Gamma Ray Spectrum from Gravitino Dark Matter Decay

Total Page:16

File Type:pdf, Size:1020Kb

Gamma Ray Spectrum from Gravitino Dark Matter Decay DESY 07-158 Gamma Ray Spectrum from Gravitino Dark Matter Decay Alejandro Ibarra* and David Tran^ Gravitiuos arc very promising candidates for the cold dark matter of the Universe. Interestingly, to achieve a sufficiently long gravitino lifetime, A-parity conservation is not required, thus preventing any dangerous cosmological influence of the ncxt-to-lightcst supersymmetric particle. When Im­ parity is violated, gravitiuos decay into photons and other particles with a lifetime much longer than the age of the Universe, producing a diffuse gamma ray flux with a characteristic spectrum that could be measured in future experiments, like GLAST, AMS-02 or Cherenkov telescopes. In this letter we compute the energy spectrum of photons from gravitino decay and discuss its main qualitative features. 1'ACS numbers: 95.35.+R, 11.30.1'b, 93.T0.Rz 2007 There is mounting evidence that dark matter is ubiq­ of the standard nucleosynthesis scenario. In nrost supcr­ uitous in our Universe [1]. Since the necessity of dark synmrctric scenarios, the NLSP is either- a ncutralino or matter was realized, many different particle physics can ­ a stair. On one hand, if the NLSP is a ncutralino, its Sep didates have been proposed. Among the most interesting late decay into hadrons can dissociate the primordial el­ candidates stands the gravitino [2], the supersymmetric ements [G]. On the other hand, if the NLSP is a stau, 28 counterpart of the gr aviton, which arises when global su­ it can form a borrnd state with ^He, catalyzing the pro­ persymmetry is promoted to a local symmetry. If the duction of ^Li [7]. As a result, the abrrndanec of ^Li gravitino is the lightest supcrsynmrctric particle, it con ­ is increased by a factor 300 GOO, in stark conflict with stitutes an excellent candidate for the cold dark matter of observations [8]. the Universe. The interactions of the gravitino arc com­ Several scenarios have been proposed that circumvent pletely fixed by the synmrctrics, and the thermal relic the above-mentioned difficulties [9]. The simplest, albeit density is calculable in ternrs of very few parameters, the the nrost radical one, is based on the assrrnrption that result being [3] [astro-ph] A-parity is not exactly conserved [10]. In fact, althorrgh experiments set very stringent borrnds on A-parity vio­ /100 GeV \ / mg lation, there is no deep theoretical reason why it should ^ ms/2 j llTcVV ' be exactly conserved. If A-parity is nrildly violated, the (1) NLSP decays into Standard Model particles well before while the relic density inferred by WMAP for the AGDM the first nucleosynthesis reactions take place, thus not model is = 0.1277l^%g [4]. In this formula, posing a jeopardy for the Standard Model predictions. T# is the reheating temperature of the Universe, mg/g Remarkably, even though the gravitino is no longer sta- is the gravitino nrass and m^ is the ghrino nrass. It is ble when A-parity is violated, it still constitutes a viable indeed remarkable that the correct relic density can be dark matter candidate [11]. The reason is that the gr av­ obtained for typical supcrsynmrctric parameters, m.g/g ^ itino decay rate is doubly suppressed by the Planck nrass 100 GeV, mg ^ 1 TcV, and a high reheating temperature, and by the smallness of the A-parity violation, which T# ^ 10^ GeV, as required by baryogcncsis through the translates into lifetimes much longer- than the age of the mechanism of thermal Icptogcncsis [5]. Universe. Nevertheless, gravitino decays could be hap­ Whereas the gravitino as the lightest supersymmetric pening at a sufficiently high rate for the decay products arXiv:0709.4593vl particle leads to a cosmology consistent with observa­ to be detectable in future experiments. tions, the cosmology of the Next-to-Lightest Supersym- In this letter we will concentrate on the photons pro- nrctric Particle (NLSP) is much more problematic. In duccd in gravitino decays, althorrgh in general other sta­ supcrsynmrctric nrodcl building, in order to prevent too ble particles arc also produced, such as electrons, protons, rapid proton decay, it is eonrnron to invoke a discrete neutrinos and their antiparticlcs. Denranding a high re­ synmretry called A-parity. When A-parity is exactly heating temperature for the Universe as srrggested by conserved, the NLSP can only decay into gravitiuos and thermal Icptogcncsis, T# 10^ GeV [12], it follows hour Standard Model particles with a decay rate strongly sup­ Eq. (1) that the gravitino nrass has to be mg/g 5 GeV pressed by the Planck nrass. As a result, the NLSP is for a ghrino nrass n?g 500 GeV. Consequently, we ex­ typically present in the Univer se at the tinre of Dig Dang pect the photons hour gr avitino dark matter decay in the nucleosynthesis, jeopardizing the successful predictions ener gy range of a few GeV, :.c. in the ganrnra ray energy range. The Energetic Ganrnra Ray Experiment Telescope (EGRET) aboard the Gonrpton Ganrnra Ray Obser­ * Bloc Ironic address: [email protected] vatory measured ganrnra rays in the energy range be­ t Elec Ironic address: [email protected] tween 30 MeV to 100 GeV. After- subtracting the galae- 2 tic foreground emission, the residual dux was found to could resemble an isotropic extragalactic dux (for a more be roughly isotropic and thus attributed to extragalac- detailed discussion, see [15]). In this expression phaio tic sources. The first analysis of the EGRET data by stands for the dark matter distribution in the Milky Way Sreekumar et of. [13] gave an extragalactic dux with an halo. For our numerical analysis we will adopt a Navarro- energy spectrum described by the power law Frenk-White density prodle [16] E2-^ = 1.37 x 10 6 f ^ 1 (cm2str s) ^GeV ^°^-r/rc(l + r/rc)2' ^ dE \1 GeV y (2) where r k the dkt^^ to the Galactic center, rc ^ 20 kpc in the energy range 50 MeV-10 GeV. The improved anal ­ is the critical radius and ph ^ 0.33 GeV cm-3. ysis of the galactic foreground by Strong et a! [14], opti­ mized in order to reproduce the galactic emission, shows In Eqs. (3,5) the only undetermined quantity is the a power law behavior between 50 MeV-2 GeV, but a clear energy spectrum of photons produced in the gravitino excess between 2-10 GeV, roughly the same energy range decay, dNY/dE, which depends crucially on the gravitino where one would expect a signal from gravitino decay. mass. If the gravitino is lighter than the W± bosons, it Although it is very tempting to look for explanations for decays mainly into a photon and a neutrino by means of this excess in terms of gravitino decays, in view of all the the photino-neutrino mixing that arises when R-parity is systematic uncertainties involved in the extraction of the violated [11]. Therefore, the spectrum is simply signal from the galactic foreground, we will not attempt to dt our predicted dux to the EGRET data. Nonethe­ (8) less, we will show later the EGRET data superimposed with our predicted dux for comparison. For this case, it was found in [10, 15] that the total The total gamma ray dux received from gravitino dark gamma ray dux received is dominated by the monochro­ matter decay receives two main contributions. The drst matic line coming from the decay of gravitinos in our one stems from the decay of gravitinos at cosmological Milky Way halo, while the redshifted line from the de­ distances, giving rise to a perfectly isotropic extragalactic cay of gravitinos at cosmological distances is somewhat diffuse gamma ray background. Dedning dN^/dE as the fainter. gamma ray spectrum produced in the gravitino decay, On the other hand, if the gravitino is heavier than the the dux received at the Earth with extragalactic origin W± or Z0 bosons, new decay modes are open. In ad­ has the following expression: dition to the decay mode into a photon and a neutrino that follows from the photino-neutrino mixing, Uy V, the 2E2 c r°°d dN7 y-°E2 gravitino can also decay into a W± boson and a charged £2S m3/2 7 Ji d(Ey) y2! + Qa/QmV eg lepton, through the mixing charged wino-charged lepton, (3) Uyf , or mto a Z0 boson and a neutrino, through the mix­ where y = 1 + z, z being the redshift, and ing zino-neutrino, Ug^The decay rates can be straight­ forwardly computed from the interaction Lagrangian of C7 =-------3^2/?c 1/9 ~ 10 7 (cm2s str) r3/2 \ 1 10^8 g j a gravitino with a gauge boson and a fermion [17] . The 8nT3/2Ho result for each decay mode reads: (4 Here, G3/2, mid G* are the gravitino, matter and 2™3/2 F(^3/2 ^32^"' cosmological constant density parameters, respectively, M^ Pc k the ^itical density, T3/2 the gravitino lifetime, and f Mw A Ho the present value of the Hubble parameter. r(^3/2 -» W=LfF) - |2™3/2 , In addition to the cosmological contribution, the to­ ' My 1^3/2/ tal gamma ray dux also receives a contribution from the |2 ^3/2 „ Mz A decay of gravitinos in the Milky Way halo. This contri­ F(^3/2 ^ ^-32^" (9) bution reads: M2 ™3/2/ 2 E2 dNy where (5) _ halo TU3/2 ^ dE ' f (x) ‘-k (10) where E^ ^ defined as E-y = %------- / Aialo(f)d/. (6) The fragmentation of the W± ^d the Z0 gauge bosons 8nT3/2 ./log will eventually produce photons, mainly from the decay of neutral pions. We have simulated the fragmentation The integration extends over the line of sight, so E^ of the gauge bosons with the event generator PYTHIA has an angular dependence on the direction of observa­ 6.4 [18] and calculated the spectra of photons in the tion, yielding a slightly anisotropic gamma ray flux that W ± mid Z0 ^^nds, whidi we de note by dNW/dE and 3 dN"Z/dE, respectively.
Recommended publications
  • Wimps and Machos ENCYCLOPEDIA of ASTRONOMY and ASTROPHYSICS
    WIMPs and MACHOs ENCYCLOPEDIA OF ASTRONOMY AND ASTROPHYSICS WIMPs and MACHOs objects that could be the dark matter and still escape detection. For example, if the Galactic halo were filled –3 . WIMP is an acronym for weakly interacting massive par- with Jupiter mass objects (10 Mo) they would not have ticle and MACHO is an acronym for massive (astrophys- been detected by emission or absorption of light. Brown . ical) compact halo object. WIMPs and MACHOs are two dwarf stars with masses below 0.08Mo or the black hole of the most popular DARK MATTER candidates. They repre- remnants of an early generation of stars would be simi- sent two very different but reasonable possibilities of larly invisible. Thus these objects are examples of what the dominant component of the universe may be. MACHOs. Other examples of this class of dark matter It is well established that somewhere between 90% candidates include primordial black holes created during and 99% of the material in the universe is in some as yet the big bang, neutron stars, white dwarf stars and vari- undiscovered form. This material is the gravitational ous exotic stable configurations of quantum fields, such glue that holds together galaxies and clusters of galaxies as non-topological solitons. and plays an important role in the history and fate of the An important difference between WIMPs and universe. Yet this material has not been directly detected. MACHOs is that WIMPs are non-baryonic and Since extensive searches have been done, this means that MACHOS are typically (but not always) formed from this mysterious material must not emit or absorb appre- baryonic material.
    [Show full text]
  • MASTER THESIS Linking the B-Physics Anomalies and Muon G
    MSc PHYSICS AND ASTRONOMY GRAVITATION, ASTRO-, AND PARTICLE PHYSICS MASTER THESIS Linking the B-physics Anomalies and Muon g − 2 A Phenomenological Study Beyond the Standard Model By Anders Rehult 12623881 February - October 2020 60 EC Supervisor/Examiner: Second Examiner: prof. dr. Robert Fleischer prof. dr. Piet Mulders i Abstract The search for physics beyond the Standard Model is guided by anomalies: discrepancies between the theoretical predictions and experimental measurements of physical quantities. Hints of new physics are found in the recently observed B-physics anomalies and the long-standing anomalous magnetic dipole moment of the muon, muon g − 2. The former include a group of anomalous measurements related to the quark-level transition b ! s. We investigate what features are required of a theory to explain these b ! s anomalies simultaneously with muon g − 2. We then consider three kinds of models that might explain the anomalies: models with leptoquarks, hypothetical particles that couple leptons to quarks; Z0 models, which contain an additional fundamental force and a corresponding force carrier; and supersymmetric scenarios that postulate a symmetry that gives rise to a partner for each SM particle. We identify a leptoquark model that carries the necessary features to explain both kinds of anomalies. Within this model, we study the behaviour of 0 muon g − 2 and the anomalous branching ratio of Bs mesons, bound states of b and s quarks, into muons. 0 ¯0 0 ¯0 The Bs meson can spontaneously oscillate into its antiparticle Bs , a phenomenon known as Bs −Bs mixing. We calculate the effects of this mixing on the anomalous branching ratio.
    [Show full text]
  • Gravitino Dark Matter
    GRAVITINO DARK MATTER Wilfried Buchm¨uller DESY, Hamburg LAUNCH09, Nov. 2009, MPK Heidelberg Why Gravitino Dark Matter? Supergravity predicts the gravitino, analog of W and Z bosons in electroweak theory; may be LSP, natural DM candidate: m < 1keV, hot DM, (Pagels, Primack ’81) • 3/2 1keV < m3/2 < 15keV, warm DM, (Gorbunov, Khmelnitsky, Rubakov ’08) • ∼ ∼ 100keV < m < 10MeV, cold DM, gauge mediation and thermal • 3/2 leptogenesis∼ (Fuji, Ibe,∼ Yanagida ’03); recently proven to be correct by F-theory (Heckman, Tavanfar, Vafa ’08) 10GeV < m < 1TeV, cold DM, gaugino/gravity mediation and • 3/2 thermal leptogenesis∼ ∼ (Bolz, WB, Pl¨umacher ’98) Baryogenesis, (gravitino) DM and primordial nucleosynthesis (BBN) strongly correlated in cosmological history. 1 Gravitino Problem Thermally produced gravitino number density grows with reheating temperature after inflation (Khlopov, Linde ’83; Ellis, Kim, Nanopoulos ’84;...), n3/2 α3 2 TR. nγ ∝ Mp For unstable gravitinos, nucleosynthesis implies stringent upper bound on reheating temperature TR (Kawasaki, Kohri, Moroi ’05; ...), T < (1) 105 GeV, R O × hence standard mSUGRA with neutralino LSP incompatible with baryogenesis via thermal leptogenesis where T 1010 GeV !! R ∼ Possible way out: Gravitino LSP, explains dark matter! 2 Gravitino Virtue Can one understand the amount of dark matter, ΩDM 0.23, with Ω = ρ /ρ , if gravitinos are dominant component, i.e. Ω≃ Ω ? DM DM c DM ≃ 3/2 Production mechanisms: (i) WIMP decays, i.e., ‘Super-WIMPs’ (Covi, Kim, Roszkowski ’99; Feng, Rajaraman, Takayama ’03), m3/2 Ω3/2 = ΩNLSP , mNLSP independent of initial temperature TR (!), but inconsistent with BBN constraints; (ii) Thermal production, from 2 2 QCD processes, → 2 TR 100GeV mg˜(µ) Ω3/2h 0.5 10 .
    [Show full text]
  • Super-Higgs in Superspace
    Article Super-Higgs in Superspace Gianni Tallarita 1,* and Moritz McGarrie 2 1 Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago 7941169, Chile 2 Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, 22607 Hamburg, Germany; [email protected] * Correspondence: [email protected] or [email protected] Received: 1 April 2019; Accepted: 10 June 2019; Published: 14 June 2019 Abstract: We determine the effective gravitational couplings in superspace whose components reproduce the supergravity Higgs effect for the constrained Goldstino multiplet. It reproduces the known Gravitino sector while constraining the off-shell completion. We show that these couplings arise by computing them as quantum corrections. This may be useful for phenomenological studies and model-building. We give an example of its application to multiple Goldstini. Keywords: supersymmetry; Goldstino; superspace 1. Introduction The spontaneous breakdown of global supersymmetry generates a massless Goldstino [1,2], which is well described by the Akulov-Volkov (A-V) effective action [3]. When supersymmetry is made local, the Gravitino “eats” the Goldstino of the A-V action to become massive: The super-Higgs mechanism [4,5]. In terms of superfields, the constrained Goldstino multiplet FNL [6–12] is equivalent to the A-V formulation (see also [13–17]). It is, therefore, natural to extend the description of supergravity with this multiplet, in superspace, to one that can reproduce the super-Higgs mechanism. In this paper we address two issues—first we demonstrate how the Gravitino, Goldstino, and multiple Goldstini obtain a mass. Secondly, by using the Spurion analysis, we write down the most minimal set of new terms in superspace that incorporate both supergravity and the Goldstino multiplet in order to reproduce the super-Higgs mechanism of [5,18] at lowest order in M¯ Pl.
    [Show full text]
  • Gravitino Dark Matter with Constraints from Higgs Boson Mass …
    Vol. 44 (2013) ACTA PHYSICA POLONICA B No 11 GRAVITINO DARK MATTER WITH CONSTRAINTS FROM HIGGS BOSON MASS AND SNEUTRINO DECAYS∗ L. Roszkowskiy, S. Trojanowski National Centre for Nuclear Research, Hoża 69, 00-681, Warszawa, Poland K. Turzyński Institute of Theoretical Physics, Faculty of Physics, University of Warsaw Hoża 69, 00-681, Warszawa, Poland K. Jedamzik Laboratoire de Physique Theorique et Astroparticules, UMR5207-CRNS Université Montpellier II, 34095 Montpellier, France (Received October 21, 2013) We investigate gravitino dark matter produced thermally at high tem- peratures and in decays of a long-lived sneutrino in the framework of the Non-Universal Higgs Model (NUHM). We apply relevant collider and cos- mological bounds. Generally, we find allowed values of the reheating tem- 9 perature TR below 10 GeV, i.e. somewhat smaller than the values needed for thermal leptogenesis, even with a conservative lower bound of 122 GeV on the Higgs boson mass. Requiring mass values closer to 126 GeV implies 7 TR below 10 GeV and the gravitino mass less than 10 GeV. DOI:10.5506/APhysPolB.44.2367 PACS numbers: 14.80.Ly, 14.80.Da, 95.35.+d, 26.35.+c Gravitino as the lightest supersymmetric particle is a well-motivated dark matter (DM) candidate. It is extremely weakly interacting and hence can escape detection in direct searches. Scenarios with gravitino DM can be, however, strongly constrained by the Big Bang Nucleosynthesis (BBN). ∗ Presented at the XXXVII International Conference of Theoretical Physics “Matter to the Deepest” Ustroń, Poland, September 1–6, 2013. y On leave of absence from the University of Sheffield, UK.
    [Show full text]
  • Structure of Matter
    STRUCTURE OF MATTER Discoveries and Mysteries Part 2 Rolf Landua CERN Particles Fields Electromagnetic Weak Strong 1895 - e Brownian Radio- 190 Photon motion activity 1 1905 0 Atom 191 Special relativity 0 Nucleus Quantum mechanics 192 p+ Wave / particle 0 Fermions / Bosons 193 Spin + n Fermi Beta- e Yukawa Antimatter Decay 0 π 194 μ - exchange 0 π 195 P, C, CP τ- QED violation p- 0 Particle zoo 196 νe W bosons Higgs 2 0 u d s EW unification νμ 197 GUT QCD c Colour 1975 0 τ- STANDARD MODEL SUSY 198 b ντ Superstrings g 0 W Z 199 3 generations 0 t 2000 ν mass 201 0 WEAK INTERACTION p n Electron (“Beta”) Z Z+1 Henri Becquerel (1900): Beta-radiation = electrons Two-body reaction? But electron energy/momentum is continuous: two-body two-body momentum energy W. Pauli (1930) postulate: - there is a third particle involved + + - neutral - very small or zero mass p n e 휈 - “Neutrino” (Fermi) FERMI THEORY (1934) p n Point-like interaction e 휈 Enrico Fermi W = Overlap of the four wave functions x Universal constant G -5 2 G ~ 10 / M p = “Fermi constant” FERMI: PREDICTION ABOUT NEUTRINO INTERACTIONS p n E = 1 MeV: σ = 10-43 cm2 휈 e (Range: 1020 cm ~ 100 l.yr) time Reines, Cowan (1956): Neutrino ‘beam’ from reactor Reactions prove existence of neutrinos and then ….. THE PREDICTION FAILED !! σ ‘Unitarity limit’ > 100 % probability E2 ~ 300 GeV GLASGOW REFORMULATES FERMI THEORY (1958) p n S. Glashow W(eak) boson Very short range interaction e 휈 If mass of W boson ~ 100 GeV : theory o.k.
    [Show full text]
  • Elementary Particle Physics from Theory to Experiment
    Elementary Particle Physics From Theory to Experiment Carlos Wagner Physics Department, EFI and KICP, Univ. of Chicago HEP Division, Argonne National Laboratory Society of Physics Students, Univ. of Chicago, Nov. 10, 2014 Particle Physics studies the smallest pieces of matter, 1 1/10.000 1/100.000 1/100.000.000 and their interactions. Friday, November 2, 2012 Forces and Particles in Nature Gravitational Force Electromagnetic Force Attractive force between 2 massive objects: Attracts particles of opposite charge k e e F = 1 2 d2 1 G = 2 MPl Forces within atoms and between atoms Proportional to product of masses + and - charges bind together Strong Force and screen each other Assumes interaction over a distance d ==> comes from properties of spaceAtoms and timeare made fromElectrons protons, interact with protons via quantum neutrons and electrons. Strong nuclear forceof binds e.m. energy together : the photons protons and neutrons to form atoms nuclei Strong nuclear force binds! togethers! =1 m! = 0 protons and neutrons to form nuclei protonD. I. S. of uuelectronsd formedwith Modeled protons by threeor by neutrons a theoryquarks, based bound on together Is very weak unless one ofneutron theat masses high energies is huge,udd shows by thatthe U(1)gluons gauge of thesymmetry strong interactions like the earth protons and neutrons SU (3) c are not fundamental Friday,p November! u u d 2, 2012 formed by three quarks, bound together by n ! u d d the gluons of the strong interactions Modeled by a theory based on SU ( 3 ) C gauge symmetry we see no free quarks Very strong at large distances confinement " in nature ! Weak Force Force Mediating particle transformations Observation of Beta decay demands a novel interaction Weak Force Short range forces exist only inside the protons 2 and neutrons, with massive force carriers: gauge bosons ! W and Z " MW d FW ! e / d Similar transformations explain the non-observation of heavier elementary particles in our everyday experience.
    [Show full text]
  • Week 3: Thermal History of the Universe
    Week 3: Thermal History of the Universe Cosmology, Ay127, Spring 2008 April 21, 2008 1 Brief Overview Before moving on, let’s review some of the high points in the history of the Universe: T 10−4 eV, t 1010 yr: today; baryons and the CMB are entirely decoupled, stars and • ∼ ∼ galaxies have been around a long time, and clusters of galaxies (gravitationally bound systems of 1000s of galaxies) are becoming common. ∼ T 10−3 eV, t 109 yr; the first stars and (small) galaxies begin to form. • ∼ ∼ T 10−1−2 eV, t millions of years: baryon drag ends; at earlier times, the baryons are still • ∼ ∼ coupled to the CMB photons, and so perturbations in the baryon cannot grow; before this time, the gas distribution in the Universe remains smooth. T eV, t 400, 000 yr: electrons and protons combine to form hydrogen atoms, and CMB • ∼ ∼ photons decouple; at earlier times, photons are tightly coupled to the baryon fluid through rapid Thomson scattering from free electrons. T 3 eV, t 10−(4−5) yrs: matter-radiation equality; at earlier times, the energy den- • ∼ ∼ sity of the Universe is dominated by radiation. Nothing really spectacular happens at this time, although perturbations in the dark-matter density can begin to grow, providing seed gravitational-potential wells for what will later become the dark-matter halos that house galaxies and clusters of galaxies. T keV, t 105 sec; photons fall out of chemical equilibrium. At earlier times, interac- • ∼ ∼ tions that can change the photon number occur rapidly compared with the expansion rate; afterwards, these reactions freeze out and CMB photons are neither created nor destroyed.
    [Show full text]
  • Constraints on the Mass of the Superlight Gravitino from the Muon Anomaly
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server UAB–FT–416 Constraints on the mass of the superlight gravitino from the muon anomaly F.Ferrer and J.A.Grifols Grup de F´ısica Te`orica and Institut de F´ısica d’Altes Energies, Universitat Aut`onoma de Barcelona, E–08193 Bellaterra, Barcelona, Spain (April 1997) Abstract We reexamine the limits on the gravitino mass supplied by the muon anomaly in the frame of supergravity models with a superlight gravitino and a su- perlight scalar S and a superlight pseudoscalar P . PACS number(s): 14.80.Ly, 13.40.Em, 04.65.+e, 12.60.Jv Typeset using REVTEX 1 In a wide class of supergravity models with SUSY breaking scale in the TeV range, 2 the gravitino can be very light (m3/2 ∼ MSUSY /MPl). In fact, its mass could lie anywhere between µeV and keV . Examples for this are those models where gauge interactions mediate the breakdown of supersymmetry [1] or models where an anomalous U(1) gauge symmetry induces SUSY breaking [2]. Also, no–scale models can accomodate superlight gravitinos [3]. Clearly, it is important to bound and eventually determine the mass of the gravitino. To mention only an instance where the gravitino mass is of great physical significance, let us recall that a mass on the order of a few keV can be relevant for the dark matter problem. The sources of direct (laboratory) information on the gravitino mass are rare [4–7] and perhaps the best one comes from the (g − 2)µ of the muon [6,7].
    [Show full text]
  • Supersymmetry in the Shadow of Photini
    Photini in the UV Photini in the IR Photini at the LHC Supersymmetry in the shadow of photini Ken Van Tilburg August 24, 2012 In collaboration with: Masha Baryakhtar (Stanford), Nathaniel Craig (Rutgers, IAS) Reference: arXiv:1206.0751; JHEP 1207 (2012) 164 Arvanitaki et al: arXiv:0909:5440; Phys.Rev.D81 (2010) 075018 1/6 Photini in the UV Photini in the IR Photini at the LHC Table of contents 1 Photini in the UV 2 Photini in the IR 3 Photini at the LHC 2/6 Photini in the UV Photini in the IR Photini at the LHC Photini in the UV Main features of string theory: 1 supersymmetry assume broken at low energy to solve hierarchy problem 2 extra dimensions (6) assume small size generically complex compactification manifold to get SM very simple manifold: 6-torus ! six 1- and 5-cycles, fifteen 2- and 4-cycles, twenty 3-cycles IIB string theory: 4-form gauge field integrated over 3-cycle i R ! 4D vector gauge field without charged matter Aµ = C4 Σi string theory ! SUSY SM many extra \photon" superfields without any charged matter can in principle mix with U(1) hypercharge and among each other 3/6 Photini in the UV Photini in the IR Photini at the LHC Photini in the IR in SUSY limit, no observable effect: Z 2 L ⊃ d θ WaWa + WbWb − 2WaWb shift away mixing: W ! W − W and g ! p ga b b a a 1−2 physical effects from SUSY breaking, when gauginos get mass y µ δL ⊃ zijλi iσ @µλj − mijλi λj expect sizeable number of photini to be lighter than the bino bino-photino + interphotini cascade via emissions of h; Z; γ 4/6 gluino-bino model gluino-squark-bino model drastically weakened hadronic search limits: slightly enhanced leptonic search sensitivity: Photini in the UV Photini in the IR Photini at the LHC Photini at the LHC reduction of missing ET 1.0 bino 150 GeV L .
    [Show full text]
  • General Neutralino NLSP with Gravitino Dark Matter Vs. Big Bang Nucleosynthesis
    General Neutralino NLSP with Gravitino Dark Matter vs. Big Bang Nucleosynthesis II. Institut fur¨ Theoretische Physik, Universit¨at Hamburg Deutsches Elektronen-Synchrotron DESY, Theory Group Diplomarbeit zur Erlangung des akademischen Grades Diplom-Physiker (diploma thesis - with correction) Verfasser: Jasper Hasenkamp Matrikelnummer: 5662889 Studienrichtung: Physik Eingereicht am: 31.3.2009 Betreuer(in): Dr. Laura Covi, DESY Zweitgutachter: Prof. Dr. Gun¨ ter Sigl, Universit¨at Hamburg ii Abstract We study the scenario of gravitino dark matter with a general neutralino being the next- to-lightest supersymmetric particle (NLSP). Therefore, we compute analytically all 2- and 3-body decays of the neutralino NLSP to determine the lifetime and the electro- magnetic and hadronic branching ratio of the neutralino decaying into the gravitino and Standard Model particles. We constrain the gravitino and neutralino NLSP mass via big bang nucleosynthesis and see how those bounds are relaxed for a Higgsino or a wino NLSP in comparison to the bino neutralino case. At neutralino masses & 1 TeV, a wino NLSP is favoured, since it decays rapidly via a newly found 4-vertex. The Higgsino component becomes important, when resonant annihilation via heavy Higgses can occur. We provide the full analytic results for the decay widths and the complete set of Feyn- man rules necessary for these computations. This thesis closes any gap in the study of gravitino dark matter scenarios with neutralino NLSP coming from approximations in the calculation of the neutralino decay rates and its hadronic branching ratio. Zusammenfassung Diese Diplomarbeit befasst sich mit dem Gravitino als Dunkler Materie, wobei ein allge- meines Neutralino das n¨achstleichteste supersymmetrische Teilchen (NLSP) ist.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural Organization International XAO100669 Centre •I,'
    the IC/2000/182 abdus salam united nations educational, scientific and cultural organization international XAO100669 centre •i,' international atomic energy agency for theoretical physics " F ^9 -- •.'— -> J AXINO PRODUCTION IN e+e" AND yy COLLISIONS Hoang Ngoc Long and Dang Van Soa 32/ 17 Available at: http://www.ictp.trieste.it/~pub-off IC/2000/182 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS AXINO PRODUCTION IN e+e" AND 77 COLLISIONS Hoang Ngoc Long Institute of Physics, NCST, P.O. Box 429, Bo Ho, Hanoi 10000, Vietnam1 and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy and Dang Van Soa Department of Physics, Hanoi University of Mining and Geology, Dong Ngac, Tu Liem, Hanoi, Vietnam1 and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Abstract Production of axinos and photinos in e+e~ and 77 collisions is calculated and estimated. It is shown that there is an upper limit of the cross section for the process e~e+ —> ayc dependent only on the breaking scale. For the process 77 —> aac, there is a special direction in which axinos are mainly produced. Behaviour of cross section for this process is also analysed. Based on the result a new constraint for F/N is derived: j^ > 1014 GeV. MIRAMARE - TRIESTE December 2000 1 Permanent address. Axinos - supersymmetric partners of axions [1-3] are predicted in low-energy supersym- metry and the Peccei-Quinn (PQ) solution. The axino is an electrically and color neutral particle with mass highly dependent of the models [4-6].
    [Show full text]