Biology 2013, 2, 976-1033; doi:10.3390/biology2030976 OPEN ACCESS biology ISSN 2079-7737 www.mdpi.com/journal/biology Review The Role of Nuclear Bodies in Gene Expression and Disease Marie Morimoto and Cornelius F. Boerkoel * Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; E-Mail:
[email protected] * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +1-604-875-2157; Fax: +1-604-875-2376. Received: 15 May 2013; in revised form: 13 June 2013 / Accepted: 20 June 2013 / Published: 9 July 2013 Abstract: This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. Keywords: nuclear bodies; transcription; gene expression; genome organization 1. Introduction Gene expression is a multistep process that is vital for the development, adaptation and survival of all living organisms. Regulation of gene expression occurs at the level of transcription, RNA processing, RNA export, translation and protein degradation [1±3]. The nucleus has the ability to modulate gene expression at each of these levels. How the nucleus executes this regulation is gradually being dissected.