontana = Scaphiopus intermontanus) 3 Family Pelobatidae Great Basin Spadefoot • Max length = 2.5 inches (65 mm) • gray with light stripes • Relatively smooth skin • tympanum inconspicuous • vertical pupils • black, sharp-edged "spade" on the underside of each hind foot Great Basin Spadefoot Habitat Great Basin Spadefoot Reproduction Call Eggs 4 Great Basin Spadefoot Tadpoles Bufonidae - True Toads Western
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Coastal Tailed Frog Ascaphus Truei
    COSEWIC Assessment and Status Report on the Coastal Tailed Frog Ascaphus truei in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Coastal Tailed Frog Ascaphus truei in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 53 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Rocky Mountain Tailed Frog Ascaphus montanus and the Coast Tailed Frog Ascaphus truei in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Dupuis, L.A. 2000. COSEWIC assessment and status report on the on the Rocky Mountain Tailed Frog Ascaphus montanus and the Coast Tailed Frog Ascaphus truei in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC would like to acknowledge Linda Dupuis for writing the status report on the Coastal Tailed Frog (Ascaphus truei) in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Ronald J. Brooks and Kristiina Ovaska, Co-chairs of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Grenouille-à-queue côtière (Ascaphus truei) au Canada.
    [Show full text]