ISSN 2518-1629 (Online), ISSN 2224-5308 (Print)

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ С. Ж. Асфендияров атындағы Қазақ ұлттық медицина университеті Х А Б А Р Л А Р Ы

ИЗВЕСТИЯ N E W S

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК OF THE NATIONAL ACADEMY OF SCIENCES РЕСПУБЛИКИ КАЗАХСТАН OF THE REPUBLIC OF KAZAKHSTAN Казахский национальный медицинский Asfendiyarov университет им. С. Д. Асфендиярова Kazakh National Medical University

SERIES OF BIOLOGICAL AND MEDICAL

4 (340)

JULY – AUGUST 2020

PUBLISHED SINCE JANUARY 1963

PUBLISHED 6 TIMES A YEAR

ALMATY, NAS RK News of the National Academy of Sciences of the Republic of Kazakhstan

Б а с р е д а к т о р

ҚР ҰҒА академигі, м. ғ. д., проф. Ж. А. Арзықұлов

Абжанов Архат, проф. (Бостон, АҚШ), Абелев С.К., проф. (Мәскеу, Ресей), Айтқожина Н.А., проф., академик (Қазақстан) Акшулаков С.К., проф., академик (Қазақстан) Алшынбаев М.К., проф., академик (Қазақстан) Березин В.Э., проф., корр.-мүшесі (Қазақстан) Берсімбаев Р.И., проф., академик (Қазақстан) Беркінбаев С.Ф., проф., (Қазақстан) Бисенбаев А.К., проф., академик (Қазақстан) Бишимбаева Н.Қ., проф., академик (Қазақстан) Ботабекова Т.К., проф., корр.-мүшесі (Қазақстан) Bosch Ernesto, prof. (Spain) Давлетов Қ.К., ассоц.проф., жауапты хатшы Жансүгірова Л.Б., б.ғ.к., проф. (Қазақстан) Ellenbogen Adrian, prof. (Tel-Aviv, Israel), Жамбакин Қ.Ж., проф., академик (Қазақстан), бас ред. орынбасары Заядан Б.К., проф., академик (Қазақстан) Ishchenko Alexander, prof. (Villejuif, France) Исаева Р.Б., проф., (Қазақстан) Қайдарова Д.Р., проф., академик (Қазақстан) Кохметова А.М., проф., корр.-мүшесі (Қазақстан) Күзденбаева Р.С., проф., академик (Қазақстан) Локшин В.Н., проф., академик (Қазақстан) Лось Д.А., prof. (Мәскеу, Ресей) Lunenfeld Bruno, prof. (Израиль) Макашев Е.К., проф., корр.-мүшесі (Қазақстан) Миталипов Ш.М., (Америка) Муминов Т.А., проф., академик (Қазақстан) Огарь Н.П., проф., корр.-мүшесі (Қазақстан) Омаров Р.Т., б.ғ.к., проф., (Қазақстан) Продеус А.П., проф. (Ресей) Purton Saul, prof. (London, UK) Рахыпбеков Т.К., проф., корр.-мүшесі (Қазақстан) Сапарбаев Мұрат, проф. (Париж, Франция) Сарбасов Дос, проф. (Хьюстон, АҚШ) Тұрысбеков Е.К., б.ғ.к., асс.проф. (Қазақстан) Шарманов А.Т., проф. (АҚШ)

«ҚР ҰҒА Хабарлары. Биология және медициналық сериясы». ISSN 2518-1629 (Online), ISSN 2224-5308 (Print) Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» РҚБ (Алматы қ.). Қазақстан республикасының Мәдениет пен ақпарат министрлігінің Ақпарат және мұрағат комитетінде 01.06.2006 ж. берілген №5546-Ж мерзімдік басылым тіркеуіне қойылу туралы куәлік.

Мерзімділігі: жылына 6 рет. Тиражы: 300 дана.

Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28; 219, 220 бөл.; тел.: 272-13-19, 272-13-18; http://biological-medical.kz/index.php/en/

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2020

Типографияның мекенжайы: «NurNaz GRACE», Алматы қ., Рысқұлов көш., 103. 2 ISSN 2224-5308 Series of biological and medical. 4. 2020

Г л а в н ы й р е д а к т о р

академик НАН РК, д.м.н., проф. Ж. А. Арзыкулов

Абжанов Архат, проф. (Бостон, США), Абелев С.К., проф. (Москва, Россия), Айтхожина Н.А., проф., академик (Казахстан) Акшулаков С.К., проф., академик (Казахстан) Алчинбаев М.К., проф., академик (Казахстан) Березин В.Э., проф., чл.-корр. (Казахстан) Берсимбаев Р.И., проф., академик (Казахстан) Беркинбаев С.Ф., проф. (Казахстан) Бисенбаев А.К., проф., академик (Казахстан) Бишимбаева Н.К., проф., академик (Казахстан) Ботабекова Т.К., проф., чл.-корр. (Казахстан) Bosch Ernesto, prof. (Spain) Давлетов К.К., ассоц. проф., ответственный секретарь Джансугурова Л. Б., к.б.н., проф. (Казахстан) Ellenbogen Adrian, prof. (Tel-Aviv, Israel), Жамбакин К.Ж., проф., академик (Казахстан), зам. гл. ред. Заядан Б.К., проф., академик (Казахстан) Ishchenko Alexander, prof. (Villejuif, France) Исаева Р.Б., проф. (Казахстан) Кайдарова Д.Р., проф., академик (Казахстан) Кохметова А.М., проф., чл.-корр. (Казахстан) Кузденбаева Р.С., проф., академик (Казахстан) Локшин В.Н., проф., академик (Казахстан) Лось Д.А., prof. (Москва, Россия) Lunenfeld Bruno, prof. (Израиль) Макашев Е.К., проф., чл.-корр. (Казахстан) Миталипов Ш.М., (Америка) Муминов Т.А., проф., академик (Казахстан) Огарь Н.П., проф., чл.-корр. (Казахстан) Омаров Р.Т., к.б.н., проф. (Казахстан) Продеус А.П., проф. (Россия) Purton Saul, prof. (London, UK) Рахыпбеков Т.К., проф., чл.-корр. (Казахстан) Сапарбаев Мурат, проф. (Париж, Франция) Сарбасов Дос, проф. (Хьюстон, США) Турысбеков Е. К., к.б.н., асс.проф. (Казахстан) Шарманов А.Т., проф. (США)

«Известия НАН РК. Серия биологическая и медицинская». ISSN 2518-1629 (Online), ISSN 2224-5308 (Print) Собственник: РОО «Национальная академия наук Республики Казахстан» (г. Алматы). Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5546-Ж, выданное 01.06.2006 г.

Периодичность: 6 раз в год. Тираж: 300 экземпляров.

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28; ком. 219, 220; тел. 272-13-19, 272-13-18; www:nauka-nanrk.kz / biological-medical.kz

© Национальная академия наук Республики Казахстан, 2020

Адрес типографии: «NurNazGRACE», г. Алматы, ул. Рыскулова, 103. 3 News of the National Academy of Sciences of the Republic of Kazakhstan

E d i t o r i n c h i e f

Zh.A. Arzykulov, academician of NAS RK, Dr. med., prof.

Abzhanov Arkhat, prof. (Boston, USA), Abelev S.K., prof. (Moscow, Russia), Aitkhozhina N.А., prof., academician (Kazakhstan) Akshulakov S.K., prof., academician (Kazakhstan) Alchinbayev М.K., prof., academician (Kazakhstan) Berezin V.Ye., prof., corr. member. (Kazakhstan) Bersimbayev R.I., prof., academician (Kazakhstan) Berkinbaev S.F., prof. (Kazakhstan) Bisenbayev А.K., prof., academician (Kazakhstan) Bishimbayeva N.K., prof., academician (Kazakhstan) Botabekova Т.K., prof., corr. member. (Kazakhstan) Bosch Ernesto, prof. (Spain) Davletov Kairat, PhD, associate professor, executive Secretary Dzhansugurova L.B., Cand. biol., prof. (Kazakhstan) Ellenbogen Adrian, prof. (Tel-Aviv, Israel), Zhambakin K.Zh., prof., academician (Kazakhstan), deputy editor-in-chief Zajadan B.K., prof., academician (Kazakhstan) Ishchenko Alexander, prof. (Villejuif, France) Isayeva R.B., prof. (Kazakhstan) Kaydarova D.R., prof., academician (Kazakhstan) Kokhmetova A., prof., corr. member (Kazakhstan) Kuzdenbayeva R.S., prof., academician (Kazakhstan) Lokshin V.N., prof., academician (Kazakhstan) Los D.А., prof. (Moscow, Russia) Lunenfeld Bruno, prof. (Israel) Makashev E.K., prof., corr. member (Kazakhstan) Mitalipov Sh.M. (America) Muminov Т.А., prof., academician (Kazakhstan) Ogar N.P., prof., corr. member (Kazakhstan) Omarov R.T., cand. biol., prof. (Kazakhstan) Prodeus A.P., prof. (Russia) Purton Saul, prof. (London, UK) Rakhypbekov Т.K., prof., corr. member. (Kazakhstan) Saparbayev Мurat, prof. (Paris, France) Sarbassov Dos, prof. (Houston, USA) Turysbekov E.K., cand. biol., assoc. prof. (Kazakhstan) Sharmanov A.T., prof. (USA)

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of biology and medicine. ISSN 2518-1629 (Online), ISSN 2224-5308 (Print) Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty). The certificate of registration of a periodic printed publication in the Committee of information and archives of the Ministry of culture and information of the Republic of Kazakhstan N 5546-Ж, issued 01.06.2006.

Periodicity: 6 times a year. Circulation: 300 copies.

Editorial address: 28, Shevchenko str. of. 219, 220, Almaty, 050010; tel. 272-13-19, 272-13-18; http://nauka-nanrk.kz / biological-medical.kz

© National Academy of Sciences of the Republic of Kazakhstan, 2020

Address of printing house: «NurNaz GRACE», 103, Ryskulov str, Almaty. 4 ISSN 2224-5308 Series of biological and medical. 4. 2020

Biochemisrty

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 5 – 9 https://doi.org/10.32014/2020.2519-1629.26

UDC 577.1:547.91

S. M. Adekenov, А. I. Makubayeva, R. B. Seidakhmetova

JSC «International Research and Production Holding «Phytochemistry», Karaganda, Kazakhstan. E-mail: [email protected]

COMPONENT COMPOSITION AND BIOLOGICAL ACTIVITY OF ESSENTIAL OIL OF ARTEMISIA TRANSILIENSIS POLJAKOV

Abstract. The component compositions of Artemisia transiliensis Poljakov essential oils obtained by hydro distillation and microwave extraction were studied. The essential oils obtained by the above-mentioned methods, have a yield of 0.29% and 0.22%, respectively. Using chromatographic-mass spectrometric analysis, it was determined that in essential oil obtained by hydro distillation, 19 components were detected, 18 of which were identified. In addition, 13 components were detected by chromatography-mass spectrometry in the essential oil obtained by microwave extraction, 12 of which were identified. The isolated samples of Artemisia transiliensis Poljakov essential oils are characterized by a high content of monoterpenes, where the main components are 1,8-cineole and camphor. In addition, the essential oil isolated by microwave extraction can be used as a source of 1,8-cineole. Antimicrobial and anti-inflammatory activity of isolated essential oils was studied. According to the results of antimicrobial activity, it was established that the essential oil of Artemisia transiliensis Poljakov, isolated by microwave extraction, exhibits moderate activity against gram-positive bacteria Staphylococcus aureus, Bacillus subtilis. While the essential oil obtained by hydro distillation has a weak antimicrobial activity. When determining the anti-inflammatory activity, it was established that the essential oil of Artemisia transiliensis Poljakov, obtained by the method of hydro distillation, at a dose of 25 mg/kg, has a pronounced anti-inflammatory activity comparable to the comparison drug “Diclofenac sodium” on the model of acute exudative reaction. Key words: Artemisia transiliensis Poljakov, hydro distillation, microwave extraction, essential oil, gas chromatography-mass spectrometry, biological activity.

Introduction. On the territory of Kazakhstan, 81 species of the wormwood genus (Artemisia L.) grow, 16 of which are endemic [1]. As objects of study, wormwood is of great interest as a source of essential oils with a high content of biologically active components. Artemisia transiliensis Poljakov is an endemic species; according to earlier chemical studies, its essential oil is pale green or light yellow, containing organic acids - 7%, phenols - 4.65%, cineole - 58.42%, thujone - 14-17% and, presumably, isobutyraldehyde [2].

5 News of the National Academy of Sciences of the Republic of Kazakhstan

We studied the component composition of the essential oil of Artemisia transiliensis Poljakov, obtained by hydro distillation and microwave extraction. The antimicrobial activity and anti-inflammatory effect of essential oils samples obtained by different methods are determined. Materials and research methods. Raw materials of the aerial part (anthodiums, buds, leaves) of Artemisia transiliensis Poljakov was gathered in July 2019 in the eastern outskirts of the village Tastybastau, Talgarskiy district of Almaty region. Essential oil was obtained by hydrodistillation on a Clevenger apparatus for 2 hours, then dried over anhydrous sodium sulfate and stored in closed vials in a dark place at a temperature of 4 °C. By a microwave extraction method on an NEOS Essential Oils System, an essential oil was obtained at atmospheric pressure of 101.325 kPa. 100 g of raw material was loaded into a 2-liter measuring cup and water was poured so that 1/3 of the cup remained empty. Technological mode: extraction time - 90 min, temperature - 100 °C, emitting power - 550 W. Chromatography-mass spectrometric analysis of the essential oil sample was carried out using an Agilent 6890 gas chromatograph equipped with an MSD 5973 mass-selective detector on an HP5 capillary column (5% diphenyl and 95% dimethylsiloxane, 30m x 0.25mm x 0.25mm (film thickness)). The temperature of injector is 280 °С. The column temperature was programmed as follows: 2 min at 50 °С, temperature increase at a speed of 4 deg/min to 240 °С, and then at a rate of 20 deg/min to 280 °С, isothermal period of 5 min. Helium (1.0 ml/min) was used as the carrier gas. The conditions of the mass selective detector were as follows: an ionization voltage of 70 eV, a data collection range of 30–650 a.m.u., and a data acquisition speed of 1.2 scans/s. 1.0 μl of the sample (a solution of essential oil in hexane, 8.0 μl per 0.5 ml) was injected into the chromatograph with a 100:1 flow separation. A mixture of normal hydrocarbons C8–C24 was added to the sample as a standard for determining linear retention indices. The components of essential oils were identified by comparing their mass spectra and linear retention indices (relative to C8-C24 alkanes) with the data presented in the database [3]. Quantitative analysis was performed by the method of internal normalization for the areas of gas chromatographic peaks calculated using the Agilent ChemStation package without using correction coefficients. The sum of the peak areas of the components with linear retention indices in the range of 900-2200 was taken for 100%. The antimicrobial activity of essential oils samples was determined on strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, gram-negative strains of Escheriсhia coli, Pseudomonas aeruginosa and on Candida albicans yeast fungus by agar diffusion method (wells). Comparison preparations - lincomycin hydrochloride for bacteria and nystatin for C. albicans yeast fungus [4]. Anti-inflammatory activity was studied on the model of acute exudative reaction with the comparison drug “Diclofenac sodium” at a dose of 25 mg/kg [5]. Results and discussion. Essential oils were obtained by hydrodistillation using a Clevenger apparatus and microwave extraction on an NEOS apparatus. The essential oils obtained by the above- mentioned methods are mobile yellow liquids with a characteristic odor. The yield of essential oils obtained by hydrodistillation and microwave extraction was 0.29% and 0.22%, respectively (in terms of air-dry raw materials). The composition of the essential oils was studied by GC-MS method with an Agilent 6890/5973C mass selective detector. According to chromatography-mass spectrometry in essential oil obtained by hydro distillation, 19 components were detected, 18 of which were identified. The main components are (in%): 1,8-cineole (1) - 54.09, camphor (2) - 16.52, spathulenol - 4.69. The part of identified essential oil components was 98.95%. Essential oil mainly contains monoterpenes - 81.63%, sesquiterpenes - 17.32% and unidentified components - 1.04%. In addition, 13 components were detected by chromatography-mass spectrometry in the essential oil obtained by microwave extraction, 12 of which were identified. The main components are (in %): 1,8-cineole (1) - 66.05, camphor (2) - 15.00, spathulenol - 4.23. The proportion of identified essential oil components was 99.14%. Essential oil mainly contains monoterpenes - 89.31%, sesquiterpenes - 9.83% and unidentified components - 0.84% (table).

6 ISSN 2224-5308 Series of biological and medical. 4. 2020

The main components of essential oils of Artemisia transiliensis Poljakov, isolated by hydrodistillation and microwave extraction methods

Content, % № RT, min RI Component HD MWE 1 2 3 4 5 6 1 7.789 947 camphene 1.50 1.75 2 10.438 1024 р-cymene 1.90 1.35 3 10.648 1031 1,8-cineole 54.09 66.05 4 10.792 1037 santolina alcohol 1.96 1.49 5 11.362 1070 trans-arbusculone 0.66 – 6 14.618 1144 camphor 16.52 15.00 7 15.304 1163 cis-chrysanthenol 0.59 – 8 15.384 1166 borneol 1.24 1.58 9 15.543 1173 santolina alcohol acetate 1.81 1.28 10 15.810 1177 terpinen-4-ol 1.36 0.81 11 17.658 1230 nordavanone 0.72 – 12 22.495 1378 α-copaene 0.37 – 13 25.809 1484 Germacrene-D 2.21 1.60 14 26.278 1500 bicyclogermacrene 2.74 1.41 15 26.834 1515 davana ether 3.29 – 16 27.079 1527 delta-cadinene 0.93 – 17 28.740 1580 spathulenol 4.69 4.23 18 28.949 1590 cis-davanone 2.37 2.59 19 30.343 1639 Unidentified component 1.04 0.84 HD – hydro distillation, MWE – microwave extraction.

The table shows that in the essential oil obtained by microwave extraction, the quantitative content of 1, 8-cineole (1) is relatively predominant than in the essential oil extracted by hydro distillation. In contrast to previous studies [2], thujone was not found in the essential oil of Artemisia transiliensis Poljakov.

(1) (2)

The antimicrobial activity of essential oils of Artemisia transiliensis Poljakov was studied on strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, on gram-negative strains of Escheriсhia coli, Pseudomonas aeruginosa and on Candida albicans yeast fungi by agar diffusion method (wells). According to the results of biological screening, it was established that essential oil of Artemisia transiliensis Poljakov, isolated by microwave extraction, shows moderate activity against gram-positive bacteria Staphylococcus aureus, Bacillus subtilis. Whereas the essential oil obtained by hydro distillation has a weak antimicrobial activity. 7 News of the National Academy of Sciences of the Republic of Kazakhstan

Anti-inflammatory activity was studied on the model of acute exudative reaction in outbred white rats. It was found that the essential oil of Artemisia transiliensis Poljakov, obtained by the method of hydro distillation, at a dose of 25 mg/kg, has a pronounced anti-inflammatory activity comparable to the comparison drug “Diclofenac sodium” on the model of acute exudative reaction. And the essential oil of Artemisia transiliensis Poljakov, isolated by microwave extraction, at a dose of 25 mg/kg did not show anti-inflammatory activity. Conclusion. Thus, for the first time, by the methods of hydro distillation and microwave extraction, essential oils from Artemisia transiliensis Poljakov were isolated and their compositions were studied. According to GC-MS analysis, it was established that the essential oil of Artemisia transiliensis Poljakov contains a quantitative content of monoterpenes, where the main components of the essential oil are 1,8-cineole and camphor. However, the essential oil isolated by microwave extraction can be used as a source of 1,8-cineole. The use of the microwave extraction method is economical and shortens the process of essential oil production. Essential oil of Artemisia transiliensis Poljakov isolated by hydro distillation method exhibits pronounced anti-inflammatory activity in the acute exudative reaction model.

С. M. Әдекенов, А. И. Макубаева, Р. Б. Сейдахметова

«Фитохимия» халықаралық ғылыми-өндірістік холдингі» АҚ, Қарағанды, Қазақстан

ARTEMISIA TRANSILIENSIS POLJAKOV ЭФИР МАЙЫНЫҢ КОМПОНЕНТТІК ҚҰРАМЫ ЖӘНЕ БИОЛОГИЯЛЫҚ БЕЛСЕНДІЛІГІ

Аннотация. Гидродистилляция және қысқа толқынды экстракция әдісі арқылы алынған Artemisia transiliensis Poljakov эфир майының компоненттік құрамы зерттелді. Бұл ретте эфир майының шығымы тиісінше 0,29% және 0,22% көрсетті. Хромат-масс-спектрметрлік талдау әдісін қолдану арқылы гидродистилляция нәтижесінде алынған эфир майында 19 компоненттің бар екендігі анықталды, олардың 18-і сәйкестендірілді. Бұл ретте хромат- масс-спектрометр әдісі арқылы микротолқынды экстракциямен алынған эфир майында 13 компонент анықталды, олардың 12-і сәйкестендірілді. Хромат-масс-спектрметрлік талдау әдісімен Іле жусанынан бөліп алынған эфир майларының үлгілері монотерпендердің жоғары мөлшерімен сипатталатыны анықталды. Ондағы негізгі компоненттер 1,8-цинеол мен камфора болып саналады. Бұл ретте қысқа толқынды экстрак- ция әдісі арқылы бөліп алынған эфир майын 1,8-цинеол көзі ретінде пайдалануға болады. Бөліп алынған эфир майларының микробқа және қабынуға қарсы белсенділігі зерттелді. Микробқа қарсы белсенділік нәтижесі бойынша қысқа толқынды экстракция әдісі негізінде бөліп алынған Artemisia transiliensis Poljakov эфир майы Staphylococcus aureus, Bacillus subtilis грамобакте- рияларына қарсы орташа айқын белсенділік танытатыны анықталды. Ал гидродистилляция әдісімен алынған эфир майы микробқа қарсы әлсіз белсенділікке ие. Қабынуға қарсы әсерді анықтау кезінде гидродистилля- ция әдісімен алынған Artemisia transiliensis Poljakov эфир майы 25 мг/кг дозада жіті экссудативті реакция моделінде «Натрий диклофенагі» салыстыру препаратымен салыстыруға келетін қабынуға қарсы белсенді екендігі анықталды. Түйін сөздер: Artemisia transiliensis Poljakov, гидродистилляция, қысқа толқынды экстракция, эфир майы, ГХ-МС, биологиялық белсенділік.

С. M. Адекенов, А. И. Макубаева, Р. Б. Сейдахметова

АО «Международный научно-производственный холдинг «Фитохимия», Караганда, Казахстан

КОМПОНЕНТНЫЙ СОСТАВ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ЭФИРНОГО МАСЛА ARTEMISIA TRANSILIENSIS POLJAKOV

Аннотация. Изучены компонентные составы эфирных масел Artemisia transiliensis Poljakov (полыни заилийской), полученных методами гидродистилляции и микроволновой экстракции. При этом выход эфирных масел составил 0.29 % и 0.22 % соответственно. 8 ISSN 2224-5308 Series of biological and medical. 4. 2020

Методом хромато-масс-спектрометрического анализа установлено, что в эфирном масле, полученного методом гидродистилляции, обнаружено 19 компонентов, из них идентифицировано 18. При этом методом хромато-масс-спектрометрии в эфирном масле, полученного микроволновой экстракцией, обнаружено 13 компонентов, из них идентифицировано 12. Выделенные образцы эфирных масел полыни заилийской характеризуются высоким содержанием монотерпенов, где основными компонентами являются 1,8-цинеол и камфора. При этом эфирное масло, выделенное методом микроволновой экстракции, можно использовать в качестве источника 1,8-цинеола. Исследована антимикробная и противовоспалительная активность выделенных эфирных масел. По результатам биоскрининга установлено, что эфирное масло Artemisia transiliensis Poljakov, выделенное методом микроволновой экстракции, обладает умеренно-выраженной антимикробной актив- ностью в отношении грамположительных бактерий Staphylococcus aureus, Bacillus subtilis. Тогда как эфирное масло, полученное методом гидродистилляции, обладает слабой антимикробной активностью. При опреде- лении противовоспалительного действия установлено, что эфирное масло Artemisia transiliensis Poljakov, полученное методом гидродистилляции, в дозе 25 мг/кг обладает выраженной противовоспалительной активностью, сопоставимой с препаратом сравнения «Диклофенак натрия» на модели острой экссудативной реакции. Ключевые слова: Artemisia transiliensis Poljakov, гидродистилляция, микроволновая экстракция, эфирное масло, хромато-масс-спектрометрия, биологическая активность.

Information about authors: Adekenov S.M., Academic of NAS RK, Doctor of Chemical Sciences, Professor, JSC “International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan; [email protected]; https://orcid.org/0000- 0001-7588-6174 Makubayeva A.I., JSC “International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan; [email protected]; https://orcid.org/0000-0002-0250-5972 Seidakhmetova R.B., Candidate of Medicine Sciences, JSC “International Research and Production Holding “Phytochemistry”, Karaganda, Kazakhstan; [email protected]; https://orcid.org/0000-0002-1990-4961

REFERENCES

[1] Pavlov N.V. (1966) Flora of Kazakhstan [Flora Kazakhstana]. Vol. 9. Almaty, Science. 635 p. (in Russ.). [2] Goryaev M.I., Bazalitskaya V.S., Polyakov P.P. (1962) The chemical composition of wormwoods [Khimicheskiy sostav polynei], Almaty, Publishing House "AN KazSSR" [Izdatel'stvo «AN Kaz SSR»]. 148 p. (in Russ.). [3] Tkachev А.V. (2008) The study of volatiles [Tkachev A.V. Issledovanie letuchikh veshchestv rasteniy], Novosibirsk, «Ofset». 969 p. (in Russ.). [4] Navashin S.М. (1982) Rational antibiotic therapy [Navashin S.M. Ratsional'naya antibiotikoterapiya], M.: Medicine [Meditsina]. 496 p. (in Russ.). [5] Khabriev R.U. (2005) Guidelines for the experimental (preclinical) study of new pharmacological substances [Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv], 2nd edition, revised and add. [2-e izdaniye, pererab. i dop.], M.: Medicine [Meditsina]. 832 p. (in Russ.).

9 News of the National Academy of Sciences of the Republic of Kazakhstan

Microbiology

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 10 – 18 https://doi.org/10.32014/2020.2519-1629.27

UDC 577.218 MRNTI 34.15.25; 34.27.21; 34.27.51

I. S. Korotetskiy1, S. V. Shilov1, O. N. Reva2, T. V. Kuznetsova1, A. B. Jumagaziyeva1, N. B. Akhmatullina1, A. I. Ilin1

1Scientific Center for Anti-Infectious Drugs (SCAID), Almaty, Kazakhstan; 2Centre for Bioinformatics and Computational Biology (CBCB); Department of Biochemistry, Genetics and Microbiology; University of Pretoria, Pretoria, South Africa. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]

GENE EXPRESSION PROFILING OF MULTI-DRUG RESISTANT E. COLI AFTER EXPOSURE BY NANOMOLECULAR IODINE-CONTAINING COMPLEX

Abstract. Gene profiling was performed to assess the transcriptomic effect of the FS-1 drug during long-term exposure to the multidrug-resistant strain of E. coli ATCC® BAA-199. FS-1 was added to the E. coli culture at a concentration corresponding to 1/2 MBC for ten passages. As a result of the effect of FS-1 on a multiresistant strain of E. coli, significant differential regulation of many key genes was observed. Long-term cultivation on a medium containing a sub-bactericidal concentration of FS-1 leads to substantial metabolic changes in bacteria associated with the suppression of the central pathways of energy production and amino acid synthesis. In contrast, the synthesis of nucleotides and fatty acids was activated. It was found that some key metabolic pathways are suppressed by the action of FS-1, causing a General tendency to decrease the redox potential of the cell and the production of ATP. Our research shows a significant decrease in the activity of genes involved in β-oxidation of fatty acids, CTC, glyoxylate shunt, which leads to the suppression of aerobic respiration, causing bacteria to switch to less effective anaerobic respiration. The results of our research demonstrate the suppression of oxaloacetate formation in the CPC, which is a precursor of aspartate biosynthesis, as well as the suppression of the shikimate pathway and, as a result, the reduction of tryptophan formation. Reduced production of aspartate and tryptophan probably leads to a lack of NAD+, depriving the bacteria of NADPH. However, the lack of NADPH can be partially compensated by activation of the pentose phosphate cycle under these conditions, which serves as an essential source of NADPH and pentose sugars for nucleotide biosynthesis. The reduced redox potential of cells and the production of NADH cofactors under the action of FS-1 may affect the sensitivity of E. coli culture to antibiotics. Thus, a better understanding of the metabolic flow can lead to effective therapeutic or preventive measures to combat antibiotic-resistant bacteria. Key words: E. coli, antibiotic resistance, FS-1, RNA, sequencing, gene expression.

Introduction. Bacterial resistance to antimicrobial agents is an urgent problem in modern society [1]. The world health organization recognizes antibiotic resistance of microorganisms as the greatest threat to human health worldwide. Patients infected with multidrug-resistant bacteria are subjected to more complicated treatment processes than those infected with susceptible pathogens [2]. The growth of 10 ISSN 2224-5308 Series of biological and medical. 4. 2020 antibacterial resistance levels the achievements of modern medicine, such as cancer treatment, transplantation, surgery, etc. [3]. Pathogens can acquire resistance to antibiotics, either through mutations or by horizontal transfer of resistance genes. Bacteria, which are resistant to a particular drug, may develop the strength to other second-line antibiotics and cause multidrug-resistant infections [4,5]. Although resistant patterns are found in both Gram-positive and Gram-negative bacteria, the most significant concern is associated with Gram-negative bacteria with an acquired resistance against several or even all available antibiotics, which are reported worldwide with an increasing rate [6,7]. An Escherichia coli strain selected for the study represents nosocomial infection pathogens [8]. Drug- resistant E. coli isolates are widely detected in the environment, including water resources [9] and agricultural products [10]. Different approaches are used to combat antibiotic resistance. The most interesting, in our opinion, is based on the induction of drug resistance reversion of multidrug-resistant bacterial populations to regain susceptibility to conventional antibiotics. Some drugs of this kind inhibit specific resistance mechanisms, thereby neutralizing the evolutionary advantages of antibiotic resistance, leading to an increase in the number of antibiotic-sensitive bacteria in the population [11]. This study aimed to carry out the total gene expression profiling to assess the effects of the drug FS-1 inducing antibiotic resistance reversion in the model multidrug-resistant strain E. coli ATCC® BAA-199 during its cultivation with FS-1. Materials and methods. The multidrug-resistant E.coli bacterial culture (ATCC® BAA-199™) was obtained from the American Type Culture Collection (https://www.lgcstandards-atcc.org/en.aspx). The drug FS-1 was added to MHB cultivation medium in a concentration of 500 μg/ml that corresponded to 1/2 of the minimal bactericidal concentration (MBC) of FS-1 calculated for the strain E. coli BAA-199. The bacterial culture was cultivated at 37°C for 10 days with daily re-inoculations to tubes with fresh MHB medium. Gene expression was stopped sharply by mixing the bacterial culture with RNAlater (Sigma), in a ratio of 5:1. As a negative control, the bacterial culture was cultivated for 10 days on the medium without the drug FS-1. All experiments were performed in three replicates. Isolation of total RNA was performed following the developer's guidelines using the RiboPure Bacteria Kit (Ambion, Lithuania). RNA's quality and quantity were determined using the NanoDrop 2000s spectrophotometer (Thermo Scientific, USA) at optical wavelengths 260 and 280 nm. Purification of the total RNA from ribosomal 16S and 23S RNA was carried out using the MICROBExpress Bacterial mRNA Purification Kit (Ambion, Lithuania) following the developer recommendations. The efficiency of template-RNA purification was determined on the Bioanalyzer 2100 (Agilent, Germany) with the RNA 6000 Nano LabChip Kit (Agilent Technologies, Lithuania). RNA fragment library was prepared by enzymatic fragmentation with the Ion Total RNA Seq Kit V2 (Life Technologies, USA). Barcoding of the obtained RNA library was carried out with the Ion Xpress RNA-Seq Barcode 01-16 Kit (Life Technologies, USA), according to the manufacturer's instructions. RNA sequencing was performed using the Ion Torrent PGM sequencer (Life Technologies, USA) with the Ion 318 Chip Kit V2. RNA fragments obtained by sequencing were aligned against the reference genome [12] using the QIAGEN CLC Workbench 7.0.3 software package. To visualize the results and compare gene expression profiles, we applied our in-house scripts written on Python 2.5. The differential gene expression statistics were calculated using the R-3.4.4 software package DESeq2. [13]. The role of protein-coding genes in the E. coli metabolism was determined using the Pathway Tools 24 software [14] implemented in the EcoCyc database [15]. Results. In our previous studies, it was shown that FS-1 induced a reversion to antibiotic sensitive phenotype in drug-resistant bacteria [16]. The whole genome sequence comparison did not reveal any significant mutations in genes responsible for drug resistance. It was assumed that the experimentally determined antibiotic resistance reversion might be caused by an alternative gene expression regulation and possibly by epigenetic mechanisms [17]. For this purpose, the bacterial culture E. coli BAA-199 was grown for 10 consecutive passages with a constant content of the drug FS-1 in the medium that corresponded to half of its MBC estimated for this bacterium. Six RNA samples obtained after 10 passages with FS-1 and on the same medium without FS-1 as negative control were extracted and sequenced.

11 News of the National Academy of Sciences of the Republic of Kazakhstan

In total, 4407 genes were identified on the chromosome of E. coli BAA-199 [12]. A confident differential expression (p ≤ 0.05) was identified for 522 genes, of which 322 genes were negatively regulated by the drug FS-1 (figure).

Differential gene regulation in E. coli BAA196 culture grown with FS-1 compared to the negative control culture. Each cycle represents one gene plotted in accordance with the calculated average expression level (axis X, baseMean) and fold change (axis Y, foldChange) represented by base 2 logarithms. Up- and downregulated genes encoding proteins (CDS), non-coding regulatory RNA (ncRNA), and the genes located on the plasmid are depicted by cycles of different color and size (depending on the estimated confidence) as described in the figure legend. The red trend line links the average baseMean and foldChange values calculated for up- and downregulated genes.

Using the services STRING [18] and KEGG [19], gene clustering was performed by their functions and GO terms. Metabolic pathways associated with the genes regulated in E. coli by exposure to FS-1 in the medium are summarized in Table 1. To determine the metabolic pathways, the Escherichia coli K-12 substr. MG1655 genome was used as a reference culture.

Metabolic pathways of E. coli induced by FS-1

Observed Background False #term ID* Term description gene count gene count discovery rate eco00620 Pyruvate metabolism 19 52 0.00038 eco01230 Biosynthesis of amino acids 18 116 2.33e-08 eco00020 Citrate cycle (TCA cycle) 16 27 2.88e-05 Glyoxylate and dicarboxylate eco00630 16 41 0.00075 metabolism eco00190 Oxidative phosphorylation 12 43 0.0357 eco00010 Glycolysis / Gluconeogenesis 8 43 0.00014 eco01212 Fatty acid metabolism 9 21 0.0112 eco00030 Pentose phosphate pathway 5 30 0.00041 eco00230 Purine metabolism 8 91 0.0094 Note: * - Pathway ID according to KEGG.

12 ISSN 2224-5308 Series of biological and medical. 4. 2020

Pyruvate occupies the key metabolic node linking carbohydrate catabolism with energy production and biosynthesis and also represents the main switch between respiratory and enzymatic metabolism. In Escherichia coli, pyruvate dehydrogenase (PDHC) and pyruvate formate lyase (PFL) catalyze the main pathway of conversion of pyruvate to Acetyl-CoA. Also, these enzymes initiate the aerobic respiration and anaerobic fermentation, respectively [20]. The pyruvate dehydrogenase (PDHC) complex consists of three subunits encoded by genes aceE, aceF, and lpd. Our results do not show any significant change in the expression level of aceE (1.2-fold change) and aceF (1.4-fold change) compared to the negative control. However, there was a strong negative regulation of lpd for −2.8 fold change. Lpd-lipoamide dehydrogenase catalyzes the transfer of electrons to the final acceptor-NAD+. This complex of reactions is the connecting bridge between glycolysis and the Krebs cycle. Since the expression of one of the main components of the PDHC complex was suppressed in our studies, we assumed that pyruvate could be dissimilated via pyruvate:formate lyase (PFL) pathway. Significant activation of pflB gene (by 7.4 fold) that encods a pyruvate-formate lyase subunit confirms this statement. There is also clear evidence of 2 to 9 fold activation of the genes involved in anaerobic respiration (tdcE, narK, narH, narI, napB, nirB, nirD, nrfA) [21]. Additionally to the activation of the PHDC complex, a significant increase of expression of various transhydrogenase was observed; particularly, the soluble (encoded by sthA) and membrane-bound (encoded by pntAB) pyridine nucleotide transhydrogenases. By converting NADH to NADPH, both these transhydrogenases provide 35-45% of the NADPH required for biosynthetic pathways of E. coli [22]. Besides, significant repression of aldA and lldD genes (by −445 and −39 fold, respectively) was observed. These genes are strongly inhibited in anaerobic conditions [23]. Acetyl-CoA synthetase (acs) catalysis synthesis of Acetyl-CoA from acetate using ATP [24] that is one of two alternative pathways by which E. coli can assimilate acetate to Acetyl-CoA. In our studies, the activity of the acs gene was suppressed almost 32 fold change under the action of FS-1. There were 9 genes regulated by the presence of FS-1 in the medium, which were involved in metabolism of fatty acids. Six of these genes, fadA, fadE, fadJ, fadB, fadD and fadI, were negatively regulated. The analysis showed that all these inhibited genes are involved in β-oxidation of fatty acids – a metabolic process of degradation of fatty acids to FADH2, NADH, and Acetyl-CoA. Catabolic β-oxidation is followed by oxidation of Acetyl-CoA in the Krebs cycle that serves as one of the main sources of energy producing ATP molecules by oxidative phosphorylation. Other 3 genes, accA, accD and fabB, were no more than 2.5 fold positively regulated. They participate in initiation and prolongation of fatty acid synthesis, i.e. in anabolic processes of the bacterium; particularly, in synthesis of cell membrane fatty acids. Glycolytic processes of energy production and precursor biosynthesis may be carried out in E. coli through the glycolysis to the tricarboxylic acid cycle (TCA), Entner Doudoroff pathway (EDP), Embden– Meyerhof–Parnas pathway (EMPP) and the oxidative pentose phosphate pathway (PPP) [25]. The TCA is central not only to energy metabolism, but also plays a significant role in anabolism being an important source of precursors for the synthesis of such compounds as amino acids, carbohydrates, fatty acids, etc. Out of the 16 genes involved in TCA, 15 genes (sdhC, sdhD, sdhA, sdhB, sucC, sucD, sucA, sucB, gltA, icd, acnA, acnB, fumC, fumA, lpdA) were inhibited. In addition to this, 5 of 8 glycolysis genes, acs, agp, aldB, glpX, tpiA, were downregulated by FS-1. The obtained data shows a general inhibition of both, TCA and glycolysis, which in turn may lead to a decrease in amino-acid biosynthesis activity and oxidative phosphorylation, which should be bypassed somehow by the bacterium. Indeed, many biosynthetic pathways sourced from TCA and glycolysis were inhibited or downregulated by FS-1. They include the biosynthesis of amino acids lysine/methionine (thrA, −21 fold), phenylalanine/tyrosine (pheA, −4.9 fold), threonine (thrB, −7.5 fold; thrC, −5.2 fold), valine/isoleucine (ilvs, ilvD, ilvE, in average −2 fold), asparagine (asnA, asnB and iaaA, in average −2 fold), and glutamine (glnA, −3.7 fold). Besides, the genes involved in the shikimate pathway, during which the chorismate precursor of tryptophan is formed, were also suppressed. In general, this may indicate a decrease in the anabolism of the culture. There was a general suppression of the TCA associated glyoxylate shunt caused by the drug FS-1 that could be expected as this pathway links TCA with b-oxidation of fatty acids, and both these pathways were strongly downregulated. Out of 16 shunt-related genes, 15 were strongly inhibited. Another function of the glyoxylate shunt is the replenishment of intermediate tricarboxylic and dicarboxylic acids, which 13 News of the National Academy of Sciences of the Republic of Kazakhstan are intermediates of the Krebs cycle. Krebs cycle is functionally linked with the oxidative phosphorylation (in the electron transport chain) where electrons are transferred from donor compounds to acceptor compounds during redox reactions, and the energy is produced in the form of ATP molecules [26]. E. coli genome contains a cluster of three cytochrome oxidase enzymes – cytochrome bo oxidase (CyoABCD), cytochrome bd-I oxidase (CydABX), and cytochrome bo-II oxidase (AppCD). These enzymes function as major terminal oxidases in the aerobic respiratory chain of E. coli that generates the proton motive force (PMF) [27,28,29]. In our studies, cyoABCD cytochromes and all related genes mentioned above were strongly inhibited. Notably, the expression of cyoABCD genes encoding cytochrome o oxidase was downregulated −19.6, −8.0, 6.0 and −64 fold, respectively. Gene cyoE that is necessary for the functioning of the cytochrome complex was also suppressed by −7.0 fold. Another cluster of genes showing a significant suppression by FS-1 was that one encoding NADH: ubiquinone oxidoreductase I (NDH-1) biosynthesis. NDH-1 is a NADH dehydrogenase that catalyzes the transfer of electrons from NADH to a pool of quinones in the cytoplasmic membrane, generating the proton electrochemical gradient, which is also a part of both the aerobic and anaerobic respiratory chain of the cell. Finally, the genes included in the sdhCDAB operon encoding quinone oxidoreductase (SQR) catalyze the oxidation of succinate to fumarate, the process accompanying the reduction of ubiquinone to ubiquinol, were also suppressed. SQR plays an important role in cellular metabolism and binds the TCA cycle to the chain of respiratory electron transportation. Global profiling of the E. coli transcriptome revealed 5 genes (prsA, pgi, gnd, pgl glpX), related to the oxidative pentose phosphate pathway (PPP) induced by the action of the drug FS-1. It should be noted that PPP is not used by E. coli for energy production, but sources numerous biosynthetic pathways, which may compensate to some extent the potent TCA inhibition. In PPP, glucose is phosphorylated to glucose- 6-phosphate, which then is oxidized to ribulose-5-phosphate forming two reduced NADPH molecules. The alternative glycolytic pathway used by E. coli for energy production is EDP and EMPP. Two key genes of the EDP pathway, phosphogluconate dehydratase edd and keto-hydroxyglutarate-aldolase eda, were 1.8 and 1.6 fold upregulated by the treatment with FS-1. Regulation of the critical enzymes of the EMPP pathway, 6-phosphofructokinase subunits pfkAB, was insignificant. While the synthesis of many amino acids was suppressed, there was an explicit activation of genes involved in purine biosynthesis: hpt, prs, purT, purF, purC, guaA, guaB, purL. Moreover, almost all genes involved in purine biosynthesis were positively induced by the drug FS-1. Synthesis of nucleotides may be activated because of the need to replace damaged nucleotides in DNA and RNA, or to intensify the synthesis of such bioactive compounds as NAD(P) needed to cope with the increased redox potential. Finally, a strong up-regulation of many genes located on the large virulence plasmid was observed (figure). The most expressed plasmid genes were those associated with plasmid mobilization and conjugation that implies strong stress posed on the bacterial cell. Conclusion. Gene expression profiling of a multidrug-resistant E. coli strain demonstrated a significant differential regulation of many key genes resulted from the exposure of the bacterium to FS-1. It may be concluded that long-term passivation on a medium containing a sub-bactericidal concentration of the drug FS-1 leads to profound metabolic changes in the bacterium associated with downregulation of the central pathways of energy production and synthesis of amino acids. In contrast, the synthesis of nucleotides and fatty acids was activated. Thus, some key metabolic pathways are suppressed under the action of FS-1, causing a general tendency of decreasing the redox potential of the cell and ATP production. The significant reduction of the pathways of β-oxidation of fatty acids, TCA and glyoxylate shunt leads to suppression of the aerobic respiration, forcing bacteria to switch to a less effective anaerobic respiration. In living organisms, NAD molecules, which are essential for bacterial cells' redox sustainability, are synthesized de novo from amino acids aspartate and/or tryptophan. This study showed a suppression of synthesis of oxaloacetate in TCA that is a precursor of aspartate biosynthesis, as well as suppression of the shikimate pathway leading to tryptophan biosynthesis. Suspended production of aspartate and tryptophan likely causes the lack of NAD, while the strong suppression of the Krebs deprives bacteria of NADPH. However, the shortage of the latter bioactive compound may be partially compensated by activation of the oxidative pentose phosphate pathway, which serves as an essential source of NADPH and pentose sugars for nucleotides biosynthesis strongly activated at this condition. 14 ISSN 2224-5308 Series of biological and medical. 4. 2020

Reduced cell redox potential and decreased production of NADH cofactors may be critical mechanisms of the increased susceptibility of the FS-1 treated culture of E. coli to antibiotics, many of which act through elevation of the oxidative stress. Thus, a better understanding of the metabolic flow can lead to effective therapeutic or preventive measures to overcome antibiotic-resistant bacteria. Acknowledgements. The research was funded by the grant O.0776 of the program «Study on the reversion of antibiotic resistance in pathogenic microorganisms» provided by the Industrial development and industrial safety committee of the Ministry of industry and infrastructural development of the Republic of Kazakhstan.

И. С. Коротецкий1, С. В. Шилов1, О. Н. Рева2, Т. В. Кузнецова1, А. Б. Джумагазиева1, Н. Б. Ахматуллина1, А. И. Ильин1

1«Инфекцияға қарсы препараттар ғылыми орталығы» АҚ, Алматы, Қазақстан; 2Биоинформатика және компьютерлік биология орталығы, Притория университеті, Притория, ОАР

ҚҰРАМЫНДА НАНОМОЛЕКУЛА ИОДЫ БАР КЕШЕН ӘСЕРІНЕН КЕЙІНГІ E. COLI МУЛЬТИРЕЗИСТЕНТТІК ШТАММ ГЕНДЕРІ ЭКСПРЕССИЯСЫН ПРОФИЛИРЛЕУ

Аннотация. Микроорганизмнің антибиотикалық тұрақтылығы әлемде адам денсаулығына қауіп төнді- реді. Микробқа қарсы препараттарды шамадан тыс қолдану төзімді микроорганизмдердің дамуы мен тара- луына қатысты қауіпті ұлғайтады. Осыған байланысты олардың микробқа қарсы тұрақтылық механизмдерін зерттеу қазіргі қоғамның өзекті мәселесі болып саналады. Жұмыста ұзақ уақыт өсіру барысында ФС-1 препаратының әсерін бағалау үшін Escherichia coli ATCC® BAA-199 мультирезистенттік штамм гендерін профилирлеу нәтижесі келтірілген. ФС-1 препараты 10 пассаж бойы минималды бактерицидтік концентрация (МБК) 1/2 мөлшеріне сәйкес келетін дозада қолданылды. РНҚ-ны оқшаулау және тазарту әзірлеушілердің ұсыныстарына сәйкес коммерциялық жинақтарды қолдану арқылы жүзеге асырылды. РНҚ фрагменттерінің кітапханасы Ion Total RNA Seq Kit V2 (Life Technologies, АҚШ) арқылы ферментативті шектеу негізінде дайындалды. РНҚ оқшаулау және тазарту кітапханаларды кодтауда коммерциялық жиынтық арқылы өндіруші нұсқауларына сәйкес Ion Xpress RNA-Seq Barcode 01-16 (Life Technologies, АҚШ) жиынтығын қолдану арқылы жүзеге асырылды. РНҚ секвенирлеу Ion Torrent PGM секвенаторында (Life Technologies, АҚШ) жүргізілді. Секвененрлеу барысында алынған РНҚ фрагменттерін құрастыру және туралау QIAGEN CLC Workbench 7.0.3 бағдарламалық қамтамасыз ету пакеті арқылы анықтамалық геном негізінде жасалды. Гендер экспрессиясының деңгейі бағалау жағдайы R-3.4.4 бағдар- ламалық қамтамасыз ету барысында енгізілген DESeq2 пакеті арқылы жүргізілді. E. coli метаболизміндегі ақуызды кодтайтын гендер рөлі EcoCyc деректер базасына ендірілген Pathway Tools 24 бағдарламалық қамтамасыз ету көмегі арқылы анықталды. ФС-1 препаратының мультирезистенттік E. coli штамына әсері нәтижесінде көптеген негізгі гендердің маңызды дифференциалды реттелуі байқалды. ФС-1 препаратының суббактерицидтік концентрациясы бар ортада ұзақ уақыт өсіру нуклеотидтер мен май қышқылдарының синтезі белсенді өндіріс пен аминқыш- қылдар синтезінің орталық жолдарын басуға байланысты бактериялардың метаболикалық өзгеруіне әкеледі. ФС-1 әсерінен метаболизмнің кейбір негізгі жолдары басылып, жасушаның тотығу – қалпына келтіру потенциалының төмендеуіне және АТФ түзілуіне ықпал ететіндігі анықталды. Зерттеулерімізде май қышқылдарының β-тотығуымен, ЦТК, глиоксилат шунтымен айналысатын гендер белсенділігінің едәуір төмендегенін көрсетті, бұл аэробты тыныс алуды басады, бактериялардың анаэробты тыныс алу тиімділігін төмендетеді. Зерттеулеріміздің нәтижесінде Аспартат биосинтезінің алғышарты болып саналатын ЦТК-да оксалоацетат түзілісін басуды, сонымен қатар шикимат жолының тежелуін және соның нәтижесінде триптофан түзілісі төмендейді. Аспартат пен триптофан өндірісінің төмендеуі НАДФ бактериясынан айырылып, НАД+ жетіспеуіне әкелуі мүмкін. Алайда НАДФ жетіспеушілігі нуклеотидті биосинтез үшін НАДФ пен пентозды қанттың маңызды көзі болып саналатын пентозды фосфат циклінің активтенуі арқылы ішінара өтеледі. ФС-1 әсерінен жасушалардың тотығу потенциалының төмендеуі және НАД коэффициентте- рінің өндірілуі E. coli өсіндісінің антибиотиктерге сезімталдығының жоғарылауына әсер етуі мүмкін. Осылайша метаболизм ағынын жете түсіну антибиотикке төзімді бактериялармен күресудің тиімді терапиялық немесе профилактикалық шараларына әкелуі мүмкін. Түйін сөздер: E. coli, антибиотикорезистенттік, ФС-1, РНҚ, секвенирлеу, гендер экспрессиясы.

15 News of the National Academy of Sciences of the Republic of Kazakhstan

И. С. Коротецкий1, С. В. Шилов1, О. Н. Рева2, Т. В. Кузнецова1, А. Б. Джумагазиева1, Н. Б. Ахматуллина1, А. И. Ильин1

1АО «Научный центр противоинфекционных препаратов», Алматы, Казахстан; 2Центр биоинформатики и компьютерной биологии; Отдел биохимии, генетики и микробиологии; Университет Притории, Притория, ЮАР

ПРОФИЛИРОВАНИЕ ЭКСПРЕССИИ ГЕНОВ МУЛЬТИРЕЗИСТЕНТНОГО ШТАММА E. COLI ПОСЛЕ ВОЗДЕЙСТВИЯ НАНОМОЛЕКУЛЯРНЫМ ЙОД-СОДЕРЖАЩИМ КОМПЛЕКСОМ

Аннотация. Антибиотикорезистентность микроорганизмов является угрозой здоровья человечества во всем мире. Чрезмерное использование противомикробных препаратов привело к тревожному увеличению развития и распространения устойчивых микроорганизмов. В связи с этим изучение механизмов их устойчивости к противомикробным препаратам является актуальной проблемой современного общества. В данной работе приведены результаты профилирования генов мультирезистентного штамма Escherichia coli ATCC® BAA-199, для оценки действия препарата ФС-1 при длительном культивировании. Препарат ФС-1 использовали в дозе, соответствующей 1/2 минимальной бактерицидной концентрации (MБК) в течение 10 пассажей. Выделение и очистку РНК проводили при помощи коммерческих наборов в соответствии с рекомендациями разработчиков. Библиотеку фрагментов РНК готовили путем ферментатив- ной рестрикции с помощью Ion Total RNA Seq Kit V2 (Life Technologies, США). Баркодирование библиотеки осуществляли с использованием набора Ion Xpress RNA-Seq Barcode 01-16 (Life Technologies, США) в соответствии с инструкциями производителя. Секвенирование РНК проводили на секвенаторе Ion Torrent PGM (Life Technologies, США). Сборку и выравнивание фрагментов РНК, полученных во время секвениро- вания, проводили на основе эталонного генома с использованием пакета программного обеспечения QIAGEN CLC Workbench 7.0.3. Оценку уровней экспрессии генов проводили с использованием пакета DESeq2 имплементированного в программное обеспечение R-3.4.4. Роль белок-кодирующих генов в мета- болизме E. coli была определена с помощью программного обеспечения Pathway Tools 24, внедренного в базу данных EcoCyc. В результате воздействия препарата ФС-1 на мультирезистентный штамм E.coli наблюдалась значительная дифференциальная регуляция многих ключевых генов. Длительное культивирование на среде, содержащей суббактерицидную концентрацию препарата ФС-1, приводит к глубоким метаболическим изменениям в бактериях, связанных с подавлением центральных путей продукции энергии и синтеза амино- кислот, в тоже время синтез нуклеотидов и жирных кислот был активирован. Установлено, что некоторые ключевые метаболические пути подавляются под действием ФС-1, вызывая общую тенденцию снижения окислительно-восстановительного потенциала клетки и продукции АТФ. В наших исследованиях показано существенное снижение активности генов участвующих в β-окислении жирных кислот, ЦТК, глиоксилатном шунте, что приводит к подавлению аэробного дыхания, заставляя бактерии переключаться на менее эффективное анаэробное дыхание. В результатах наших исследований демонстрируется подавление образования оксалоацетата в ЦТК, который является предшественником биосинтеза аспартата, а также угнетение шикиматного пути и, как следствие, снижение образования триптофана. Снижение продукции аспартата и триптофана, вероятно, приводит к нехватке НАД+, лишая бактерии НАДФ. Однако нехватка НАДФ может быть частично компенсирована активацией в данных условиях пентозофосфатного цикла, который служит важным источником НАДФ и пентозных сахаров для биосинтеза нуклеотидов. Снижение окислительно-восстановительного потенциала клеток и продукции кофакторов НАД под действием ФС-1 могут влиять на повышение чувствительности культуры E. coli к антибиотикам. Таким образом, лучшее понимание метаболического потока может привести к эффективным терапевтическим или профилакти- ческим мероприятиям по борьбе с устойчивыми к антибиотикам бактериями. Ключевые слова: E. coli, антибиотикорезистентность, ФС-1, РНК, секвенирование, экспрессия генов.

Information about authors: Korotetskiy I.S., Head of lab, PhD, JSC «Scientific Centre for Anti-infectious Drugs», Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0002-0397-7840 Shilov S.V., Senior researcher, master of Science, JSC «Scientific Centre for Anti-infectious Drugs», Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0001-9490-9300 Reva O.N., Professor, PhD, Centre for Bioinformatics and Computational Biology; Department of Biochemistry, Genetics and Microbiology; University of Pretoria South Africa; [email protected]; https://orcid.org/0000-0002-5459-2772

16 ISSN 2224-5308 Series of biological and medical. 4. 2020

Kuznetsova T.V., Senior researcher, master of biology, JSC «Scientific Centre for Anti-infectious Drugs», Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0003-4186-3948 Jumagaziyeva A.B., Acting head of the lab, master of biotechnology, JSC «Scientific Centre for Anti-infectious Drugs», Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0002-8610-7321 Akhmatullina N.B., Chief Researcher, academician of NAS RK, professor, JSC «Scientific Centre for Anti-infectious Drugs», Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0003-3641-4742 Ilin A.I., Head of organisation, JSC «Scientific Centre for Anti-infectious Drugs», Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0001-9528-9721

REFERENCES

[1] Spellberg B., Blaser M., Guidos R.J. et al. (2011). Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. Clinical Infectious Diseases, 52: 397-428. DOI:10.1093/cid/cir153 [2] Van Duin D., Paterson D.L. (2016) Multidrug-Resistant Bacteria in the Community. Infectious Disease Clinics of North America, 30 (2): 377-390. DOI:10.1016/j.idc.2016.02.004 [3] Perez F., Van Duin D. (2013) Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients. Cleveland Clinic Journal of Medicine, 80 (4): 225-233. DOI:10.3949/ccjm.80a.12182 [4] Moura de Sousa J., Balbontı´n R., Durão P., Gordo I. (2017) Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol, 15 (4): e2001741. https://doi.org/ 10.1371/journal.pbio.2001741 [5] Hughes D., Andersson D.I. (2015) Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet, 16: 459-471. https://doi.org/10.1038/nrg3922 PMID: 26149714 [6] Vardakas K.Z., Rafailidis P.I., Konstantelias A.A., Falagas M.E. (2013) Predictors of mortality in patients with infections due to multi-drug resistant Gram negative bacteria: The study, the patient, the bug or the drug? Journal of Infection, 66 (5): 401-414. DOI:10.1016/j.jinf.2012.10.028 [7] Korotetskiy I.S., Jumagaziyeva A.B., Reva O.N., Kuznetsova Т.V., Shvidko S.V., Iskakbayeva Z.А., Myrzabayeva A.Н., Ilin A.I. (2019) Isolation and characterization isolates of nosocomial infections. Bulletin of National Academy of Sciences of the Republic of Kazakhstan, 5 (381): 199-209. https://doi.org/10.32014/2019.2518-1467.140 [8] Emori T.G., Gaynes R.P. (1993) An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev, 6: 428-442. https://doi.org/10.1128/cmr.6.4.428 [9] Odonkor S.T., Addo K.K. (2018) Prevalence of multidrug-resistant Escherichia coli isolated from drinking water sources. Int J Microbiol, Vol. 2018, Article ID 7204013, 7 p. https://doi.org/10.1155/2018/7204013 [10] O'Flaherty E., Solimini A.G., Pantanella F., De Giusti M., Cummins E. (2019) Human exposure to antibiotic resistant- Escherichia coli through irrigated lettuce. Environ Int, 122: 270-280. https://doi.org/10.1016/j.envint.2018.11.022 [11] Baym M., Stone L.K., Kishony R. (2015). Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 351 (6268): aad3292–aad3292. doi:10.1126/science.aad3292 [12] Korotetskiy I.S., Joubert M., Taukobong S., Jumagaziyeva A.B., Shilov S.V., Shvidko S.V., Suldina N.A., Kenesheva S.T., Yssel A., Reva O.N., Ilin A.I. (2019) Complete genome sequence of a multidrug-resistant strain, Escherichia coli ATCC BAA-196, as a model for studying induced antibiotic resistance reversion. Microbiol Resour Announc 8: e01118-19. DOI: 10.1128/MRA.01118-19 [13] Maechler M., Rousseeuw P., Struyf A., Hubert M., Hornik K. (2019). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.0 [14] Karp P.D., Latendresse M., Paley S.M., Krummenacker M., Ong Q., Billington R., Kothari A., Weaver D., Lee T., Subhraveti P., Spaulding A., Fulcher C.A., Keseler I.M., Caspi R. (2015) Pathway Tools version 19.0: Integrated Software for Pathway/Genome Informatics and Systems Biology. Briefings in Bioinformatics, 17 (5): 877-890. DOI: 10.1093/bib/bbv079 [15] Keseler I.M., Mackie A., Santos-Zavaleta A., Billington R., Bonavides-Martinez C., Caspi R., Fulcher C., Gama- Castro S., Kothari A., Krummenacker M., Latendresse M., Muñiz-Rascado L., Ong Q., Paley S., Peralta-Gil M., Subhraveti P., Velazquez-Ramirez D.A., Weaver D., Collado-Vides J., Paulsen I., Karp P.D. (2017) The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Research, 45 (D1): D543-550. https://doi.org/10.1093/nar/gkw1003 [16] Ilin A.I., Kulmanov M.E., Korotetskiy I.S., Islamov R.A., Akhmetova G.K., Lankina M.V., Reva O.N. (2017) Genomic insight into mechanisms of reversion of antibiotic resistance in multidrug resistant Mycobacterium tuberculosis induced by a nanomolecular iodine-containing complex FS-1. Frontiers in Cellular and Infection Microbiology, 7: 151, 11. DOI: 10.3389/fcimb.2017.00151 [17] Korotetskiy I.S., Jumagaziyeva A.B., Shilov S.V., Kuznetsova T.V., Suldina N.A., Kenesheva S.T., Ilin A.I., Joubert M., Taukobong S. and Reva O.N. (2020) Differential gene expression and alternation of patterns of DNA methylation in the multidrug resistant strain Escherichia coli ATCC BAA-196 caused by iodine-containing nano-micelle drug FS-1 that induces antibiotic resistance reversion. BioRxiv. doi:10.1101/2020.05.15.097816

17 News of the National Academy of Sciences of the Republic of Kazakhstan

[18] Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., von Mering C. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 47: D607-613. DOI: 10.1093/nar/gky1131 [19] Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res, 45 (D1): D353-D361. DOI: 10.1093/nar/gkw1092 [20] Murarka A., Clomburg J., Moran S., Shanks J.V., Gonzalez R. (2010) Metabolic Analysis of Wild-type Escherichia coli and a Pyruvate Dehydrogenase Complex (PDHC)-deficient Derivative Reveals the Role of PDHC in the Fermentative Metabolism of Glucose. Journal of biological chemistry, 285: 31548-31558. DOI:10.1074/jbc.M110.121095 [21] Heblinger C., Fairhurst S.A., Sawers G. (2002) Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Molecular microbiology. 27 (2): 477-492. https://doi.org/10.1046/j.1365-2958.1998.00696.x [22] Fuhrer T., Sauer U. (2009) Different Biochemical Mechanisms Ensure Network-Wide Balancing of Reducing Equivalents in Microbial Metabolism. Journal of bacteriology, 191 (7): 2112-2121. DOI:10.1128/JB.01523-08 [23] Park S.J., Gunsalus R.P. (1995) Oxygen, Iron, Carbon, and Superoxide Control of the Fumarase fumA and fumC Genes of Escherichia Coli: Role of the arcA, Fnr, and soxR Gene Products. Journal Bacteriology. 177 (21): 6255-62. DOI: 10.1128/jb.177.21.6255-6262.1995 [24] Kumari S., Tishel R.,Eisenbach M., Wolfe A.J. (1995) Cloning, Characterization, and Functional Expression of Acs, the Gene Which Encodes Acetyl Coenzyme A Synthetase in Escherichia Coli. Journal Bacteriology. 177 (10): 2878-86. DOI: 10.1128/jb.177.10.2878-2886.1995 [25] Hollinshead W.D., Rodriguez S., Martin H.G., Wang G., Baidoo E.K., Sale K.L., Keasling J.D., Mukhopadhyay A,, Tang Y.J. (2016) Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants.Biotechnol Biofuels. 9: 212. DOI: 10.1186/s13068-016-0630-y [26] Sousa M.F., Videira M.A., Bohn A., Hood B.L., Conrads T.P., Goulao L.F., Melo A.M. (2012) The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes. Microbyology. 158: 2408-2418. DOI: 10.1099/mic.0.056531-0 [27] Unden G., Bongaerts J. (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta, 1320 (3): 217-234. https://doi.org/10.1016/S0005- 2728(97)00034-0 [28] Ingledew J.W., Poole R.K. (1984) The Respiratory Chains of Escherichia coli. Microbiological Rev., 48 (3): 222-271. PMID: 6387427 [29] Borisov V.B., Gennis R.B., Hemp J.,Verkhovsky M.I. (2011) The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 1807 (11): 1398-1413. DOI: 10.1016/j.bbabio.2011.06.016

18 ISSN 2224-5308 Series of biological and medical. 4. 2020

Plant physiology

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 19 – 26 https://doi.org/10.32014/2020.2519-1629.28

UDC 633.18 МРНТИ 68.03.03

K. N. Zhailybay1, G. Z. Medeuova1, A. N. Kaliyeva2

1Kazakh State Women Teacher Training University, Almaty, Kazakhstan; 2Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan. E-mail: [email protected]

BIOMASS ACCUMULATION BY RICE CULTIVARS DEPENDING ON HEAVY METALS SALTS SOLUTIONS CONCENTRATION

Abstract. Heavy metals accumulation in a plant results in significant negative effect on physiological and biochemical processes going on in an organism. In this respect, the present article considers particular features of heavy metal salts solutions (Cuprum - Cu, Zinc - Zn, Cadmium - Cd) of various concentrations on biomass accumulation by Marzhan, AiSaule and Titan rice cultivars. Increase in heavy metal salts content results in significant slowing down the biomass accumulation by rice cultivars in the beginning of vegetation. Solutions of cadmium salts exert significantly greater influence on biomass accumulation by rice cultivars as compared to copper and zinc. Effect of heavy metals on biomass accumulation by rice cultivars is in the following order of sequence: cadmium> copper> zinc. At the low concentrations (5mg/l) of the copper and zinc salts solutions, Marzhan rice cultivar is more stable; nevertheless, at the higher concentrations (10 and 25mg/l) the above named cultivar turned out to be less stable as compared to the AiSaule and Titan cultivars. The research results obtained may be used in the process of morpho-physiological modelling of future new cultivars of rice that are more resistant (tolerant) to stressful influence of ecological factors (for example, heavy metal salt solutions). Key words: rice, varieties, heavy metals: copper, zinc, cadmium; effect of heavy metals on biomass accumulation by rice cultivars.

Introduction. In modern conditions as a result of intensification of industry and agriculture, mining, fuel burning by all types of vehicles, obtaining and using fertilizers, pesticides for agriculture, improper recycling of waste, the amount of heavy metals emitted into the environment, which pollute the atmosphere, hydrosphere and soils increased dramatically [1,2,9]. Gas and aerosol emissions from industry, cars and transport vehicles are oxidized and react with water vapor and as a result acid rain drops into the soil. Most of these harmful gases are sulphuric and nitrogen oxides. In summer, these aerosol and dustlike substances settle on the surface of plant leaves and penetrate through the mouths inside the tissue and have adverse effects. In autumn, these substances, together with the leaves, enter the soil when they fall down. The contamination of soil in such ways causes worries to scientists and specialists of agricultural enterprises. Soils of agricultural lands and pastures of Kazakhstan on large areas are polluted in such ways. Then, through trophic connections these substances enter into human organism and have negative influence on health of population [3-10]. Many heavy metals are highly toxic to all organisms, including . They accumulate in the environment and do not decompose. 19 News of the National Academy of Sciences of the Republic of Kazakhstan

The majority (60-80%) of heavy metals such as zinc, copper, nickel and others are trace elements and some of them are part of pigments, enzyme systems and physiologically active substances. However, the accumulation of heavy metals in plants, and humans have an adverse effect on physiological and biochemical processes in their bodies, and other metals, such as cadmium, are potentially toxic in any concentration. Therefore, the content of heavy metals in soils, water reservoirs and the atmosphere should not exceed the permissible (harmless) level. Otherwise, through a trophic connection through plant and products enter the human body and have a negative impact. Therefore, study of the regularities of their intake and accumulation in plant organisms and their influence on biomass formation contributes to correct assessment of heavy metals impact [3-9]. According to many researchers, as a result of the influence of heavy metals, especially cadmium, photosynthesis and other physiological processes are disturbed, absorption of trace elements and nutrients is reduced, enzyme systems are disrupted, plant growth slows down, mass accumulation of roots and aboveground biomass decreases. In toxic concentrations, heavy metal ions can cause significant deviations in cell metabolism. As a result, root growth and branching are slowed down. This leads to a decrease in the total and adsorbing surface of the root, and then the plant gradually dies [11-15]. Therefore, studying the influence of heavy metal salts solutions on rice biomass accumulation has a certain practical interest. The purpose of scientific research. To study the influence of different saline concentrations of copper-Cz, zinc-Zn, cadmium-Cd on the accumulation of dry biomass of types of rice Marzhan, AiSaule, Titan and the reaction of these varieties. Materials and methods of research. The object of research are varieties of rice Marzhan (standard), AiSaule (newly zoned variety of Kazakhstan selection), Titan (variety of Russian selection). Various saline concentrations of copper (CuSO4), zinc (ZnNO3), cadmium (CdCl2) - (5 mg/l, 10 mg/l, 25 mg/l) were used as heavy metals. Experience was conducted on 30 variants by variety. Scheme of experience: For variety Marzhan: 1 - control (without applying saline of heavy metals); 2 variant - 5 mg/l solution of copper salt; 3 variant - 10 mg/l solution of copper salt; 4 variant - 25 mg/l solution of copper salt; 5 variant - 5 mg/l solution of zinc salt; 6 variant - 10 mg/l zinc salt solution; 7 variant - 25 mg/l zinc salt solution; 8 variant - 5 mg/l cadmium salt solution; 9 variant - 10 mg/l cadmium salt solution; 10 variant - 25 mg/l cadmium salt solution. For variety AiSaule: 11 - control (without applying saline of heavy metals salts); 12 - variant - 5 mg/l of copper salt solution; 13 variant - 10 mg/l of copper salt solution; 14 variant - 25 mg/l of copper salt solution; 15 variant - 5 mg/l of zinc salt solution; 16 variant - 10 mg/l zinc salt solution; 17 variant - 25 mg/l zinc solution; 18 variant - 5 mg/l cadmium salt solution; 19 variant - 10 mg/l cadmium salt solution; 20 variant - 25 mg/l cadmium salt solution; For variety Titan: 21 variant - control (without making solutions of heavy metals salts; 22 variant - 5 mg/l of copper salt solution; 23 variant - 10 mg/l of copper salt solution; 24 variant - 25 mg/l of copper salt solution; 25 variant - 5 mg/l of zinc salt solution; 26 variant - 10 mg/l zinc salt solution; 27 variant - 25 mg/l zinc salt solution; 28 variant - 5 mg/l cadmium salt solution; 29 variant - 10 mg/l cadmium salt solution; 30 variant - 25 mg/l cadmium salt solution. Experience is repeated three times. Full seeds of the named rice varieties were washed 3-4 times with household soap, then several times treated with 16% hydrogen peroxide solution, then several times washed with distilled water. Seeds were grown according to the above mentioned variants. Results of research and discussion. As shown in table 1 and figure 1, 2 on the variant without heavy metals (control) the accumulation of dry biomass of Marzhan varieties will be considered 100%. With low (5 mg/l) concentration of copper salts, the accumulation of dry biomass of Marzhan rice varieties was 57.7% of the control, i.e. the weight reduction of plants was 42.3%. At the same concentration of zinc salts solutions, the accumulation of dry weight of plants was 43.9% of the control, i.e. the reduction of dry biomass accumulation was 56.1%. At the same concentration of solutions of cadmium salts the accumulation of dry biomass was 17.8% of control, i.e. the weight reduction of Marzhan variety plants was the greatest - 82.2%, compared to solutions of copper and zinc salts (table 1, figure 1, 2). When applying the average (10 mg/l) concentration of solutions of copper salt, the accumulation of dry biomass of Marzhan rice was 39.4% of the control, i.e. the weight loss of plants was 60.6%. With the same concentration of zinc salt solutions, the weight of plants was 29.3%, i.e. the decrease in rice biomass was 70.7%. At the same concentration of solutions of cadmium salt, the dry biomass of plants was 14.4% of the control, i.e. the weight reduction of plants was 85.5% (table 1, figure 1, 2). 20 ISSN 2224-5308 Series of biological and medical. 4. 2020

When applying a relatively high (25 mg/l) concentration of copper salt solutions, the accumulation of biomass was 24.7% of the control, i.e. the decrease was 75.3%. With the same concentration of zinc salt solutions, the accumulation of dry biomass was 13.9% of the control, i.e. the biomass decrease was 86.1%. At the same concentration of cadmium solutions, the accumulation of dry weight of Marzhan rice was 7.2% of control, i.e., the negative influence of cadmium salt solutions was strong in comparison with solutions of copper and zinc salts, and the weight reduction of plants was 92.8% (figure 1, 2). As shown in table 2 and figure 3, 4, the indicator of rice biomass weight of AiSaule variety in the control version (without heavy metals) is 100%.

Table 1 – Influence of heavy metals on biomass accumulation for 10 day seedlings of Marzhan rice variety

Experimental Average dry biomass, (Сu) Average dry biomass, (Zn) Average dry biomass, (Сd) Options mg % mg % mg % Control 1,516 100 1,505 100 1, 579 100 5 mg/l 0,874 57,7 0,660 43,9 0,281 17,8 10 mg/l 0,598 39,4 0,442 29,3 0,227 14,4 25 mg/l 0,374 24,7 0,209 13,9 0,113 7,2

100

80 Control 60 5mg/l 40 10mg/l 25mg/l 20

0 copper zinc cadmium

Figure 1 – Influence of heavy metals on biomass accumulation for 10 day seedlings of Marzhan rice variety

Figure 2 – Influence of heavy metals on the variety Marzhan: cadmium - CdCl2 (left side) and zinc - ZnNO3 (right side)

At a low concentration (5 ml/l) of copper salt solutions, the weight of AiSaule rice biomass was 45.7% of the control, i.e. a 54.3% decrease in the weight of plants compared to the control. With the same concentration of zinc salts, the weight of the plants was 58.8% of the control, i.e. the biomass decrease was 41.1%. At the same concentration of cadmium salts, the weight of biomass was 22.7% of the control, i.e. the weight reduction of plants was 77.3% (table 2, figure 3, 4). 21 News of the National Academy of Sciences of the Republic of Kazakhstan

At an average (10 mg/l) concentration of copper salts, the weight of AiSaule rice biomass was 37.1% of the control, i.e. the weight reduction of plants was 62.0%. At the same concentration of zinc salts, the weight of rice plants was 26.2% of the control, i.e. the decrease in dry biomass was 73.8%. At the same concentration of cadmium salts the weight of rice plants was 18,9%, i.e. the decrease of dry rice biomass in comparison with the control was significant - 81,1% of table 2, figure 3, 4. At higher (25 mg/l) concentration of copper salts, the accumulation of dry rice biomass of AiSaule variety was 10.4% of the control, i.e. the weight reduction of plants was 89.6%. At the same concentration of zinc salts, the accumulation of biomass was 18.2% of the control, i.e. the weight loss of biomass was 81.8%. At the same concentration of cadmium salts, biomass accumulation of rice plants was 14.5% of the control, i.e. the weight reduction of plants was the largest in comparison with the control (without heavy metals) - 85.5% (table 2, figure 3, 4).

Table 2 – Influence of heavy metals on biomass accumulation for 10 day seedlings of AiSaule rice variety

Experimental Average dry biomass, (Сu) Average dry biomass, (Zn) Average dry biomass, (Сd) Options mg % mg % mg % Control 1, 613 100 1,297 100 1,133 100 5 mg/l 0,737 45,7 0,762 58,8 0,257 22,7 10 mg/l 0,598 37,1 0,340 26,2 0,214 18,9 25 mg/l 0,168 10,4 0,236 18,2 0,166 14,5

100

80

60 Control 5mg/l 40 10mg/l 20 25mg/l

0 copper zinc cadmium

Figure 3– Influence of heavy metals on biomass accumulation for 10 day seedlings of AiSaule rice variety

Figure 4 – Influence of heavy metals on AiSaule: copper - CuSO4 (left side) and zinc - ZnNO3 (right side)

As shown in table 3, figure 5, 6, if the control (without heavy metals) of Titan rice biomass is 100%, then at a concentration of 5 mg/l of copper salt solutions the weight of biomass was 48% of the control, i.e., the decrease was 52%. At the same concentration of zinc salt solutions, the dry biomass was 67.2% of 22 ISSN 2224-5308 Series of biological and medical. 4. 2020 the control, i.e. 32.8%. At the same concentration of solutions of cadmium salts the weight of dry biomass was 37% of the control, the reduction of biomass accumulation was much higher - 63%. At an average concentration (10 mg/l) of copper salt solutions, the weight of dry biomass of the grade Titan was 42% of the controls, i.e., biomass accumulation was reduced by 58%. At the same zincconcentration, the dry biomass was 67% of the control, i.e. the weight reduction was 33%. At the same concentration of cadmium salts the dry biomass was 28% of the control, i.e. the reduction was much higher than the option without heavy metals (control) - 72% (figures 5, 6). When applying a higher concentration (25 mg/l) of copper salts, the dry biomass of Titan rice was 37% of the control (without heavy metals), i.e. the decrease was 63%. At the same concentration of zinc salts, the accumulation of plant dry matter was 37.5% of the control, i.e. the decrease was 62.5%. At the same concentration of cadmium salts, the accumulation of dry rice biomass was 27.7% of the control, i.e. the weight reduction of plants was 72.3% (figure 5, 6).

Table 3 – Influence of heavy metals on biomass accumulation for 10 day seedlings of Titan rice variety

Experimental Average dry biomass, (Сu) Average dry biomass, (Zn) Average dry biomass, (Сd) Options mg % mg % mg % Variety Titan Control 1, 543 100 1,493 100 1,576 100 5 mg/l 0,739 48 1,003 67,2 0,583 37 10 mg/l 0,648 42 0,996 67 0,440 28 25 mg/l 0,571 37 0,560 37,5 0,437 28

100 90 80 70 Control 60 50 5mg/l 40 10mg/l 30 25mg/l 20 10 0 copper zinc cadmium

Figure 5 – Influence of heavy metals on biomass accumulation for 10 day seedlings of Titan rice variety

Figure 6 – Influence of heavy metal salts solutions CuSO4 on Titan variety

23 News of the National Academy of Sciences of the Republic of Kazakhstan

With the same concentration of cadmium salts, the accumulation of dry rice biomass was 27.7% of control, i.e., the weight reduction of plants was 72.3% (figures 5, 6). Conclusion. With increasing salt concentrations of heavy metals (copper, zinc, cadmium) the accumulation of rice plant biomass decreases. At the same time, the influence of cadmium salt solutions concentration was stronger compared to the same concentration of copper and zinc salts. The negative influence of solutions of salts of heavy metals on the accumulation of biomass of varieties of rice Marzhan, Titan and AiSaule can be shown in the following sequence: cadmium > copper > zinc. However, Marzhan and AiSaule rice varieties were less resistant than Titan.

К. Н. Жайлыбай1, Г. Ж. Медеуова1, А. Н. Қалиева2

Қазақ ұлттық қыздар педагогикалық университеті, Алматы, Қазақстан; Абай атындағы Қазақ ұлттық педагогикалық университеті, Алматы, Қазақстан

АУЫР МЕТАЛЛ ТҰЗДАРЫНЫҢ КОНЦЕНТРАЦИЯСЫНА БАЙЛАНЫСТЫ КҮРІШ СОРТЫНЫҢ БИОМАССА ЖИЫНТЫҒЫ

Аннотация. Республиканың көп аймағы газ, сұйық және қатты күйдегі өндіріс қалдығы, транспорт шығарындысы, сульфат және ауыр металдармен ластануда. Ауыр металдарды жер қыртысының сіңіруі топырақтың орта реакциясына тәуелді. Сонымен қатар, топырақ ерітіндісінің аниондық құрамының да зор маңызы бар. Қышқыл ортада қорғасын, мырыш, мыс, ал сілтілік ортада кадмий мен кобальт сіңдірілген. Ауыр металдар топырақ құрамында органикалық заттармен күрделі комплекс түзуге қабілетті. Өсімдіктер денесінде ауыр металдың жинақталуы организмде жүретін маңызды физиологиялық-биохимиялық үдеріс- терге айтарлықтай теріс әсер етеді. Сондықтан жоғарыда айтылған күрделі экологиялық мәселелер осы зерт- теу жұмысының мақсаты мен міндеттерін анықтады. Зерттеу жұмысының мақсаты. Күріш дақылының Маржан (стандарт) және АйСауле (жаңадан аудандастырылған) сорттарының құрғақ биомасса жиынтығына кадмий, мыс және мырыш металл тұздары- ның түрлі концентрациясына реакциясын салыстырмалы түрде зерттеу. Зерттеу жұмысының нысаны және әдістемелері. Зерттеу нысаны ретінде күріш дақылының Маржан және АйСауле сорттарының дәні және ауыр металл ретінде мыс (CuSO4), мырыш (ZnNO3) және кадмий (СdСl2) тұздарының түрлі (5 мг/л, 10 мг/л, 25 мг/л) концентрациялы ерітінділері алынды. Тәжірибе 20 вариант бойынша ылғалды ортада жүргізілді. АйСауле сорты: 1 – бақылау варианты, 2 вариант – 5 мг/л CuSO4 тұзы ерітіндісі; 3 вариант – 10 мг/л Cu тұз ерітіндісі; 4 вариант – 25 мг/л Cu тұз ерітіндісі; 5 вариант - 5 мг/л ZnNO3 тұз ерітіндісі; 6 вариант – 10 мг/л Zn тұз ерітіндісі; 7 вариант – 25 мг/л Zn түз ерітіндісі; 8 вариант – 5 мг/л СdСl2 тұз ерітіндісі; 9 вариант – 10 мг/л Сd тұз ерітіндісі; 10 вариант – 25 мг/л Сd тұз ерітіндісі; Маржан сорты: 11 вариант – бақылау; 12 вариант – 5 мг/л CuSO4 тұз ерітіндісі; 13 вариант – 10 мг/л Cu тұз ерітіндісі; 14 вариант – 25 мг/л Cu тұз ерітіндісі; 15 вариант – 5 мг/л ZnNO3 тұз ерітіндісі; 16 вариант – 10 мг/л Zn тұз ерітіндісі; 17 вариант – 25 мг/л Zn тұз ерітіндісі; 18 вариант – 5 мг/л СdСl2 тұз ерітіндісі; 19 вариант – 10 мг/л Сd тұз ерітіндісі; 20 вариант – 25 мг/л СdСl2 (Маржан сорты) тұз ерітіндісіне есептелген. Әр вариант 3 қайталау арқылы жүргізілді. Зерттеуге алынған өсімдік дәнін өндіруге қоймас бұрын, толық қалыптасқан дәнді іріктеп алып, 3-4 қайтара қара сабынмен жуып, 16% сутегі тотық ерітіндісінде 5-10 минут өндеп, одан кейін бірнеше қайтара дистильденген сумен жуылып, залалсыздандырылды. Тұқымдар өндіруге ауыр металсыз бақылау варианты және 18 вариант ауыр металл тұз ерітінділерінің әртүрлі концентрациялары бойынша қойылды. Зерттеу нәтижесі. Мақалада Маржан, АйСауле, Титан күріш сорттарының биомасса жиынтығына мыс- Сu, мырыш- Zn, кадмий- Cd ауыр металл тұзының әсері зерттеліп, талқыланған. Ауыр металл тұзының концентрациясы артқан жағдайда күріш сорттарының әдепкідегі биомассасының жиынтығы тежеледі (азаяды). Аталған күріш сорттарының биомасса жиынтығына мыс, мырыш тұз ерітінділеріне қарағанда кадмий тұзының әсері күштірек болды. Ауыр металдар тұздарының күріш дақылының құрғақ биомасса жиынтығына әсері келесі ретпен жүзеге асады: кадмий > мыс > мырыш. Төмен концентрацияда (5 мг/л) Маржан сортының биомасса жиынтығы күштірек болғанымен, орташа (10 мг/л) және жоғары (25 мг/л) концентрацияда жаңадан аудандастырылған АйСауле және Титан (ресей селекциясы) сорттарына қарағанда өсу үдерісі көбірек тежелді. Алынған ғылыми нәтижелер болашақ жоғары өнімді әрі экологиялық факторлардың (мысалы, ауыр металл тұз ерітіндісіне) төзімді (толерантты) сорттардың морфофизиология- лық моделін дайындағанда пайдалануға болады. Түйін сөздер: күріш, сорттар, ауыр металдар: мыс, мырыш, кадмий тұздарының күріш сорттары биомассасының жиынтығына әсері. 24 ISSN 2224-5308 Series of biological and medical. 4. 2020

К. Н. Жайлыбай1, G. Z. Medeuova1, A. N. Kaliyeva2

1Казахский Государственный женский педагогический университет, Алматы, Казахстан; 2Казахский Национальный женский педагогический университет им. Абая, Алматы, Казахстан

НАКОПЛЕНИЕ БИОМАССЫ СОРТОВ РИСА В ЗАВИСИМОСТИ ОТ КОНЦЕНТРАЦИИ РАСТВОРОВ СОЛЕЙ ТЯЖЕЛЫХ МЕТАЛЛОВ

Аннотация. Большинство территории Казахстана загрязнены газообразными, жидкими и твердыми остатками промышленности, выделениями транспортов, а также сульфатами и тяжелыми металлами. На накопление тяжелых металлов существенное влияние оказывает реакция рН раствора почвы, а также анионный состав почвенного раствора.Так, в кислой среде интенсивно поглощаются свинец, цинк, мед, а в щелочной среде – кадмий и кобальт. Тяжелые металлы с органическими веществами почвы образует сложные комплексные соединения. Поэтому выше изложенные сложные экологические проблемы определил цель и задачи исследования. Материалы и методика исследования. Объектом исследования являются сорта риса Маржан (стандарт), АйСауле (вновь районированный сорт казахстанской селекции), Титан (сорт российской селекции), В качестве тяжелых металлов использовано различные концентрации растворов солей меди (CuSO4), цинка (ZnNO3), кадмия (CdCl2) - (5 мг/л, 10 мг/л, 25 мг/л). Опыт проведен по 30 вариантам по сортам. Схема опыта: Для сорта риса Маржан: 1 – контроль (без внесения растворов солей тяжелых металлов); 2 вариант – 5 мг/л раствора соли меди; 3 вариант – 10 мг/л раствора соли меди; 4 вариант – 25 мг/л раствора соли меди; 5 вариант – 5 мг/л раствора соли цинка; 6 вариант – 10 мг/л раствора соли цинка; 7 вариант – 25 мг/л раствора соли цинка; 8 вариант – 5 мг/л раствора соли кадмия; 9 вариант – 10 мг/л раствора соли кадмия; 10 вариант – 25 мг/л раствора соли кадмия. Для сорта АйСауле: 11 – контроль (без внесения растворов солей тяжелых металлов); 12 – вариант – 5 мг/л раствора соли меди; 13 вариант – 10 мг/л раствора соли меди; 14 вариант – 25 мг/л раствора соли меди; 15 вариант – 5 мг/л раствора соли цинка; 16 вариант – 10 мг/л раствора соли цинка; 17 вариант – 25 мг/л раствора цинка; 18 вариант – 5 мг/л раствора соли кадмия; 19 вариант – 10 мг/л раствора соли кадмия; 20 вариант – 25 мг/л раствора соли кадмия; Для сорта Титан: 21 вариант – контроль (без внесения растворов солей тяжелых металлов; 22 вариант – 5 мг/л раствора соли меди; 23 вариант – 10 мг/л раствора соли меди; 24 вариант – 25 мг/л раствора соли меди; 25 вариант – 5 мг/л раствора соли цинка; 26 вариант – 10 мг/л раствора соли цинка; 27 вариант – 25 мг/л раствора соли цинка; 28 вариант – 5 мг/л раствора соли кадмия; 29 вариант – 10 мг/л раствора соли кадмия; 30 вариант – 25 мг/л раствора соли кадмия. Повторность опыта трехкратная. Полноценные семена названных сортов риса и с целью обевреживания их помыли 3-4 раза хозяйствен- ным мылом, затем несколько раз обработали 16%-ным раствором перекиси водорода и несколько раз промы- ли дистиллированной водой. Семена выращивали согласно вышеуказаным вариантам. Результаты исследования. Накопление тяжелых металлов в растений оказывают существенное негативное влияние на прохождение физиолого-биохимических процессов в организме. В связи с этим, в статье рассмотрены особенности и влияние растворов солей тяжелых металлов (меди-Сu, цинка-Zn, кадмия- Cd) различной концентрации на накопления биомассы сортов риса Маржан (стандарт), АйСауле (вновь районированный) и Титан (российской селекции). При увеличении концентрации солей тяжелых металлов интенсивность накопления биомассы сортов риса в начале вегетации значительно снижаются. На накопления биомассы сортов риса влияние растворов солей кадмия значительно больше по сравнению с медью и цинком. Влияние тяжелых металлов на накопление биомассы сортов риса осуществляются в следующем порядке: кадмий > медь > цинк. При низких концентрациях (5 мг/л) растворов солей меди и цинка сорт риса Маржан более устойчив, однако при более высоких концентрациях (10 и 25 мг/л) названный сорт оказался менее устойчивым по сравнению с вновь районированным сортом АйСауле и сортом российской селекции Титан. Результаты исследования будут использованы при создании морфофизиологической модели высокоурожайных и устойчивых негативным экологическим факторам (например, влиянию тяжелых металлов). Ключевые слова: рис, сорта, тяжелые металлы: медь, цинк, кадмий, влияние растворов солей тяжелых металлов на накопление биомассы сортов риса.

25 News of the National Academy of Sciences of the Republic of Kazakhstan

Information about authors: Zhailybay Kelis Nurmashuly, Doctor of Biological Sciences, Professor, Academician of the Russian Academy of Natural Sciences, Professor of the Department of Biology, Kazakh State Women Teacher Training University, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0003-0362-8293 Medeuova Galiya Zhumakanovna, candidate of agricultural sciences, acting Professor of the Department of Biology, Kazakh State Women Teacher Training University, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0003-3750-4758 Kaliyeva Anar Nurgaiypovna, PhD, acting Associated professor, Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan; [email protected]оm; https://orcid.org/0000-0003-2429-2610

REFERENCES

[1] Amerkhanova Sh.K., Zhurinov M.Zh., Shlyapov R.M., Uali A.S., Imankulova F.E. Physical and chemical properties of interpolymeric complex polyvinyl alconol-polyacrylamide and application in waste water treatment systems // News of NAS RK. Series chemistry and technology (http://chevistry-technology.kz/index.php/en/arhiv). Vol. 1, N 421. 2017. P. 115-122. https://doi.org/10.32014/2018.2518-1491.00; ISSN 2518-1491 (Online), ISSN 2224-5286 (Print). [2] Nagajyoti P., Lee K., Sreekanth T. Heavy metals, occurrence and toxicity for plants: A review // Environ. Chem. Lett. 2010. Vol. 8, P. 199-216. [3] Tulemiusova G.G., Abdinov R.Sh., Batyrbaeva G.U., Kabdrakhimova G.Zh., Mustafina A.Zh. Current conditions of hydrochemical regime in rivers of Ural-Caspian Basin //News of NAS RK. Series chemistry and technology. (http://chevistry- technology.kz/index.php/en/arhiv). Vol.1, N 421. 2017. P. 96-100. https://doi.org/10.32014/2018.2518-1491.00; ISSN 2518-1491 (Online), ISSN 2224-5286 (Print). [4] Kokin A.V., Shumakova G.E. Environmental influence on the heavy metals mobility in plants under the forest- reclamation systems (in Russian) // Russian agricultural science, 2016. N 5. P. 74-77. [5] Putylina V.S., Galitskaya I.V., Yuganova T.I. Sorption Processes in Contamination of Groundwater with Heavy Metals and Radioactive Elements. Uranium = Sorption when groundwater contaminating by heavy metals and radioactive elements. Uranum: Analytical review // Federal State Budgetary Institution of Science State Public Scientific and Technical Library of Siberian Branch of Russian Academy of Sciences (RAS). 2014. 127 p. [6] Sukiasyan A.R., Tadevosyan A.V., Pirumyan G.P. Migration of a number of heavy metals in the soil - plant on the processes of water absorption in the plant // Natural and technical sciences. 2016, N 3. P. 32-34. [7] Takisheva G.A., Tazhimbetova G.A. Ways of transferring heavy metals to the environment // KazNU Bulletin. Biology series. 2011, N 2. P. 355-337. [8] Morrow H. Cadmium and cadmium alloys. Kirk-Othmer. Encyclopedia of chemical tech-nology. 2010. John Wiley & Sons. P. 1-36. [9] Frid A.S., Shuravilin A.V., Gota Botkhina Saad M.A., Borisochkina T.I. Migration of copper, zinc, cadmium in the Egyptian arid soils irrigated by the natural and urban waste water // Agrochemistry. 2014, N 11. 62 p. [10] He Z.L.L., Yang X.E., Stoffekkt P.J. Trace ekements in agroecjsystems and im pacts og the environment // J. Trace Ekem. Med. Biol. 2005. Vol. 19. P. 125-140. [11] Anjum N.A., Ahmad I., Mohmood I. et al. Modulation of glutathione and its related enzymes in plants responses to toxic metal and metalloids – A rewiew // Environ. Exp. Bot. 2012. Vol. 75. P. 307-324. [12] Infan M., Hasan S.A., Hayat S., Ahmad A. Photosynthetic variation and yield attributes of two mustard varieties against cadmium phitotoxicity // Cogent Food & Agriculture. 2015. Vol. 1. 1106186. http://dx.doi.org/10.1080/23311932. 2015. 1106186 [13] Rajkumar M., Sandhyaa S., Prasad M.N., Freitas H. Perspectives of plant associated microbes in heary metal phito remediation // Biotechnology Advances. 2012. Vol. 30. P. 1562-1574. [14] Ann C., Karen S., Jos R. et al. The cellular redox state as a modulator in cadmium and copper responsis in Frabidopsis thaliana seedlings // J. Plant Phisiol. 2011. Vol. 168. P. 309-316. [15] Amirjani M.R. Effects of cadmium on wheat growth and some physiological factors // Int. J. Forest Soil Erosoin. 2012. Vol. 2, N 1. Р. 50-58.

26 ISSN 2224-5308 Series of biological and medical. 4. 2020

Genetics

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 27 – 37 https://doi.org/10.32014/2020.2519-1629.29

UDC: 57.085.23 MRNTI: 34.23.19; 34.31.33

A. K. Daurova, D. V. Volkov, D. L. Daurov, K. K. Zhapar, M. Kh. Shamekova, K. Zh. Zhambakin

Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]

MUTAGEN EMS TREATMENT OF MICROSPORE-DERIVED EMBRYOS FOR RAPESEED BREEDING (BRASSICA NAPUS)

Abstract. Rapeseed embryos obtained from a culture of isolated microspores were treated with various concentrations of ethyl methanesulfonate (EMS) for one hour. As a result, doubled haploid mutants (DHm) of rapeseed were obtained with desirable quantitative traits including improved yield, seed color and fatty acid composition of seed oil in comparison to donor rapeseed cultivars. Analysis of the fatty acid composition of the seeds of obtained DHm M2 showed a significant increase in the percentage of oleic acid in cultivars of to 75.4%, compared with donor cultivars (66.0%). The resulting DHm plants of rapeseed differed from the donor cultivars with high indicators for the weight per plant and the weight of 1000 seeds. At the same time, according to the results of qualitative and quantitative analyses, the best indicators were when processing with mutagen in concentrations of 12 mM EMS. Key words: Rapeseed, Brassica napus, Microspores, EMS, ISSR.

Introduction. Rapeseed is a valuable source of both edible and industrial oil, and can be used as a feed protein. Rapeseed (Brassica napus olifera Metzg.) cultivation in Kazakhstan is commercially viable. The breeding process that has aimed to produce new cultivars of rapeseed in Kazakhstan is predominantly performed using traditional methods, however, they are difficult and require a considerable amount of time. Therefore current methods used do not meet modern requirements for the improvement of crop species for commercial purposes. One of the ways in which traditional methods can be improved is through a combination of mutagenesis and haploid biotechnology in the rapeseed breeding process. The treatment of Brassica seeds with mutagens can cause promote the manifestation of traits such as resistance to seed shedding [1], changes in the qualitative composition of oil [2,3] changes in flowering time [4], change in seed coat color from black to yellow [5]. Additionally, haploid biotechnology is widely used in plant breeding practices, primarily for the creation of homozygous lines in one generation. This is especially important in cross-pollinated crops in which self-pollination is difficult or impossible [6]. Mutagenesis in vitro has several advantages over traditional breeding methods. For example, processing allows researchers to obtain microspores of homozygous lines with valuable traits, enhance

27 News of the National Academy of Sciences of the Republic of Kazakhstan fatty acid composition and obtain lines that without erucic acid [7]. The advantages of the mutagenesis of haploid cells include: (1) an enhanced ability to avoid chimerism; (2) rapid detection of mutants; (3) the identification of recessive mutants is possible in the first generation; and (4) the timeframe required for producing homozygous mutants is shortened. In addition, use of an increased number of microspores increases the probability of identifying mutants with the more efficient traits. In particular, breeding is already possible at the in vitro cultivation stage [8,9]. The effectiveness of mutagenesis using a culture of isolated microspores has previously been demonstrated in several reports [9,10]. Previously, we conducted research that aimed to optimize the cultivation conditions of isolated rapeseed microspores [11]. The study facilitated our continued research on the use of isolated microspore cultures to obtain mutants. EMS is widely used as a mutagen of the Brassica family. However, a cultivar of concentrations and processing times have been previously applied. For example, Ferrie et al. (2008) [12] used 2 mM, 4 mM, 8 mM, 10 mM, 12 mM EMS concentrations and the duration of treatment was 1.5 h. Further, He et al. (2004) [13] used 0.05 mM, 0.1 mM and 0.2 mM EMS concentrations for 20 min to produce mutants, and 1 mM, 1.5 mM, 2 mM, 2.5 mM and 3 mM EMS concentrations for durations of 12, 24, and 36 h. Researchers have used a large range of EMS concentrations, and in general, the higher the concentration used, the shorter the duration of treatment should be. An analysis of literature reveals that obtaining true mutants is possible while using a wide range of exposures to EMS. For our experiments, were treated materials with 4 mM, 8 mM and 12 mM EMS concentrations for one hour. We chose these concentrations and this specific duration of treatment because they are not overly stringent and, in our opinion, should produce mildly mutagenic effects. Microspore-derived embryos were selected as an explant for treatment with EMS in this experiment. The best, most informative evidence of the occurrence of mutation is demonstrated by assessing changes that occur at the DNA level [14]. Molecular marker analysis is used to study genetic polymorphism and provides results that are more accurate than other methods [15]. Each molecular marker has advantages and disadvantages. The sensitivity of the detection of mutant plants varies depending upon which marker is used. For example, with narcissus mutagenesis, researchers determined that the mutation rates were 8.33% using RAPD (Random Amplified Polymorphic DNA) markers and 15.48% using AFLP (Amplified Fragment Length Polymorphism) markers [16]. In other studies, 330 mutant lily lines were tested simultaneously using ISSR (Inter Simple Sequence Repeat) and RAPD markers. Using ISSR markers, 119 mutant lines were identified at the DNA level. The hereditary variability of various isolated lily mutants, assessed according to their morphological characteristics, reached 36.06% using seven ISSR primers [18]. ISSR markers scan 100 to 1000 bp portions of DNA, and can be used to identify interspecific and intraspecific genetic variation, species, populations, lines. In some cases, ISSR markers can be used to identify individual genotypes, as well as for screening for mutations and detecting known alleles [14]. Tomlekova et al. (2006) [18] reported the successful use of the ISSR method to detect DNA variability in the M1 generation after chemical treatment of cauliflower seeds, Brassica oleraceae L, var. Capitata, with 0.5, 0.6 and 0.7% EMS. Various samples of mutant plants obtained from the species studied were established using randomly selected primer sequences of tandem repeats to identify mutant plant DNA. As a result of a preliminary screening conducted in the M1 stage, modified plants were selected, and seeds were collected and used to produce plants of the M2 generation. The aim of this work is to create homozygous mutant B. napus lines to enhance characters that are useful for breeding. Materials and Methods. Materials. The research materials were rapeseed cultivars (B. napus) ‘Kris’ and ‘Galant’, which were breeds of the Federal V. S. Pustovoit All-Russian Research Institute of Oil Crops (Russia). Methods. Microspore culture. Buds were collected early in the morning hours characterized by intensive pollen division at the single-core microspore stage. The buds were 2–3 mm in size. Buds were pretreated with 10 mg/L silver nitrate solution for 2 d at 4°C temperature. Next, they were sterilized in 50% sodium hypochlorite for 7–10 min, 70% alcohol for 3–5 s, followed by washing three times with distilled water. Then, buds were placed in a cool vortex (10°C) with 30–40 mL of cooled B5 medium [19] without hormones (10–12°C), and homogenized for 7–9 s at high speed. The resulting suspension was filtered using an 80-μm filter. The filtrate was centrifuged at 100 × g (Eppendorf, Germany) for 5 min and 28 ISSN 2224-5308 Series of biological and medical. 4. 2020 the supernatant was removed. The precipitate was re-suspended in 15 mL B5 medium and centrifuged 5 min. The supernatant was discarded and the precipitate was re-suspended in NLN medium with 0.05 mg/L BA (PhytoTechnology Laboratories, US), before being poured into Petri dishes to cultivate microspores. Microspore density in the NLN medium was adjusted to a 35.000 and 50.000 microspores per mL range. The Petri dishes were placed in a thermostat (TSO-1/80-SPU, Russian) with a shaker at 25°C. When torpedo-shaped embryos were formed, Petri dishes were placed under a light at the same temperature [20]. Treatment of somatic embryos with mutagens. When they reached a size of 1.5–2.5 mm, embryos were treated with EMS (Sigma Aldrich, US). Three different concentrations of EMS were added to petri dishes: 4 mM, 8 mM, and 12 mM. The dishes were then placed on a shaker (40–50 rpm) in a thermostat at 25°C for 1 h. After treatment, embryos were dried on sterile paper sheets for 5 s. Dry embryos were transplanted onto solid B5 medium with 0.8% agar and 2% sucrose and incubated for 24 h in a thermostat at 10°C. After incubation, tubes containing embryos were placed under light at 25°C. After two weeks of cultivation, the embryos were transplanted onto fresh B5 medium for regeneration. After in vitro plantlets were obtained, they were cut into three equal pieces and cloned. Two of the three pieces were cloned on B5 medium and one was frozen and stored. Therefore, 1/3 of the plantlets were left for cloning, and 2/3 were transplanted into the soil. Before transplanting into the soil, a ploidy test was performed using the CyFlowPloidyAnalyzer. All haploid plants were treated with 0.05% colchicine solution to double the chromosomal set [21]. Evaluation of agronomic traits in the obtained mutant doubled haploids. To analysis the offspring of the obtained mutants, plants of ‘Kris’ (4 mM, 8 mM and 12 mM EMS) and ‘Galant’ (4 mM, 8 mM and 12 mM EMS) cultivars were grown in an experimental field. For this purpose, 100 seeds from each fertile mutant (M1) were selected for sowing. As a result, 50-60 plants for each mutant (M2) were grown. 30 plants from each mutant were selected to analysis agronomic parameters, weight of 1000 seeds (g), seed weight per plant (g). The determination of fatty acid composition. The fatty acid composition of rapeseed was determined using gas chromatography (GC) [22]. Sample preparation for GC was performed as follows: 0.5 mL oil was extracted from the seeds using a press, 8 μL of the oil was pipetted into a test tube, and 2 mL hexane (Honeywell, Germany) was added to the oil. Afterward, 0.1 mL 5% sodium methylate (Sigma Aldrich, US) was added and the tube was in incubated for 0.5 h with periodic shaking (3 times every 10 min). After incubation, 1 mL distilled water was added, and the tube was shaken and incubated until complete sedimentation was achieved. Then, 1 mL of the upper hexane layer was transferred into a penicillin vial and placed under a fan at room temperature until hexane had completely evaporated. Afterward, 600 μL of chemically pure hexane was added to the penicillin bottle. The GC procedure was performed on Cristal 2000 M, Khromatek, Russia. Molecular methods. DNA was isolated from plants using the standard CTAB (cetyl trimethylammonium bromide) method. Leaf tissue (100 mg) as placed in 700 µl of CTAB extraction buffer (100 mM Tris (pH 8.0), 5 M NaCl, 20 mM EDTA (pH 8.0), 0.2%), (p/v) β-mercaptoethanol and 2% (p/v) CTAB), and heated at 60°С for 30 min. The DNA was extracted with one volume of chloroform:isoamyl alcohol (24:1), and precipitated in the presence of isopropanol. The DNA precipitate was washed with 70% ethanol, dried, and dissolved in 30 µl TE (10 mM Tris-HCl (рН 8.0), 1 мМ EDTA, рН 8.0). After adding 1 µl of RNAse (10 mg/mL), DNA concentration were determined using a NanoDrop spectrophotometer. PCR analysis. DNA amplification was performed using ISSR primers [14] (table 1). For ISSR analysis, the polymerase chain reaction (PCR) was carried out using a reaction volume of 25 µl, which contained 2 μl 10 × Tag buffer, 2 uL of a mixture of 4 dNTPs (2 mM), 2 μL ISSR marker (10 pM), 0.2 μl, Tag DNA polymerase (5U/μL), and 1.0 μL DNA (100 ng/μl). The following thermocycling program was used to perform the randomly amplified DNA polymorphism protocol (ISSR-analysis): pre-denaturation at 94°С for 10 min; followed by 35 cycles that included a 30 s denaturation at 94°C, a 30 s primer annealing step at 48°C and a 1-min elongation step at 72°C.

29 News of the National Academy of Sciences of the Republic of Kazakhstan

Table 1 – Names, nucleotide sequences, and annealing temperature of 6 ISSR-primers

Primers Sequence (5’- 3’) Annealing temperature (°C) BV-11 CTC TCT CTC TCT CTC TAT 45.4 BV-17 CAC ACA CAC ACA GT 44.7 BV-41 GAG GAG GAG GC 41.0 BV-53 GAG AGA GAG AGA GAG AA 45.7 BV-47 GTG GTG GTG GC 44.0 BV-50 AGA GAG AGA GAG AGA T 47.0 Abbreviation: ISSR, Inter Simple Sequence Repeat.

Electrophoresis of random-primer amplified products was carried out in agarose (2.5% agarose, TAE-buffer, 5 µl of ethidium bromide), and PAAG gel (8%) using a vertical, and horizontal electrophoresis chamber. Each amplified DNA fragment on the gel was considered an individual descriptor with a specific molecular weight, which was determined using a 100 bp + 1.5 Kb DNA Ladder (Fermentas)molecular weight marker. After electrophoresis, the gel was analyzed in UV-light. DNA bands traveling at the same rate of movement were equal in size. The bands were scored using a binary in which bands that appeared to be the size of the target were given a score of 1, while the invisible band was given a score of 0. Data were then analyzed with UPGMA (Unweight-Pair Group Method with Arithmetic Means) software based on the Jaccard genetic similarity index within PAST (Paleotological Statistics Software Package for Education and Data Analysis). Statistical analysis. Significant results were tested using Analysis of Variance (ANOVA) by applying the Duncan’s LSD and Tukey HSD test with the program SPSS 22 (IBM). Means with different letters are regarded as statistically significant at p < 0.05. Results and Discussion. The rapeseed embryos obtained via the culture of isolated microspore cultivars, Kris and Galant, were used to obtain mutant lines. Embryos were formed from individual

Figure 1 – Obtained doubled haploid rapeseed mutant of rapeseed in cultures of isolated microspores. (A) Microspores that had been cultivated for one week. (B) heart-shaped embryos are shown. (C) Microspore-derived embryos for EMS are shown and a (D) EMS-treated embryo (1 week after treatment) on agar medium. (E , F) Regenerated plantlets from embryos treated with the EMS are shown. (G) Cloned plantlets and (H) mutant plants in the soil after colchicine treatment and (I) doubled haploid mutant (fertile) plants are shown. 30 ISSN 2224-5308 Series of biological and medical. 4. 2020 microspores, through several stages of development (figure 1 A, B). Mature embryos with visible bipolar structures were treated (figure 1C). We assumed that the EMS concentrations used in the experiment, 4mM, 8 mM, 12 mM, after 1 h of treatment did not produce serious lethal mutations, and instead produced only a few changes in the rape genome. Our results showed that rates of embryo survival in rapeseed when treated with EMS were good, even at the 8 mM concentration (figure 2). Regeneration took place at a fairly high frequency. Some stimulation of the regeneration process occurred as a result of the low concentrations of mutagen. Also, negative effects of increased mutagen concentrations (12 mM) on plant regeneration should be noted. During regeneration, some plants displayed leaf changes due to albinism (figure 1D, E, F). However, as shown (figure 2A), the majority of the plants grew without disturbance. Resulting mutant haploid plantlets were transplanted onto hormone-free MS medium with a half set of macro and micro salts (figure 1G). The cloning of plantlets was carried out using the same medium, and the reproduction rate was 1:3. Next, 1/3 of the plantlets were left for cloning, and 2/3 of were transplanted to soil (figure 1H, I). Before transplanting to the soil, a ploidy test was performed. All haploid plants were treated with a 0.05% colchicine solution to double the chromosome set (figure 2B).

Figure 2 – Plant regeneration from microspore-derived rapeseed embryos (Brassica napus) treated with EMS. (A) Number of haploid plants from embryos. (B) Number of fertile plants. Data are means ± SD bars of three experiments (n = 40 embryos; n =30 plantlets per experiment), measured in triplicate. The same letter indicates no significant difference and the different letters indicate a significant difference (Duncan’s LSD test, p < 0.05)

Seeds from mutant plants of B.napus cultivars (M1) were sown in an experimental field. During flowering, each plant was covered with an insulator. As a result, M2 seeds were obtained by growing mutant doubled haploids of rapeseed (table 2).

Table 2 – Seed mass of mutant doubled haploids (M2) obtained during treatment of embryos with the EMS mutagen at a concentration of 12 mM

Genotype Seed yield per plant (g) Weight of 1000 seeds (g) Galant (control) 5.2 ± 1.4 3.1 ± 0.1 DH2G12 6.5 ± 2.3 3.5 ± 0.2 Kris (control) 5.9 ± 1.5 3.0 ± 0.4 DH2K12 6.8 ± 1.9 3.6 ± 0.1 Values tabulated are mean ± SD at three replications.

To further verify and identify promising lines, an analysis was carried out using molecular ISSR markers of M2-generation rapeseed. ISSR markers have previously been used to screen for genetic diversity [23]. To assess the level of genetic diversity in rapeseed mutant and parental forms, we selected 6 ISSR primers. The electrophoregram (figure 3) using BV11, BV17, BV53, BV47 primers revealed visible differences between mutant plants and starting material. Mutant plants possessed 550 bp, 250 bp, fragments that were absent in the original plants. As well as mutant lines DH2G12-6, DH2K12-3 and DH2K12-4 were distinguished by the absence of loci/bends, which showed that mutation and genetic changes occurred.

31 News of the National Academy of Sciences of the Republic of Kazakhstan

Figure 3 – The ISSR profiles of the 12 mutant Galant lines using BV11 (A), BV53 (B) (K) Control (Galant); (1) DH2G12-1; (2) DH2G12-2; (3) DH2G12-3; (4) DH2G12-4; (5) DH2G12-5; (6) DH2G12-6; (7) DH2G12-7; (8) DH2G12-8; (9) DH2G12-9; (10) DH2G12-10; (11) DH2G12-11; (12) DH2G12-12 and 4 mutant Kris lines using BV11, BV17 and BV53 primers (C) (K) control (Kris); (1) DH2K12-1-1; (2) DH2K12-2; (3) DH2K12-3; (4) DH2K12-4 are shown. Lane numbers indicate the following: (М) (100–3000 b.p. ladder)

The presence of individual loci or the absence of one of the genotypes indicates that genetic changes in plants had occurred as a result of in vitro mutagenesis [24]. Changes observed during molecular analyses were caused by point mutations, displacement, a nucleotides that was removed from the sequence [25]. This molecular analysis performed can be used to facilitate the breeding of mutant lines of rapeseed cultivars. In the future, we analyzed only those mutant lines that had the prospect of practically useful for breeding. As a result, we determined that the best mutants were plants that were obtained via exposure to EMS at a concentration of 12 mM. According to quantitative characteristics of the data, mutant plants were relatively higher indicators of the mass of plants compared with the control and the mass of 1,000 seeds was determined (table 2). In addition, mutant seeds of two plants of the Galant cultivar (DH2G12-5, DH2G12-6) had seeds that were different in color – from light brown to black (figure 4), while the donor cultivar Galant had black seeds. Changing the color of the seed coat from black to yellow is an important positive trait for cultivars of rapeseed (canola).

Figure 4 – Mutant seeds (EMS 12 mM) of the Galant cultivar are shown as follows: (A) control; (B) mutant seeds DH2G12-5; (C) mutant seeds DH2G12-6

A key indicator of the value of rapeseed breeding was determined principally by assessing the fatty acid composition of seed oil [26]. Another indicator of the nutritional composition of rapeseed was the absence of erucic acid. In our experiments, erucic acid was not found in either donor or mutant lines. An important indicator of the quality of edible oil is the ratio of saturated to unsaturated fatty acids. In this regard, the best genotypes are considered to be ones in which the sum of palmitic and stearic saturated fatty acids is smallest [12]. In addition, rapeseed genotypes, which have high oleic acid and low linolenic acid content are ideal. Analysis of the fatty acid composition of the seeds of individual M2 mutants was carried out only in individual plants tested for the presence of mutations using molecular markers. Table 3 presents data that revealed that the fatty acid compositions of doubled haploids were different from controls. 32 ISSN 2224-5308 Series of biological and medical. 4. 2020

Table 3 – Indicators of the percentage ratio of the fatty acid composition of seeds in mutant M2 doubled haploids of rapeseed, obtained when processing androgen embryos treated with 12 mM EMS

Fatty acid Name of doubled P S O L Ln Er haploid line (С16:0) (С18:0) (С18:1) (С18:2) (С18:3) (С22:1) % % % % % %

Galant (control) 3.6 ± 0.1a 2.0 ± 1a 66.0 ± 2d 18.0 ± 2a 7.4 ± 0.2a < 0.05 DH2G12-1 3.6 ± 0.3a 2.5 ± 0.2a 72.5 ± 1.5abc 13.8 ± 0.2cdef 4.5 ± 0.3b < 0.05 DH2G12-2 3.3 ± 0.1a 2.4 ± 0.2a 75.4 ±0.9 a 12.2 ± 2.1f 3.0 ± 0d < 0.05 DH2G12-3 3.8 ± 0.4a 2.9 ± 0.2a 74.3 ± 1.1ab 12.3 ± 0.3f 3.4 ± 0.2cd < 0.05 DH2G12-4 3.2 ± 0.2a 2.6 ± 0.2a 71.3 ± 0.2c 15.5 ± 0.6bc 4.4 ± 0.4b < 0.05 DH2G12-5 3.6 ± 0.5a 2.9 ± 0.3a 70.3 ± 1.5c 16.6 ± 0.4ab 3.5 ± 0.2cd < 0.05 DH2G12-6 3.6 ± 0.4a 2.9 ± 0.2a 70.2 ± 0.8c 18.1 ± 0.4a 1.6 ± 0.4e < 0.05 DH2G12-7 3.9 ± 0.2a 2.3 ± 0.3a 71.7 ± 0.9bc 14.7 ± 0.4bcd 4.1 ± 0.2bc < 0.05 DH2G12-8 3.8 ± 5.4a 2.4 ± 0.3a 72.9 ± 0.4abc 13.4 ± 0.7def 4.1 ± 0.2bc < 0.05 DH2G12-9 3.8 ± 0.4a 2.6 ± 0.3a 74.3 ± 0.5ab 12.2 ± 0.3f 3.5 ± 0.2cd < 0.05 DH2G12-10 3.6 ± 0.4a 2.1 ± 0.3a 70.7 ± 0.3c 12.7 ± 0.3ef 3.1 ± 0.2d < 0.05 DH2G12-11 3.1 ± 0.1a 2.7 ± 0.1a 72.0 ± 0.2bc 14.4 ± 0.2cde 3.6 ± 0.2cd < 0.05 DH2G12-12 3.5 ± 0.3a 2.6 ± 0.3a 73.1 ± 0.4abc 15.2 ± 0.1bcd 3.5 ± 0.3cd < 0.05 Kris (control) 3.7 ± 0.3ab 2.0 ± 0.2b 67.6 ± 0.1c 17.3 ± 0.4a 5.9 ± 0.1a < 0.05 DH2K12-1 4.1 ± 0.2a 2.8 ± 0.2a 72.8 ± 0.3b 12.3 ± 0.4c 4.0 ± 0.2b < 0.05 DH2K12-2 3.7 ± 0.3ab 2.3 ± 0.2ab 73.5 ± 0.9ab 12.3 ± 0.3c 4.0 ± 0b < 0.05 DH2K12-3 3.3 ± 0.2b 2.2 ± 0.2b 73.1 ± 0.4ab 13.3 ± 0.2b 3.3 ± 0.2c < 0.05 DH2K12-4 3.5 ± 0.4ab 2.4 ± 0.2ab 74.1 ± 0.2a 12.3 ± 0.2c 3.1 ± 0.2c < 0.05

Values tabulated are mean ± SD at three replications. Means followed by same letters in the column are not different from one another by Tukey test at the 5% probability level. Abbreviation: P, palmitic acid; S, stearic acid; O, oleic acid; L, linoleic acid; Ln, lenolenic acid; Er, erucic acid.

Chromatographic analysis showed that the oleic acid content within seed oil of mutant plants of the Galant cultivar was 9.4% higher (from 70.2 % to 75.4%) compared to the control (66.0%). Also, the sum of unsaturated fatty acids was superior in mutant plants of the Galant cultivar to the oil from the seeds of mutant plants of the Kris cultivar. Mutant plants of Kris cultivar (DH2K12-4) had 6.5% (74.1) increased oleic acid content. It should be noted that the mutant plants, DH2G12-5, DH2G12-6, isolated by the lighter color of the seeds, and had a good fatty acid compositions (table 3). A cluster analysis of obtained data was used to determine genetic distances between eight mutant rapeseed plants (lines) and plants of the control cultivars (Galant (G control)) and Kris (K control)) and a dendrogram was constructed (figure 5). Genetic distances between the studied lines ranged from 0.3 to 1.0. The most genetically similar mutants were DH2G12-2 (isolated by its fatty acid composition in which oleic acid content was 75.4%) and DH2G12-3 (selected as a result of its fatty acid composition, in which oleic acid content was 74.3%). The greatest degree of genetic difference was between DH2G12-1 (isolated by quantitative characteristics) and Galant (control) plants, which demonstrated a high degree of genetic difference and the presence of mutations.

33 News of the National Academy of Sciences of the Republic of Kazakhstan

Figure 5 – Phylogenetic tree of mutant rapeseed lines

The creation of clusters of initial plants and their mutants reveal genetic features, and studying the location of genes in different clusters in the dendrogram. Mutant plants DH2G12-1 (isolated by quantitative characteristics and fatty acid composition), DH2G12-2, DH2G12-3, DH2G12-4, DH2G12-5 (identified by seed color ) and DH2K12-4 (identified by its quantitative characteristics and fatty acid composition) demonstrate a high degree of genetic difference from their parent plants, since they are located much further from the control. In our experiment, we used embryos obtained from microspore cultures to perform EMS. The use of chemical mutagenesis directly within cultures of isolated microspores can reduce embryogenesis, and create difficulties throughout the mass production of plants from embryos. Secondary embryos induced from calli have been previously used to solve such difficulties [27] either calli were induced from embryos. Work of Liu et al. (2005) [28] produced doubled haploid mutant rapeseed plants resistant to Sclerotinia sclerotiorum. Conclusion. In our experiments, the processing of mutagenic EMS embryos obtained for the culture of isolated microspores was shown. Mutant doubled haploids of the rapeseed cultivars Galant and Kris, were obtained by both quantitative and qualitative characterization. Researchers determined that the best outcomes of mutagenesis were obtained by processing embryos obtained for the culture of isolated microspores in an EMS concentration of 12 mM. In the future, the authors plan to use other markers, in particular SNP (Single Nucleotide Polymorphisms) markers, for the analysis of rapeseed mutagenesis. This would provide a more in-depth analysis of mutations that arose as a result of EMS treatment of on embryos obtained in the isolated microspore. Acknowledgments. The work was carried out with grant funding of the AP05130871 “Creating doubled haploid mutant lines of B. napus, B. rapa and their hybrids using in vitro mutagenesis, to obtain high-quality oil with high oleic acid content” project. Funding was provided from the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

34 ISSN 2224-5308 Series of biological and medical. 4. 2020

А. К. Даурова, Д. В. Волков, Д. Л. Дауров, К. К. Жапар, М. Х. Шамекова, К. Ж. Жамбакин

Өсімдіктер биологиясы және биотехнологиясы институты, Алматы, Қазақстан

РАПС СЕЛЕКЦИЯСЫ ҮШІН ОҚШАУЛАНҒАН МИКРОСПОР ДАҚЫЛЫНАН АЛЫНҒАН ЭМБРИОИДТАРДЫ EMS МУТАГЕНІМЕН ӨҢДЕУ (BRASSICA NAPUS)

Аннотация. Микроспор дықылындағы мутагенез рапстың жаңа сорттарын шығаруда селекциялық тәжірибе үшін кеңінен қолданылады. Мутагенездің майдың майлы қышқыл құрамының өзгерісіне оң әсер ететіні белгілі. Рапс мутагенезі үшін эксперименттерімізде оқшауланған микроспоралар дақылынан алынған эмбриоидтар пайдаланылды. Эксперимент нысаны ретінде рапс – Крис және Галанттың эруксіз сорттары қызмет етті. Экспериментімізде мутагенмен өңдеу ЭМЅ-4 мМ, 8 мМ және 12 мМ химиялық мутаген концентрациясы кезінде 1,5 - 2 мм өлшемдегі эмбриоидтарда 1 сағат бойы жүргізілді. Мутагенмен өңдеуден кейін эмбриоидтар өсімдіктерді одан әрі қалпына келтіру үшін Гамборгтің жаңа қоректік ортасына ауыстырылды. Бұл әдіс гаплоидты мутантты өсімдіктерді жаппай алуға мүмкіндік береді. Алынған гаплоидты мутантты өсімдіктердің бір бөлігі 5 жапырақ фазасына жеткенде 0,05% колхи- цинмен хромосомдық жиынтықты екі еселеу үшін өңдеді және топыраққа, бақыланатын жағдайға ауыс- тырды. Нәтижесінде оқшауланған микроспор дақылдарынан алынған эмбриондарды мутагенмен өңдеуде рапстың мутантты екі еселенген гаплоидты өсімдіктері мен оның тұқымы (M1, M2) алынды. Рапстың мутантты және аталық және аналық формаларында генетикалық әртүрлілік деңгейін бағалау үшін 6 праймер ISSR таңдалды. Мутантты линиялар мутация мен генетикалық өзгерістердің болғанын көрсетті және аталық және аналық формаларынан ерекшеленді. Алынған мутантты екі еселенген гаплоидтардың майлы-қышқылдық құрамын талдау рапс сорттарында олеин қышқылының пайыздық арақатынасының донорлық сорттармен (66,0%) салыстырғанда 75,4%-ға дейін айтарлықтай ұлғайғанын көрсетті. Алынған мутантты екі еселенген рапстың гаплоидты өсімдіктері өсімдіктің салмағы мен 1000 тұқымының массасы бойынша жоғары көрсеткіштермен донорлық сорттардан ерекшеленді. Сонымен қатар, сапалық және сандық талдау нәтижелері бойынша жоғары көрсеткіштер 12 mM EMS концентрациясында мутагенмен өңдеу барысында айқындалды. Зерттеу нәтижелері көрсеткендей, оқшауланған микроспора дақылынан эмбриондардың мутагенезі рапстың сапалы белгілерін жақсартуда үлкен әлеуетке ие. Бұл әдіс мутантты және сонымен қатар қажетті белгілері бар гомозиготалық линияларды жасауға мүмкіндік береді және селекциялық үдеріс тиімділігін айтарлықтай арттыруы мүмкін. Түйін сөздер: рапс, Brassica napus, микроспоралар, EMS, ISSR.

А. К. Даурова, Д. В. Волков, Д. Л Дауров, К. К. Жапар, М. Х. Шамекова, К. Ж. Жамбакин

Институт биологии и биотехнологии растений, Алматы, Казахстан

ОБРАБОТКА МУТАГЕНОМ EMS ЭМБРИОИДОВ, ПОЛУЧЕННЫХ В КУЛЬТУРЕ ИЗОЛИРОВАННЫХ МИКРОСПОР ДЛЯ СЕЛЕКЦИИ РАПСА (BRASSICA NAPUS)

Мутагенез в культуре микроспор широко применяется для селекционной практики при выведении новых сортов рапса. Известно положительное влияние мутагенеза на изменение жирнокислотного состава масла. В наших экспериментах для мутагенеза рапса использовали эмбриоиды, полученные в культуре изолированных микроспор. Объектами для эксперимента служили безэруковые сорта рапса – Крис и Галант. В отличии от других исследовательских работ по обработке мутагеном в культуре изолированных микро- спор в нашем эксперименте обработка мутагеном проводилось на эмбриоидах размером 1,5-2 мм при концентрациях химического мутагена EMS - 4 мМ, 8 мМ и 12 мМ в течение 1 часа. После обработки мутагеном эмбриоиды были перенесены на свежую питательную среду Гамборга В 5 для дальнейшей регенерации растений. Данный метод позволяет массово получать гаплоидные мутантные растения. Часть полученных гаплоидных мутантных растений по достижению фазы 5 листочков обрабатывали 0,05% колхицином для удвоения хромосомного набора и пересаживали в грунт, в контролируемые условия. В результате, при обработке мутагеном эмбриоидов, полученных из культуры изолированных микроспор, 35 News of the National Academy of Sciences of the Republic of Kazakhstan

были получены мутантные удвоенные гаплоидные растения рапса, а также их семена (M1, M2). Для оценки уровня генетического разнообразия у мутантных и родительских форм рапса было отобрано 6 праймеров ISSR. Все мутантные линии отличались от родительских форм, показывая, что мутация и генетические изменения произошли. Анализ жирно-кислотного состава семян, полученных мутантных удвоенных гаплоидов М2, показал значительное увеличение процентного соотношения олеиновой кислоты у сортов рапса до 75,4%, по сравне- нию с донорными сортами (66,0%). Полученные мутантные удвоенные гаплоидные растения рапса отлича- лись от донорных сортов с высокими показателями по массе с растения и массе 1000 семян. При этом, по результатам качественных и количественных анализов, наилучшие показатели были при обработке мутаге- ном в концентрации 12 mM EMS. Наши результаты показали, что мутагенез эмбриоидов из культуры изолированных микроспор имеет большой потенциал для улучшения качественных признаков рапса. Данный метод позволяет создать мутантные и в то же время гомозиготные линии с желаемыми признаками, что может значительно повысить эффективность селекционного процесса. Ключевые слова: рапс, Brassica napus, микроспоры, EMS, ISSR.

Information about the authors: Ainash Daurova, Dept. of Breeding and Biotechnology, Inst. of Plant Biology and Biotechnology, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0001-7949-9112 Dmitriy Volkov, PhD student, Dept. of Breeding and Biotechnology, Inst. of Plant Biology and Biotechnology, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0003-4609-7912 Dias Daurov, Dept. of Breeding and Biotechnology, Inst. of Plant Biology and Biotechnology, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0003-3073-4577 Kuanysh Zhapar, PhD student, Dept. of Breeding and Biotechnology, Inst. of Plant Biology and Biotechnology, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0002-9007-9730 Malika Shamekova, PhD, associate Professor, Dept. of Breeding and Biotechnology, Inst. of Plant Biology and Biotechnology, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0002-8746-7484 Kabyl Zhambakin, Doctor of Biological Science, Professor, Academician of KR NAS. Inst. of Plant Biology and Biotechnology, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0001-5243-145X

REFERENCES

[1] Braatz J., Harloff H., Jung C. (2018) EMS-induced point mutations in ALCATRAZ homoeologs increase silique shatter resistance of oilseed rape (Brassica napus) // Euphytica. Vol. 214. 29 p. https://doi.org/10.1007/s10681-018-2113-7 (in Eng.). [2] Lee Y. et al., (2018) EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2-2) results in elevated oleic acid content in rapeseed (Brassica napus L.) // Euphytica. Vol. 214. 28 p. doi.org/10.1007/s10681-017-2106-y (in Eng.). [3] Channaoui S., Labhilili M., Mouhib M., Mazouz H., Fechtali E., Nabloussi A. (2019) Development and evaluation of diverse promising rapeseed (Brassica napus L.) mutants using physical and chemical mutagens // Oilseeds and fats, Crops and Lipids. Vol. 26. 35 p. https://doi.org/10.1051/ocl/2019031 (in Eng.). [4] Mizuno Y., Okamoto Sh., Hara M., Mizoguchi T. (2014) EMS mutagenesis and characterization of Brassica rapa mutants // Plant Biotechnology Journal. Vol. 31. P. 185-190. doi: 10.5511/plantbiotechnology.14.0109b (in Eng.). [5] Zhai Y. et l., (2019) Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L // Plant Biotechnology Journal. P. 1-16 (in Eng.). [6] Hazarika R., Mishra V., Chaturvedi R. (2013) In Vitro Haploid Production-A Fast and Reliable Approach for Crop Improvement. In: Tuteja N., Gill S., eds Crop Improvement Under Adverse Conditions. Springer, New York. P. 171-212 (in Eng.). [7] Barro F., Fernandez-Escobar J., De la Vega M., Martin A. (2001) Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores // Plant Breeding. Vol. 120. P. 262-264. doi :10.1046/j.1439-0523.2001.00602.x (in Eng.). [8] Maluszynski M., Szarejko Y., Sigurbjurnsson B. (1996) Haploidy and mutation techniques. Vol 1. P. 67-93. In: Jain S.M., Sopory S.K., Veilleux R.E., eds. In vitro haploid production in higher plants. Kluwer., Dordrecht (in Eng.). [9] Szarejko I., Forster B.P. (2007) Doubled haploidy and induced mutation // Euphytica. Vol. 158. P. 359-370. doi: 10.1007/s10681-006-9241-1 (in Eng.) [10] Wan G.L. (2008) In Vitro Mutagenesis for Breeding of Novel Germplasm in Brassica napus // Crop Science. Vol. 194. P. 169-247 (in Eng.). [11] Zhambakin K. Zh. et al., (2012) Obtaining double rapeseed haploids // Bulletin of KazNU. Biological Series. Vol. 3. P. 47-57. 36 ISSN 2224-5308 Series of biological and medical. 4. 2020

[12] Ferrie A. M. R. et al., (2008) Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation // Plant Breeding. Vol. 127. P. 501-506. doi: 10.1111/j.1439-0523.2008.01502.x. (in Russ.). [13] He J., Wang J., Chen W., Li G., Cun S. (2004) Effect of EMS treatment on microspore embryogenesis in vitroin Brassica napus // Southwest China Journal of Agricultural Sciences. Vol. 17(6). P. 690-693 (in Eng.). [14] Kumar H., Anubha Manish K., Lal J.P. (2011) Morphological and molecular characterization of Brassica rapa ssp yellow sarson mutants // Journal of Oilseed Brassica. Vol. 2. P. 1-6 (in Eng.). [15] Khurshid H. et al., (2019) Genetic structure of pakistani oilseed brassica cultivars revealed by morphometric and microsatellite markers // Pakistan Journal of Botany. Vol. 51. P. 1331-1340 (in Eng.). [16] Lu G., Zhang X.Y., Zou Y.J., Zou Q.C., Xiang X., Cao J.S. (2007) Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and RAPD markers // Plant Cell, Tissue and Organ Culture. Vol. 88. P. 319-327. doi:10.1007/S11240-006-9189-9 (in Eng.). [17] Xi M., Sun L., Qiu Sh., Liu J., Xu J., Shi J. (2012) In vitro mutagenesis and identification of mutants via ISSR in lily (Lilium longiflorum) // Plant Cell Reports. Vol. 31. P. 1043-1051. doi: 10.1007/s00299-011-1222-8. (in Eng.). [18] Tomlekova N., Antonova G., Nikolova V., Petkova V. (2006) Chemical mutagenesis in head cabbage (brassica Oleracea var. Capitata l.) // Plant breeding and Seed production. Vol. 12. P. 95-100. (in Eng.). [19] Gamborg O.L., Eveleigh D. (1968) Culture methods and detection of glucanases in suspension cultures of wheat and barley // Canadian Journal of Biochemistry and Physiology. Vol. 46. P. 417-421. doi: 10.1139/o68-063 (in Eng.). [20] Swanson E.B. (1990) Microspore culture in Brassica // Methods in Molecular Biology. Vol. 6. P. 159-169. doi: 10.1385/0-89603-161-6:159 (in Eng.). [21] Yuan S. et.al., (2015) Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.) // Front Plant Science. Vol. 6. 1118 p. doi: 10.3389/fpls.2015.01118 (in Eng.). [22] Gost R. (1999) Vegetable oils and animal fats. Determination by gas chromatography of constituent contents of methyl esters of total fatty acid content. P. 151-159 (in Russ.). [23] Khatri A., Bibi S., Dahot M.U., Ahmed Khan I., Nizamani G.S. (2011) In vitro mutagenesis in banana and variant screening through ISSR // Pakistan Journal of Botany. Vol. 43. P. 2427-2431 (in Eng.). [24] Soniya E.V., Banerjee N.S., Das M.R. (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato // Current Science. Vol. 80. P. 1213-1215 (in Eng.). [25] Muhammad A.J., Othman F.Y. (2005) Characterization of fusarium wilt-resistant and fusarium wilt-susceptible somaclones of banana cultivar rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers // Plant Molecular Biology Reports. Vol. 23. P. 241-249. https://doi.org/10.1007/BF02772754 (in Eng.) [26] Sakhno L.O. (2010) Variability in the fatty acid composition of rapeseed oil: Classical breeding and biotechnology // Cytology and Genetics. Vol. 44. P. 389-397. doi: 10.3103/S0095452710060101 (in Eng.). [27] Newsholme D.M., MacDonald M.V., Ingram D.S. (1989) Studies of breeding in vitro for novel resistance to phytotoxic products of Leptospheria maculans (Desm.) Ces. & De Not in secondary embryogenic lines of Brassica napus ssp. oleifera (Metzg.) Sinsk., winter oilseed rape // New Phytologist. Vol. 113. P. 117-126. doi:10.1111/j.1469-8137.1989.tb04697.x (in Eng.). [28] Liu S. et al., (2005) In vitro mutation and breeding of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum // Plant Cell Reports. Vol. 24. P. 133-144. doi: 10.1007/s00299-005-0925-0 (in Eng.).

37 News of the National Academy of Sciences of the Republic of Kazakhstan

Flora and fauna

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 38 – 45 https://doi.org/10.32014/2020.2519-1629.30

UDK 595. 754 МРНТИ 34.33

M. ZH. Baizhunys1, P. A. Esenbekova2, G. D. Anarbekova1

1Kazakh National Agrarian University, Almaty, Kazakhstan; 2Institute of Zoology, GS MRS RK, Almaty, Kazakhstan. Е-mail: [email protected], [email protected], [email protected]

WOOD () PREDATORS OF CHARYNSKIY SNNP (SOUTH-EAST KAZAKHSTAN)

Аbstract. The article presents the results of field studies years 2018-2019 conducted at the Charyn SNNP. As a result of studies, 30 species of carnivores from 5 heteroptera families were identified: (4 species), Anthocoridae (12 species), (3 species), Miridae (5 species), (6 species). Zoophages by trophic specialization. By the number of generations per year, they are divided into 3 groups: monovoltaic (18 species), bivoltine (5 species), polyvoltine (6 species), the number of generations is unknown in 1 species. Among the predatory true bugs of the Charyn SNNP, 21 species winter in the adult stage, 3 species in the adult stage and larvae, and 6 species in the egg stage. By environmental features, all types are mesophiles. By confinement to the habitats, the semi-winged of Charyn SNNP are divided into several groups: dendrobionts (15 species), dendro- tamnobionts (2 species), dendro-tamno-hortobionts (2 species), dendro-hortobionts (9 species), tamno-hortobiont (1 view), eurybiont (1 view). 2 species are listed in the Red Book of Almaty region: Arma custos (Fabricius, 1794) and caerulea (Linnaeus, 1758). Key words: dendrobiontic hemiptera, Charyn State National Natural Park, Southeast Kazakhstan.

Introduction. True bugs, or Bedbugs (Heteroptera), represent the largest detachment of with incomplete transformation. Hemiptera are of great importance in nature, they are well adapted to various environmental conditions. Bedbugs can be of herbivorous, predatory and mixed-food species that consume both plant and animal food. Some true bugs, as predators, exterminate pests of cultivated crops and forests. In Kazakhstan, in spite of the important economic importance of the hemiptera their species composition, biology, ecology, distribution by natural zones and vertical belts, economic importance in certain physical and geographical areas of the republic are not well understood, which determines the relevance of this study. The authors previously published articles on aquatic hemiptera and coleoptera [1,2], and dendrobiontous predatory hemiptera have not been studied. The purpose of the research: Study of fauna, biology, ecology and distribution of wood predatory hemiptera on territory of the Charyn SNNP. Therefore, on the basis of our own research on territory of the Charyn State National Natural Park, an inventory and a comprehensive analysis of predatory dendrobiontous hemiptera’s fauna were carried out and an annotated list was compiled. 38 ISSN 2224-5308 Series of biological and medical. 4. 2020

Methods of research. The collection and study of Hemiptera was carried out according to generally accepted entomological methods [3-6]. From bushes and tree branches, bedbugs were collected by a butterfly net; in forest litter, under the bark of trees and various shelters they were caught by an exhauster or tweezers. Caught insects were killed in a container with ethyl acetate and laid out on cotton mattresses. Microscopes were used for the laboratory study of Hemiptera and their species affiliation. The material for this work was gathered during 2018-2019 on territories of the Charyn State National Natural Park. Results of research and discussion. The following is an annotated list of identified species. Nabidae family apterus (Fabricius, 1798). Almaty region, Uyghur district, Charyn SNNP, floodplain of river Charyn and Temirlik, 05.2018, 2♀, 1♂; 08/06/2018, 1♂; 08/18/2018, 4♂, 2♀; 05/18/2018, 1♂, to the light; ravine 08/01/2018, 1♂, 2♀ (1 full-winged. + 2 small-winged forms); ash grove, 05/15/2018, 3♂, 2♀; 06/08/2018, 1♂, 2♀ + larva ІІ age; 07/12/2018, 3♂, 4♀; 06/27/2018, 2♂, 2♀ + 1 larva ІІІ age; floodplain of rivers Charyn and Temirlik, June 28-29, 2019, 2♀, 2♂; July 12-15, 2019, 3♀, 2♂; 08-10.08.2019, 1♀, 2♂. Dendro tamnobiont (in deciduous forests, parks, gardens, floodplain tree-shrub thickets), larvae of the 1st and 2nd ages stay in grass, from the 3rd age they pass to shrubs, and then to trees; mesophyll; zoophage (ticks and small insects with soft integuments) [7, 8]; monovoltine; eggs hibernate. Nabis sinoferus sinoferus Hsiao, 1964. Almaty region, Uyghur district, Charyn SNNP, floodplain of rivers Charyn and Temirlik, June 28-29, 2019, 3♀, 4♂; July 12-15, 2019, 2♀, 2♂; 08-10.08.2019, 2♀, 3♂. Eurytop (found in the valleys of Charyn and Temirlik rivers; mesophile; zoophagus (feeds mainly on eggs and larvae of bedbugs, cicadas, etc.); monovoltine [8], adults winter. Nabis pallidus Fieber, 1861. Almaty region, Uyghur district, Charyn SNNP, floodplain of river Charyn, 06/06/2018, 3♀, 2♂; 06/30/2018, 3♀, 4♂; 07/11/2018, 3♀, 2♂; 08/05/2018, 1♀, 2♂; 08/16/2018, 3♀, 2♂; 08/03/2018, 6♀, 3♂; 08/30/2018, 3♀, 2♂; in floodplain of river Charyn, June 22-24, 2018, 8♀, 2♂; on Charyn river bank , 08/01/2018, 4♀, 6♂; 08/03/2006, 6♀, 2♂ + larva ІІ-ІІІ age; 08/09/2018, 5♀, 6♂ + larva ІІ age; 08/10/2018, 5♀ + 13 larvae ІІ-ІІІ age; floodplain of Charyn, 06/28/2019, 2♀, 3♂; floodplain of Temirlik, 06/29/2019, 2♂, 1♀; 11-12.07.2019, 4♂, 3♀; 08-10.08.2019, 3♀, 2♂. Dendrobiont (in tamarisk); mesophile (steppe and semi-desert zone); zoophagus (feeds on various insects); bivoltine; adults wintered [8]. Nabis viridulus Spinola, 1837. Almaty region, Uyghur district, Charyn SNNP, floodplain of river Charyn, 06/28/2019, 2♀, 2♂; 05/25/2018, 2♀, 3♂; 08/07/2018, 3♀, 2♂; floodplain of Temirlik, 06/08/2018, 2♀, 2♂; 06/29/2019, 2♂, 3♀; 11-12.07.2019, 4♂, 4♀. Dendrobiont (on Tamarisk Tamarix); mesophile (steppe and semi-desert zone); zoophagus (feeds on various insects: , eggs and bug larvae); monovoltine; adults wintered [8]. Anthocoridae family Anthocoris angularis Reuter,1884. Almaty region, Uyghur district, Charyn SNNP, floodplain of Charyn river, 06/12/2018, 2♀, 2♂; Charyn forest cottage, 06/26/2018, 3♀, 1♂; 07/14/2018, 3♀, 2♂; 08/23/2018, 4♀, 3♂; floodplain of rver Temirlik, 07/10/2018, 2♀, 1♂; in the valleys of Charyn, Temirlik rivers, June 28--29, 2019, 3♀, 4♂; ash grove, 07/12/2019, 4♂, 2♀; 08-10-08, 2019, 3♀, 2♂. Dendrobiont (in the valleys of Charyn, Temirlik rivers, on sea buckthorn, willows and turangs); mesophyll; zoophagus (leaf-shells and larvae of various insects) [9]; monovoltine; wintering imago. Rare. Anthocoris confusus Reuter,1884. Almaty region, Uygur district, Charyn SNNP, floodplain of Charyn. 06/16/2018, 3♀, 2♂; floodplain of Ili 06/16/2018, 1♀, 2♂; Charyn forest cottage, 07.26.2018, 3♀, 1♂; floodplain of rivers Charyn, Temirlik, June 28-29, 2019, 3♀, 2♂; ash grove, 06/29/2019, 3♀, 3♂; 11-12.07.2019, 4♂, 2♀; 08-10.08.2019, 3♀, 2♂. Dendrobiont (on various deciduous trees: Acer, Betula, Alnus, Quercus, Populus, Salix, Ulmus, sometimes on herbaceous plants); mesophyll; zoophagus (feeds on aphids, leaf flies, butterfly caterpillars); monovoltine; wintering imago [9]. Anthocoris limbatus Fieber, 1836. Almaty region, Uyghur district, Charyn SNNP, Maken cordon suburbs, 06/16/2018, 1♀, 1♂; 08/13/2018, 3♀, 3♂; Charyn forest cottage, 06/15/2018, 1♀, 2♂; 08/18/2018, 1♀, 2♂; floodplain tugai of rivers Charyn, Temirlik, 07/18/2018. 2♀, 1♂; 06/16/2018, 2♀, 2♂; June 28-29, 2019, 2♀, 2♂; ash grove, 06/29/2019, 2♀, 1♂; 10-12.07.2019, 3♂, 2♀. Dendrobiont (floodplains of rivers, as well as mixed forests, willows); mesophyll; zoophagus (feeds on small insects, their larvae and eggs); monovoltine; wintering imago [9]. 39 News of the National Academy of Sciences of the Republic of Kazakhstan

Anthocoris minki pistaciae Wagner, 1957. Almaty region, Uygyr region, Charyn natural park, Charyn forest cottage, 07/13/2018, 4♀, 3♂; 06/20/2018, 2♀, 2♂. Dendrobiont (on Populus, etc.); mesophyll; zoophagus (aphids, leaf flies); monovoltine; wintering imago [9]. Anthocoris nemorum (Linnaeus, 1761). Almaty region, Uygur district, Charyn SNNP, Charyn forest dacha, 06.16.2018, 1♀, 2♂; 06/25/2018, 1♀, 2♂; Maken cordon suburbs, 06/15/2018, 4♀, 3♂; floodplains of Ili, 06/26/2018, 2♀, 2♂; 05/21/2018, 1♀, 1♂; downstream of Ili river 06/26/2018, 1♀, 3♂; floodplain of Charyn. 08/13/2018, 1♀, 1♂; 08.21.2018, 3♀, 2♂; floodplain of rivers Charyn, Temirlik, June 28-29, 2019, 4♀, 3♂; ash grove, 06/29/2019, 2♀, 3♂; 10-12.07.2019, 3♂, 4♀; 08-10.08.2019, 1♀, 2♂. Dendro-hortobiont (on woody and herbaceous plants); mesophyll; zoophage (plays a large role in regulating the number of pests of apple trees, feeds on aphids, ticks, worms, thrips, scoop eggs and caterpillars, eggs of Miridae) [9]; multivoltine; wintering imago. Anthocoris nemoralis (Fabricius, 1794). Almaty region, Uygyr district, Charyn natural park, Charyn forest cottage, floodplains of Charyn. 06/16/2018, 2♀, 1♂; 08/25/2018, 1♀, 2♂; Maken cordon suburbs, 07/12/2018, 2♀, 2♂; 08.16.2007, 2♀, 2♂. Dendro-hortobiont (found in large numbers on various deciduous fruit trees, shrubs and herbaceous plants), mesophile; zoophagus; bivoltine or 2-3 generations per year; wintering imago [9]. Anthocoris pilosus (Jakovlev, 1877). Almaty region, Uigur district, Charyn SNNP, Charyn forest cottage, 06/19/2018, 1♀, 2♂; ash grove, 06/12/2006, 1♀, 1♂; 06/16/2006, 4♀, 3♂; Maken cordon suburbs, 06/16/2018, 5♀, 2♂; 08/03/2018, 3♀, 2♂; Charyn forest cottage, 07/23/2018, 3♀, 08/13/2018, 3♀, 3♂; 09/02/2018, 2♀, 1♂; floodplain of rivers Charyn, Temirlik, June 28-29, 2019, 2♀, 3♂; ash grove, 06/29/2019, 2♀, 1♂; 10-12.07.2019, 4♂, 4♀. Horto-dendrobiont (found in large numbers on herbaceous plants, shrubs and deciduous trees: Populus, Salix, fruit), mesophyll; zoophagus, is one of the main enemies of different types of aphids on tree and shrub species; multivoltine; wintering imago [9]. Orius laticollis laticollis (Reuter, 1884). Almaty region, Uigur district, Charyn SNNP, Charyn forest cottage, 06/02/2018, 2♀, 3♂; floodplains of Charyn, 08/25/2018, 1♀, 3♂; Maken cordon suburbs, 06/25/2018, 1♀, 2♂; 08/03/2018, 3♀, 2♂; floodplain of rivers Charyn, Temirlik, June 28-29, 2019, 4♀, 5♂; ash grove, 06/29/2019, 2♀, 3♂; 10-12.07.2019, 5♂, 4♀; 08-10.08.2019, 3♀, 2♂. Dendrobiont; mesophyll (in moist places, mainly on Salix, as well as on Populus, Zygophyllum, Artemisia); zoophagus (aphids, leaf flies, thrips, etc.); multivoltine; wintering imago [9]. Orius majusculus (Reuter, 1879). Almaty region, Uigur district, Charyn SNNP, Charyn forest cottage, Charyn floodplain. 06/15/2018, 1♀, 3♂; 06/15/2018, 2♀, 1♂; floodplains of river Ili 06/15/2018, 2♀, 1♂; 07/22/2018, 4♀, 3♂; floodplain of Charyn, Temirlik, June 28-29, 2019, 4♀, 5♂; ash grove, June 28-29, 2019, 4♀, 3♂; 10-12.07.2019, 5♂, 5♀. Dendrobiont (on fruit deciduous trees); mesophyll (lives in moist places); zoophagus (various insects, ticks and their eggs); bivoltine; wintering imago [9]. Orius minutus (Linnaeus, 1758). Almaty region, Uigur district, Charyn SNNP, Charyn forest cottage, floodplain of Charyn. 06/16/2018, 1♀, 2♂; 07/19/2018, 3♀, 3♂; floodplain of Ili, 06/15/2018, 2♀, 3♂; Maken cordon suburbs, 06/15/2018, 1♀, 3♂; floodplain of Temirlik, 06/25/2018, 2♀, 3♂; Sartogai cordon suburbs, 07/15/2018, 1♀, 3♂; 07/28/2018, 4♀, 5♂; 08/26/2018, 1♀, 1♂; floodplain of Ili, 11.06-26.2018, 5♀, 6♂; 07/26/2018, 1♀, 1♂; floodplain of Temirlik, 05/31/2018, 1♀, 1♂; 06/02/2018, 4♀, 5♂; ash rosh, 08/09/2018, 1♀, 2♂; 07/16/2018, 1♀, 3♂; 06/13/2018, 1♀, 3♂; 06/15/2018, 1♀, 2♂; floodplain of Charyn, Temirlik, June 28-29, 2019, 5♀, 5♂; ash grove, June 28--29, 2019, 2♀, 3♂; 11-12.07.2019, 3♂, 4♀; 08-10-08, 2019, 4♀, 3♂. Tamno-hortobiont (on grassy plants, valley shrubs and trees: willow, spirea, birch, on flowers and leaves); mesophyll; polyphagous zoophagus (various insects, ticks and eggs of various harmful invertebrates); multivoltine; wintering imago [9]. Orius niger (Wolff, 1811). Almaty region, Uygur district, Charyn SNNP, Charyn forest cottage, 05/25/2018, 2♀, 1♂; 08/05/2018, 2♀, 3♂; 08/09/2018, 1♀, 2♂; floodplain of Charyn, 06/26/2018, 4♀, 4♂; floodplain of Ili, 06/15/2018, 2♀, 3♂; August 15-26, 2018, 6♀, 8♂; Ili downstream 11.06- 28.06.2018, 4♀, 5♂; 07/21/2018, 2♀, 1♂; Maken cordon, 07/28/2018, 2♀, 5♂; 06/07/2018, 2♀, 3♂; Maken cordon suburbs, June 20-25, 2018, 3♀, 2♂; floodplain of Temirlik, 06/20/2018, 2♀, 1♂; near the river Temirlik, 06/08/2018, 2♀, 1♂; ash grove surroundings, 08/09/2018, 1♀, 2♂; 08/14/2018, 5♀, 4♂; 08/14/2018, 5♀, 3♂; 08/20/2018, 3♀, 3♂; floodplain of Charyn, June 28--29, 2019, 2♀, 3♂; floodplain of Temirlik, 06/29/2019, 3♂, 2♀; ash grove, June 28-29, 2019, 2♀, 2♂; 11-12.07.2019, 4♂, 3♀; 08-10.08.2019, 3♀, 2♂. Horto-dendrobiont (on deciduous, fruit trees, shrubs and herbaceous plants); mesophile (in floodplains, along forest edges, on slopes); zoophagus (various insects); multivoltine; wintering imago [9]. 40 ISSN 2224-5308 Series of biological and medical. 4. 2020

Xylocoris cursitans (Fallen, 1807). Charyn Natural Park, Charyn forest cottage, 06/03/2018, 2♀, 3♂; floodplain of Ili, 08/22/2018, 1♀, 2♂; Maken cordon suburbs, Sartogai 06/14/2018, 3♀, 4♂; 06/09/2018, 1♀, 3♂; floodplain of Charyn, 06/02/2018, 3♀, 4♂. Dendrobiont (on the bark and under the bark of Populus, Quercus, etc., often in the passages of bark beetles); mesophile (forest); zoophagus (various insects); bivoltine; wintering imago. Also occurs in the middle taiga subzone [9]. Reduviidae family vagabundus (Linnaeus, 1758). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, caught in the light, 06/15/2018, 2♀, 1♂; June 28-29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 1♂, 2♀; ash grove, June 28-29, 2019, 3♀, 2♂; 11-12.07.2019, 3♂, 3♀. Dendrobiont, caught in the light in ash grove; mesophyll; zoophagus; the number of generations is unknown; adults and larvae of older ages overwinter [10]. annulatus (L., 1758). Almaty region, Uigur district, Charyn SNNP, Charyn forest cottage, floodplain of Charyn, 05.24.2018, 2♀, 3♂; 06/10/2018, 1♀, 2♂; 06/10/2018, 2♀, 1♂; floodplain of Ili, 06/19/2018, 1 larva of the third age; Maken cordon suburbs, Sartogai, 07/10/2018, 2♀, 2♂; 07/28/2018, 2♀, 4♂; 07/22/2018, 2♀, 2♂; 08/14/2018, 2♀, 2♂; floodplain of Charyn, June 28--29, 2019, 4♀, 3♂; floodplain of Temirlik, 06/29/2019, 3♂, 2♀; ash grove, June 28-29, 2019, 4♀, 3♂; 11-12.07.2019, 3♂, 5♀; 08-10-08, 2019, 2♀, 2♂. Dendro-hortobiont (on various trees, shrubs and grassy vegetation); mesophyll; polyphagous zoophagus; monovoltine; wintering larvae of IV-V ages. Wintering of larvae was proven by field observations [10]. Rhynocoris iracundus (Poda, 1761). Almaty region, Uigur district, Charyn SNNP, Charyn forest cottage, floodplain of Charyn, 06/06/2018, 2♂; 06/24/2018, 2♀, 2♂; 06/25/2018, 2♀, 1♂; Maken cordon suburbs, Sartogai, 08/14/2018, 1♀, 2♂; 08/13/2018, 1♀, 3♂; 07/13/2018, 2♀, 2♂; floodplain of Ili, 07/18/2018, 2♀, 2♂; Ili downstream, 07/18/2018, 2♀, 2♂; floodplain of river Ili, 06/23/2018, 1♀, 3♂; Charyn forest cottage, 06/26/2018, 2♀, 1♂; 07/28/2018, 2♀, 4♂; floodplain of Temirlik, May 29-31, 2018, 1♀, 2♂; Sartogai cordon, 06/05/2018, 2♀, 3♂; 06/03/2018, 1♀, 1♂; 07/20/2018, 2♀, 1♂; floodplain of Charyn, June 28--29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 1♂, 2♀; ash grove, June 28-29, 2019, 3♀, 2♂; 11-12.07.2019, 3♂, 3♀, 08-10.08.2019, 2♀, 2♂. Dendro-hortobiont; mesophyll; zoophagus (they are eager to catch various insects: leaf beetles, wasps, bees, caterpillars of butterflies, etc.); monovoltine; older larvae winter [10]. Miridae family Campylomma verbasci (Meyer-Dur, 1843). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 1♀, 2♂; floodplain of Temirlik, 06/29/2019, 2♂, 2♀; 11-12.07.2019, 3♂, 2♀. Horto-dendrobiont; mesophyll; zoophytophage; multivoltine; eggs hibernate [11,13]. Cyllecoridea decorata (Kiritshenko, 1931). Almaty region, Uigur district, Charyn SNNP, floodplain ofCharyn, June 28-29, 2019, 3♀, 2♂; floodplain of Temirlik, 06/29/2019, 2♂, 3♀; ash grove, 07/12/2019, 3♂, 4♀. Dendrobiont (on an apple tree, pear, birch, karagach); mesophyll; zoophage: exterminates aphids [11,13]; monovoltine; eggs hibernate. Blepharidopterus angulatus (Fallen, 1807). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 2♀, 1♂; floodplain of Temirlik, 06/29/2019, 2♂, 2♀; ash grove, June 28-29, 2019, 3♀, 2♂; 11-12.07.2019, 3♂, 3♀; 08-10.08.2019, 1♀, 2♂. Dendrobiont (on hardwood); mesophyll; zoophytophage (feeds on aphids); monovoltine; eggs hibernate [11]. Deraeocoris lutescens (Schilling, 1830). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28--29, 2019, 4♀, 4♂; floodplain of Temirlik, 06/29/2019, 2♂, 2♀; ash grove, June 28-29, 2019, 3♀, 2♂; 11-12.07.2019, 2♂, 3♀. Dendrobiont (on deciduous and fruit trees; mesophile; zoophagus; bivoltine; wintering adults. In Moldova, it is more common on oaks where it propagates in bulk [11]. Pilophorus perplexus (Douglas & Scott, 1875). Almaty Region, Uyghur district, Charyn SNNP, floodplain of river. Charyn, June 28-29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 1♂, 2♀; ash grove, June 28-29, 2019, 2♀, 4♂; 11-12.07.2019, 3♂, 1♀. Dendrobiont; mesophyll; zoophagus; monovoltine; eggs hibernate [11]. Pentatomidae family Arma custos (Fabricius, 1794). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28--29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 2♂, 1♀; ash grove, June 28-29, 2019, 1♀, 2♂; 11-12.07.2019, 2♂, 2♀; 08-10.08.2019, 1♀, 2♂. Dendro-hortobiont; mesophyll; zoophagus (feeds on various small ); monovoltine; adults are wintering [12, 13]. Listed in the Red Book of Almaty region [14]. 41 News of the National Academy of Sciences of the Republic of Kazakhstan

Picromerus lewisi (Scott, 1874). Almaty Region, Uyghur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 1♂, 2♀; ash grove, June 28-29, 2019, 2♀, 2♂; 11-12.07.2019, 2♂, 1♀; 08-10.08.2019, 1♀, 1♂. Dendro-hortobiont; mesophyll; zoophagus; monovoltine; eggs hibernate [12]. Rhacognatus punctatus (Linnaeus, 1758). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 2♀, 1♂; floodplain of Temirlik, 06/29/2019, 1♀; ash grove, June 28-29, 2019,

The taxonomic composition of carnivorous Hemiptera at the Charyn SNNP

Taxa names Biology and ecology Nabidae family Himacerus apterus (Fabricius, 1798) tamno-dendrobiont, mesophile, zoophagus, monovoltine, eggs winter Nabis sinoferus sinoferus (Hsiao, 1964) eurybiont, zoophagus, monovoltine, wintering adults Nabis pallidus (Fieber, 1861) dendrobiont, mesophile, zoophagus, bivoltine, wintering adults Nabis viridulus (Spinola, 1837) dendrobiont, mesophile, zoophagus, monovoltine, wintering adults Anthocoridae family Anthocoris angularis (Reuter,1884) dendrobiont, mesophile, zoophagus, monovoltine, wintering adults Anthocoris confusus (Reuter,1884) dendrobiont, mesophile, zoophagus, monovoltine, wintering adults Anthocoris limbatus (Fieber, 1836) dendrobiont, mesophile, zoophagus, monovoltine, wintering adults Anthocoris minki pistaciae (Wagner, 1957) dendrobiont, mesophile, zoophagus, monovoltine, wintering adults Anthocoris nemorum (Linnaeus, 1761) dendro-hortobiont, mesophile, zoophagus, multivoltine, adults winter Anthocoris nemoralis (Fabricius, 1794) dendro-hortobiont, mesophile, zoophagus, multivoltine, adults winter Anthocoris pilosus (Jakovlev, 1877) dendro-hortobiont, mesophile, zoophagus, multivoltine, adults winter Orius laticollis laticollis (Reuter, 1884) dendro-hortobiont, mesophile, zoophagus, multivoltine, adults winter Orius majusculus (Reuter, 1879) dendro-hortobiont, mesophile, zoophagus, bivoltine, adults winter Orius minutus (Linnaeus, 1758) tamno-hortobiont, mesophile, zoophagus, multivoltine, wintering adults Orius niger (Wolff, 1811) horto-dendrobiont, mesophile, zoophagus, bivoltine, wintering adults Xylocoris cursitans (Fallen, 1807) dendrobiont, mesophile, zoophagus, bivoltine, wintering adults Reduviidae family dendrobiont, zoophagus, the number of generations is unknown, adults and elder Empicoris vagabundus (Linnaeus, 1758) larvae winter dendro-hortobiont, mesophile, zoophagus, monovoltine; adults and larvae of IV- Rhynocoris annulatus (L., 1758) V ages winter Rhynocoris iracundus (Poda, 1761) dendro-hortobiont, mesophile, zoophagus, monovoltine, larvae and adults winter Miridae family Campylomma verbasci (Meyer-Dur, 1843) horto-dendrobiont, mesophile, zoophytophagus, multivoltine, eggs winter Cyllecoridea decorata (Kiritshenko, 1931) dendrobiont, mesophyll, zoophytophagus, monovoltine, eggs winter Blepharidopterus angulatus (Fallen, 1807) dendrobiont, mesophyll, zoophytophagus, monovoltine, eggs winter Deraeocoris lutescens (Schilling, 1830) dendrobiont, mesophyll, zoophytophagus, bivoltine, wintering adults Pilophorus perplexus (Douglas & Scott, dendrobiont, mesophyll, zoophytophagus, monovoltine, eggs winter 1875) Pentatomidae family Arma custos (Fabricius, 1794) dendro-hortobiont, mesophile, zoophagus, monovoltine, wintering adults Picromerus lewisi (Scott, 1874) dendro-hortobiont, mesophile, zoophagus, monovoltine, eggs winter Rhacognatus punctatus (Linnaeus, 1758) dendrobiont, mesophile, zoophagus, monovoltine, wintering adults Troilus luridus (Fabricius, 1775) dendro-tamnobiont, mesophile, zoophagus, monovoltine, adult winter Pinthaeus sanguinipes (Fabricius, 1781) dendro-tamno-hortobiont, mesophile, zoophagus, monovoltine, wintering adults Zicrona caerulea (Linnaeus, 1758) horto-tamno-dendrobiont, mesophile, zoophagus, monovoltine, wintering adults 42 ISSN 2224-5308 Series of biological and medical. 4. 2020

2♀, 2♂; 11-12.07.2019, 1♂, 2♀. Dendrobiont (on Salix, Betula, aspen, raspberry, nettle, etc.); mesophile (river valleys with shrubby vegetation); zoophage (various small arthropods); monovoltine; adults wintered. A new-generation imago appears in mid-August [12]. Troilus luridus (Fabricius, 1775). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 1♂, 2♀; ash grove, June 28-29, 2019, 1♀, 2♂; 11-12.07.2019, 1♂, Dendro-tamnobiont (on woody-shrubby vegetation); mesophyll; zoophage [27, 28]; monovoltine; adults wintered. Pinthaeus sanguinipes (Fabricius, 1781). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 2♂, 2♀; ash grove, June 28-29, 2019, 1♀, 2♂; 11-12.07.2019, 2♂, 1♀; 08-10.08.2019, 1♀, 2♂. Dendro-tamno-hortobiont; mesophyll; zoophagus; monovoltine; adults winter [12]. Zicrona caerulea (Linnaeus, 1758). Almaty region, Uigur district, Charyn SNNP, floodplain of Charyn, June 28-29, 2019, 2♀, 2♂; floodplain of Temirlik, 06/29/2019, 2♀; ash grove, June 28-29, 2019, 2♀, 1♂; 11-12.07.2019, 1♂, 2♀. Horto-tamno-dendrobiont; mesophyll; zoophagus; monovoltine; adults are wintering [12,13]. Listed in the Red Book of Almaty region [14]. From table it is seen that the fauna of predatory Hemiptera at the Charyn SNNP consists of Nabidae, Anthocoridae, Reduviidae, Miridae, Pentatomidae families, 30 species were identified. Conclusion. As a result of field studies 2018-2019 at the Charyn SNNP, 30 species of predatory hemiptera from 5 families were identified: Nabidae (4 species), Anthocoridae (12 species), Reduviidae (3 species), Miridae (5 species), Pentatomidae (6 species). Of these, 2 species (Arma custos, Zicrona caerulea) are listed in the Red Book of the Almaty region. Hemiptera bugs are characterized by wintering at different stages of development. In most species, winter diapause occurs at the adult stage, but few species winter at egg or larva stages. The hemiptera of Charyn SNNP wintering in the adult stage consist of 21 species, in the adult and larvae stage only 3 species winter, 6 species winter in the egg stage. The seasonal development of hemiptera is heterodynamic. Voltinism of the population reflects the number of annual generations. For the Charyn SNNP hemiptera, 3 known types of voltinism are characteristic: monovoltine species - 18; bivoltine - 5; polyvoltine - 6 species, the number of Empicoris vagabundus generations is unknown. According to ecological features, all types are mesophiles, they inhabit open and shaded habitats with a moderate degree of moisture. By their habitats, the Charyn SNNP hemiptera are divided into several groups: dendrobionts (15 species), dendro-tamnobionts (2 species), dendro-tamno-hortobionts (2 species), dendro-hortobionts (9 species), tamno-hortobiont (1 kind), eurybiont (1 kind).

М. Ж. Байжүніс1, П. А. Есенбекова2, Г. Д. Анарбекова1

1Қазақ ұлттық аграрлық университеті, Алматы, Қазақстан; 2ҚР БҒМ ҒК «Зоология институты», Алматы, Қазақстан

ШАРЫН МЕМЛЕКЕТТІК ҰЛТТЫҚ ТАБИҒИ ПАРКІНІҢ (ОҢТҮСТІК-ШЫҒЫС ҚАЗАҚСТАН) АҒАШ ЖЫРТҚЫШ ЖАРТЫЛАЙ ҚАТТЫ ҚАНАТТЫЛАРЫ (HETEROPTERA)

Аннотация. Мақалада 2018-2019 жылдары Шарын мемлекеттік ұлттық табиғи паркі территориясында жүргізілген зерттеулер нәтижесі берілді. Зерттеу нәтижесінде жыртқыш жартылай қатты қанаттылардың 5 тұқымдасына жататын 30 түрі анықталды: Nabidae тұқымдасы: Himacerus apterus (Fabr., 1798), Nabis sinoferus sinoferus Hsiao, 1964, Nabis pallidus Fieb., 1861, Nabis viridulus Spin., 1837; Anthocoridae тұқымдасы: Anthocoris angularis Reut.,1884, Anthocoris confusus Reut., 1884, Anthocoris limbatus Fieb., 1836, Anthocoris minki pistaciae Wagn., 1957, Anthocoris nemorum (L., 1761), Anthocoris nemoralis (Fabr., 1794), Anthocoris pilosus (Jak., 1877), Orius laticollis laticollis (Reut., 1884), Orius majusculus (Reut., 1879), Orius minutus (L., 1758), Orius niger (Wolff, 1811), Xylocoris cursitans (Fall., 1807); Reduviidae тұқымдасы: Empicoris vagabundus (L., 1758), Rhynocoris annulatus (L., 1758), Rhynocoris iracundus (Poda, 1761); Miridae тұқымдасы: Campylomma verbasci (Meyer-Dur, 1843), Cyllecoridea decorata (Kiritsh., 1931), Blepharidopterus angulatus (Fall., 1807), Deraeocoris lutescens (Schill., 1830), Pilophorus perplexus Douglas & Scott, 1875; Pentatomidae 43 News of the National Academy of Sciences of the Republic of Kazakhstan

тұқымдасы: Arma custos (Fabr., 1794), Picromerus lewisi Scott, 1874, Rhacognatus punctatus (L., 1758), Troilus luridus (Fabr., 1775), Pinthaeus sanguinipes (Fabr., 1781), Zicrona caerulea (L., 1758). Трофикалық маманда- ндыруға сәйкес анықталған түрлер – зоофагтар. Жылына ұрпақ қалдыру санына қарай 3 топқа бөлінеді: Моновольтинді түрлер: Himacerus apterus (Fabr., 1798), Nabis sinoferus sinoferus Hsiao, 1964, Nabis viridulus Spinola, 1837, Anthocoris angularis Reut., 1884, Anthocoris confusus Reut., 1884, Anthocoris limbatus Fieb., 1836, Anthocoris minki pistaciae Wagn., 1957, Rhynocoris annulatus (L., 1758), Rhynocoris iracundus (Poda, 1761), Cyllecoridea decorata (Kiritshenko, 1931), Blepharidopterus angulatus (Fall., 1807), Pilophorus perplexus Douglas & Scott, 1875, Arma custos (Fabr., 1794), Picromerus lewisi Scott, 1874, Rhacognatus punctatus (L., 1758), Troilus luridus (Fabr., 1775), Pinthaeus sanguinipes (Fabr., 1781), Zicrona caerulea (L., 1758); Бивольтинді түрлер: Nabis pallidus Fieb., 1861, Anthocoris nemoralis (Fabr., 1794), Orius majusculus (Reut., 1879), Xylocoris cursitans (Fall., 1807), Deraeocoris lutescens (Schill., 1830); Поливольтинді түрлер: Anthocoris nemorum (L., 1761), Anthocoris pilosus (Jak., 1877), Orius laticollis laticollis (Reut., 1884), Orius minutus (L., 1758), Orius niger (Wolff, 1811), Campylomma verbasci (Meyer-Dur, 1843); Empicoris vagabundus (L., 1758) түрінің ұрпақ саны белгісіз. Шарын МҰТП территориясында тіршілік ететін жыртқыш жартылай қатты қанаттылардың арасында 21 ересек түрі қыстайды: Nabis sinoferus sinoferus Hsiao, 1964, Nabis pallidus Fieb., 1861, Nabis viridulus Spin., 1837, Anthocoris angularis Reut.,1884, Anthocoris confusus Reut.,1884, Anthocoris limbatus Fieb., 1836, Anthocoris minki pistaciae Wagn., 1957, Anthocoris nemorum (L., 1761), Anthocoris nemoralis (Fabr., 1794), Anthocoris pilosus (Jak., 1877), Orius laticollis laticollis (Reut., 1884), Orius majusculus (Reut., 1879), Orius minutus (L., 1758), Orius niger (Wolff, 1811), Xylocoris cursitans (Fall., 1807); Deraeocoris lutescens (Schill., 1830), Arma custos (Fabr., 1794), Rhacognatus punctatus (L., 1758), Troilus luridus (Fabr., 1775), Pinthaeus sanguinipes (Fabr., 1781), Zicrona caerulea (L., 1758); ересек және дернәсіл сатысындағы 1 түр: Empicoris vagabundus (L., 1758); дернәсіл сатысындағы 2 түр: Rhynocoris annulatus (L., 1758), Rhynocoris iracundus (Poda, 1761); жұмыртқасы сатысындағы 6 түр: Himacerus apterus (Fabr., 1798), Campylomma verbasci (M.-D., 1843), Cyllecoridea decorata (Kiritsh., 1931), Blepharidopterus angulatus (Fall., 1807), Pilophorus perplexus Douglas & Scott, 1875, Picromerus lewisi Scott, 1874 қыстайды. Экологиялық ерекшелігіне қарай барлық мезофил түр болып саналады. Тіршілік ету ортасына қарай Шарын МҰТП жартылай қатты қанаттылары бірнеше топқа бөлінеді: дендробионттар (15 түр), дендро- тамнобионттар (2 түр), дендро-тамно-хортобионттар (2 түр), дендро-хортобионттар (9 түр), тамно- хортобионт (1 түр), эврибионт (1 түр). 2 түр – Arma custos (Fabr., 1794) и Zicrona caerulea (L., 1758) Алматы облысының «Қызыл кітабына» енген. Түйін сөздер: дендробионтты жартылай қаттықанаттылар, Шарын мемлекеттік ұлттық табиғи паркі, Оңтүстік-шығыс Қазақстан.

М. Ж. Байжүніс1, П. А. Есенбекова2, Г. Д. Анарбекова1

1Казахский Национальный аграрный университет, Алматы, Казахстан; 2РГП на ПХВ «Институт зоологии» КН МОН РК, Алматы, Казахстан

ДРЕВЕСНЫЕ ХИЩНЫЕ ПОЛУЖЕСТКОКРЫЛЫЕ (HETEROPTERA) ЧАРЫНСКОГО ГНПП (ЮГО-ВОСТОЧНЫЙ КАЗАХСТАН)

Аннотация. В статье приводятся результаты полевых исследований 2018-2019 гг. на территории Чарынского Государственного национального природного парка. В результате проведенных исследований выявлено 30 видов хищных полужесткокрылых из 5 семейств: Nabidae: Himacerus apterus (Fabr., 1798), Nabis sinoferus sinoferus Hsiao, 1964, Nabis pallidus Fieb., 1861, Nabis viridulus Spin., 1837; Anthocoridae: Anthocoris angularis Reut.,1884, Anthocoris confusus Reut., 1884, Anthocoris limbatus Fieb., 1836, Anthocoris minki pistaciae Wagn., 1957, Anthocoris nemorum (L., 1761), Anthocoris nemoralis (Fabr., 1794), Anthocoris pilosus (Jak., 1877), Orius laticollis laticollis (Reut., 1884), Orius majusculus (Reut., 1879), Orius minutus (L., 1758), Orius niger (Wolff, 1811), Xylocoris cursitans (Fall., 1807); Empicoris vagabundus (L., 1758), Rhynocoris annulatus (L., 1758), Rhynocoris iracundus (Poda, 1761); Miridae тұқымдасы: Campylomma verbasci (Meyer-Dur, 1843), Cyllecoridea decorata (Kiritsh., 1931), Blepharidopterus angulatus (Fall., 1807), Deraeocoris lutescens (Schill., 1830), Pilophorus perplexus Douglas & Scott, 1875; Pentatomidae тұқымдасы: Arma custos (Fabr., 1794), Picromerus lewisi Scott, 1874, Rhacognatus punctatus (L., 1758), Troilus luridus (Fabr., 1775), Pinthaeus sanguinipes (Fabr., 1781), Zicrona caerulea (L., 1758). По трофической специализации все выявленные виды являются зоофагами. По числу поколений в год разделяются на 3 группы: Моновольтинные виды: Himacerus apterus (Fabr., 1798), Nabis sinoferus sinoferus Hsiao, 1964, Nabis viridulus Spinola, 1837, Anthocoris angularis Reut., 1884, Anthocoris confusus Reut., 1884, Anthocoris limbatus 44 ISSN 2224-5308 Series of biological and medical. 4. 2020

Fieb., 1836, Anthocoris minki pistaciae Wagn., 1957, Rhynocoris annulatus (L., 1758), Rhynocoris iracundus (Poda, 1761), Cyllecoridea decorata (Kiritshenko, 1931), Blepharidopterus angulatus (Fall., 1807), Pilophorus perplexus Douglas & Scott, 1875, Arma custos (Fabr., 1794), Picromerus lewisi Scott, 1874, Rhacognatus punctatus (L., 1758), Troilus luridus (Fabr., 1775), Pinthaeus sanguinipes (Fabr., 1781), Zicrona caerulea (L., 1758); Бивольтинные виды: Nabis pallidus Fieb., 1861, Anthocoris nemoralis (Fabr., 1794), Orius majusculus (Reut., 1879), Xylocoris cursitans (Fall., 1807), Deraeocoris lutescens (Schill., 1830); Поливольтинные виды: Anthocoris nemorum (L., 1761), Anthocoris pilosus (Jak., 1877), Orius laticollis laticollis (Reut., 1884), Orius minutus (L., 1758), Orius niger (Wolff, 1811), Campylomma verbasci (Meyer-Dur, 1843); Неизвестно число поколений 1 вида: Empicoris vagabundus (L., 1758). Среди хищных полужесткокрылых Чарынского ГНПП в стадии имаго зимуют 21 вид: Nabis sinoferus sinoferus Hsiao, 1964, Nabis pallidus Fieb., 1861, Nabis viridulus Spin., 1837, Anthocoris angularis Reut.,1884, Anthocoris confusus Reut.,1884, Anthocoris limbatus Fieb., 1836, Anthocoris minki pistaciae Wagn., 1957, Anthocoris nemorum (L., 1761), Anthocoris nemoralis (Fabr., 1794), Anthocoris pilosus (Jak., 1877), Orius laticollis laticollis (Reut., 1884), Orius majusculus (Reut., 1879), Orius minutus (L., 1758), Orius niger (Wolff, 1811), Xylocoris cursitans (Fall., 1807); Deraeocoris lutescens (Schill., 1830), Arma custos (Fabr., 1794), Rhacognatus punctatus (L., 1758), Troilus luridus (Fabr., 1775), Pinthaeus sanguinipes (Fabr., 1781), Zicrona caerulea (L., 1758); в стадии имаго и личинки – 1 вид: Empicoris vagabundus (L., 1758); в стадии личинки – 2 вида: Rhynocoris annulatus (L., 1758), Rhynocoris iracundus (Poda, 1761; а в стадии яйца – 6 видов: Himacerus apterus (Fabr., 1798), Campylomma verbasci (M.-D., 1843), Cyllecoridea decorata (Kiritsh., 1931), Blepharidopterus angulatus (Fall., 1807), Pilophorus perplexus Douglas & Scott, 1875, Picromerus lewisi Scott, 1874. По экологическим особенностям все виды мезофилы. По приуроченности к местам обитания полужесткокрылые Чарынского ГНПП подразделяются на несколько групп: дендробионты (15 видов), дендро-тамнобионты (2 вида), дендро-тамно-хортобионты (2 вида), дендро-хортобионты (9 видов), тамно- хортобионт (1 вид), эврибионт (1 вид). 2 вида включены в Красную книгу Алматинской области: Arma custos (Fabricius, 1794) и Zicrona caerulea (Linnaeus, 1758). Kлючевые слова: дендробионтные полужесткокрылые, Чарынский Государственный национальный природный парк, Юго-Восточный Казахстан.

Information about authors: Baіzhunуs M., PhD student, Kazakh National Agrarian University, Almaty, Kazakhstan; [email protected]; https://orcid/0000-0002-3888-9437 Esenbekova P.A., candidate of biological sciences, Institute of Zoology, GS MRS RK, Almaty, Kazakhstan; [email protected]; https://orcid/0000-0002-5947-8514 Anarbekova G.D., candidate of biological sciences, Kazakh National Agrarian University, Almaty, Kazakhstan; [email protected];

REFERENCES

[1] Esenbekova P.A., Nurgaliev A.E. To the fauna of aquatic hemiptera of Charyn natural park // Bulletin of KazNU after al-Farabi. Almaty, 2010. N 1 (43). P. 89-91. [2] Esenbekova P.A., Bayzhanov M.Kh., Ubraimov A.A. Materials for the autumn fauna of predatory aquatic beetles of the Ili River // Proceedings of the Charyn State National Natural Park. Almaty, 2013. Vol. 1. P. 100-102. [3] Kirichenko A.N. Methods for collecting true hemiptera and studying local faunas / A.N. Kirichenko, Publishing House of the USSR Academy of Sciences. M., L., 1957. 124 p. [4] Kerzhner I.M., Yachevsky T.L. Order Heteroptera (Hemiptera) true bugs. Key to insects of the European part of the USSR: in five volumes / I.M. Kerzhner, T.L. Yachevsky // M., L.: Science. 1964. Vol. 1. P. 655-845. [5] Palyi V.F. Methods of studying fauna and phenology of insects / V.F. Palyi. Voronezh, 1970. P. 1-192. [6] Fasulati, K.K. Field study of terrestrial invertebrates // K.K. Fasulati. M. 1971. 424 p. [7] Koschel H. Zur Kenntnisder Raubwanze Himacerus apterus F. (Heteroptera, Nabidae). Teil. I, II // Z. angew. Entomol. 1971. Bd. 68. Vol. 1. P. 1-24; Vol. 2. P.113-137. [8] Kerzhner I.M. Hemiptera family of Nabidae. Proboscis insects // Fauna of the USSR. Vol. 13. Vol. 2. L. Nauka., 1981. 327 p. [9] Elov E.S. Hemiptera of Anthocoridae family (Heteroptera) of Central Asia and Kazakhstan // Entomol. review 1976. Vol. 55. 2nd ed. P. 369-380. [10] Puchkov V.G. Hemiptera. Reduviidae. Fauna of Ukraine // Naukova Dumka. Kiev. 1987. Vol. 21. 5th ed. 248 p. [11] Drapolyuk I.S. Overview of horsefly bugs (Heteroptera, Miridae) of theUSSR and Mongolia fauna // Insects of Mongolia. Vol. 7. L.: Publishing House "Science", 1980. P. 43-68. [12] Puchkov V.G. Pentatomidea of Central Asia (Hemiptera, Pentatomidea). Frunze: Ilim, 1965. 329 p.

45 News of the National Academy of Sciences of the Republic of Kazakhstan

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 46 – 51 https://doi.org/10.32014/2020.2519-1629.31

UDC 581.9 (574.3)

Е. М. Gabdullin1, А. N. Kupriyanov2, S. М. Adekenov1

1JSC «International Research and Production Holding «Phytochemistry», Karaganda, Kazakhstan; 2Kuzbass Botanical Garden, Federal Institute of Coal and Coal Chemistry SB RAS, Kemerovo, Russia. E-mail: [email protected], [email protected]

ARTEMISIA L. (SUBGEN. SERIPHIDIUM (BESS.) PETERM.IN KAZAKH UPLAND

Abstract. Kazakh Upland (KU) belongs to the steppe zone and the zone of northern deserts. The zoning of vegetation is disturbed by the presence of numerous mountain elevations more than 1000 m high (Karkaraly mountains, Bayan-Aul, Bektauata, Kyzylarai, Ulytau, Arganaty, Chingiztau ridge). Its territory is 641.7 km2, which is about 23.5% of the territory of Kazakhstan. Kazakh uplands is located in six floristic regions and subareas: 5. Kokshetau (Koksh.); 10. Western upland (WU); 10a Ulytau (Ulyt.); 11. Eastern upland (EU); 11a. Karkaraly (Kark.); 16. Betpak-Dala (BD). A feature of the territory is the presence of steppe and desert species of Artemisia. In total, 17 species from 4 sections are found on the territory of KU, which is about 40% of all species of Artemisia subsp Seriphidium in flora of Kazakhstan: Sect. 1. Junceum: A. juncea, A. serotina; sect. 2. Leocophyton: A. turanica; sect. 3. Sclerophyllum: A. sublessingiana; sect. 4. Halophyllum: A. saissanica, A. scopaeformis, A. camelorum, A. gracilescens, A. halophila, A. pauciflora, A. lerchiana, A. semiarida, A. terrae-albae, A. compacta, A. kasakorum, A. nitrosa, A. schrenkiana. Two species of A. saissanica, A. scopaeformis are endemic to Kazakhstan. Key words: Kazakh Upland, Flora of Kazakhstan, Artemisia subsp. Seriphidium.

The subgenus Seriphidium was isolated as a separate genus Pontedera [1]. W. Besser [2] began to consider Seriphidium as a section of the genus Artemisia L. The composition of the genus Artemisia from four subgenus Artemisia, Absinthium, Dracunculus, Seriphidium was supported by most botanists of the XIX century [3-6], K. Lessing [7] raised the status of Seriphidium to a subgenus. The number of the genus Artemisia L. is 450–500 species [8–10]. There are more than 100 species of the subgenus Seriphidium from Asia, Africa, China [11-14]. In the flora of Kazakhstan, there are 43 species of the subgenus Seriphidium [15]. The Kazakh upland (KU) is a low, strongly rugged mountain mass, towering above the smooth surface of the Mesozoic peneplain formed on the vast Kazakh shield. In the north, the upland passes into the West Siberian lowland, in the northeast into the wide Irtysh valley, and in the west and southwest adjoins to it the young Neogene plateaus of Turgai and southern Betpak-dala, in the southeast it rests in the mountains of Altai and Tarbagatai. The southern border of KU extends somewhat south of 46° north latitude and covers the northern and partially central part of Betpakdala. The KU area is 641.7 km2, which is about 23.5% of the territory of Kazakhstan. Most of the territory of KU belongs to the steppe zone and the zone of northern deserts. The zoning of vegetation is violated by the presence of numerous mountain elevations more than 1000 m high (Karkaraly mountains, Bayan-Aul, Bektauata, Kyzylarai, Ulytau, Arganaty, Chingiztau ridge) and a very large number of individual small mountain mass scattered throughout the territory (mountains Ku, Akdym, Kyzyltas, Bekturmys, Bugyly, etc.). According to the floristic zoning accepted in the Flora of Kazakhstan, the Kazakh upland is located in six floristic regions and subareas: 5. Kokshetau (Koksh.); 10. Western upland (WU); 10a Ulytau (Ulyt.); 11. Eastern upland (EU); 11a. Karkaraly (Kark.); 16. Betpak-Dala (BD). The aim of this work is a critical generalization of the distribution of Artemisia L. species subgen. Seriphidium (Bess.) Peterm. in this area. The main materials for writing the summary of the flora were our 46 ISSN 2224-5308 Series of biological and medical. 4. 2020 own collections, as well as materials stored in the herbarium institutions of Kazakhstan and Russia (AA, MW, LE, TK, KUZ, KG). Subgenus Seriphidium (Bess.) Peterm. 1848, Deutschl. Fl.: 294. – Artemisia sect Seriphidium Bess. 1829, Bul. Soc. Nat. Mosc., 1,8: 222; Poljak. 1961, Fl. USSR, 26: 562. – Seriphidium (Bess.) Poljak. 1961, Тр. Инст. Бот. АН Каз ССР, 11: 171. Sect. 1. Junceum Poljak., 1961 in Fl. USSR. 26: 626 (descr.ross.); Filat., 1986, Novit. Syst. Plant. Vascul., 23: 219. Subsect. Juncaceae Filat., 1986, Novit. Syst. Plant. Vascul., 23: 219. A. juncea Kar. et Kir. 1842, in Bull. Soc. Nat. Mosc. 15, 2: 383; Filat., 1966, Fl. Kaz., 9: 116; Filat., 1982, Novit. Syst. Plant. Vascul., 19: 171; Bakanova, 1993, Determ. Plants Central Asia, 10: 578. 10: 586. Typus: East upland, «In salsis Songoriae ad fl. Ajagus rarior VIII» (MW) On the sands, on the gravel and rocky slopes, along temporary streams, pebbles and clayey outcrops. Rarely 10. WU; 10a. Ulyt .; 11. EU; 11a. Kark .; 16. BD. Subsect. Robustae Filat., 1986, Novit. Syst. Plant. Vascul., 23: 220. A. serotina Bunge, 1852, Beitr. Kenntn.Fl. Russl.: 165; Filat., 1966, Fl. Kaz., 9: 136; Filat., 1982, Novit. Syst. Plant. Vascul., 19: 177; Bakanova, 1993, Determ. Plants Central Asia, 10: 577. Typus: Uzbekistan, «Zwischen Buchara und Samarkand, 31 VIII 1841, Lehmann». Saline soils, solonetzes, solonchaks, temporary drains on clayey and gravel soil. Rarely 10. WU; 11. EU; usually 16. BD. Sect. 2. Leocophyton Filat. 1986., Novit. Syst. Plant. Vascul., 23: 222. Typus: A. sieberi Bess. Subsect. Turaniaceae Filat. 1986, Novit. Syst. Plant. Vascul., 23: 224. A. turanica Krasch. 1930, Мат. комис. эксп. исслед. 26: 270; Filat., 1966, Fl. Kaz. 9: 137; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 180; Bakanova, 1993, Determ. Plants Central Asia. 10: 578. Typus: Turgay, "Akmola region, Atbasar district, the Sary-su river in the lower reaches, the vicinity of the heights of Orta-kagaun, wormwood steppe in the valley, 8 VI 1914, No. 5251, I.М. Krasheninnikov” (LE). On clayey, sabulous, sandy, saline soils. Rarely 16. BD. Sect. 3. Sclerophyllum Filat., 1986, Novit. Syst. Plant. Vascul., 23: 224. Typus: A. cina Berg et Poljak. Subsect. Kazachstanicae Filat., 1986, Novit. Syst. Plant. Vascul., 23: 227. A. sublessingiana Krasch. ex Poljakov, 1954, Not. Sist. Herb. Inst. Bot. Acad. Sci. URSS, 16: 395; Filat., 1966, Fl. Kaz. 9: 131; Filat., 1982, Novit. Syst. Plant. Vascul., 19: 171; Bakanova, 1993, Determ. Plants Central Asia, 10: 570. – A. polysticha Poljak. 1954, Bot. Mat. (Leningrad), 16: 420. Typus: "Kazakhstan, southern Balkhash, on clayey hills along the Lepse River, near the village of Romanovka, 7 IX 1934, I. and O. Linchevski" (LE). On gravelly, stony, clayey, saline slopes of hills and low mountains, in the steppes on saline soils. Usually 10. WU; 10а. Ulyt.; 11. EU; 11а. Kark.; 16. BD. Sect. 4. Halophyllum Filat. 1986, Novit. Syst. Plant. Vascul., 23: 227. Typus: A. halophilla Krasch. Subsect. Heterophyllae Filat., 1986, Novit. Syst. Plant. Vascul., 23: 231. A. saissanica (Krasch.) Poljak. et Filat. 1963, in Тр. ин-та бот. АН КазССР 15: 234; Filat., 1966, Fl. Kaz., 9: 127; Filat., 1982, Novit. Syst. Plant. Vascul., 19: 177; Bakanova, 1993, Determ. Plants Central Asia 10: 576. Typus: Zaisan basin, «Ust-Kamenogorsk parish, Ozernyi district, west of the Kystav-Kurchum River, solonetzes near lake Karamurza, 10 VIII 1912, n° 456, V. Reznichenko» (LE). Wet solonetzes and solonchaks, shores of salty rivers and lakes. Usually 10. WU; 11. EU; 16. BD. Endemic of Kazakhstan. A. scopaeformis Ledeb. 1845, Fl. Ross. 2. 6: 575; Filat., 1966, Fl. Kaz. 9: 117; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 165; Nasimova, 1993, Determ. Plants Central Asia, 10: 564. Typus: Chu river valley, «Herb. Ledebour, Tschu, N 166, A.Schrenk.» (LE). Ancient river terraces, lake hollows, outskirts of takyrs. Rarely 10. WU; 16. BD. Endemic of Kazakhstan. 47 News of the National Academy of Sciences of the Republic of Kazakhstan

Subsect. Aralocaspicae Filat. 1986, Novit. Syst. Plant. Vascul., 23: 231. A. camelorum Krasch. 1930, Мат. комис. экспед. иссл. 26: 272; Filat., 1966, Fl. Kaz., 9: 126; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 167; Bakanova, 1993, Determ. Plants Central Asia, 10: 569. Typus: Turgay, «Kasakstan, prov. Turgai, fl. Dschussa, prope Kargala-ksyl (Sary-in) 4 VII 1914, N. Krasheninnikov» (LE). Outbreak of tertiary carbonate clays. Rarely 10. WU; 10а. Ulyt. A. gracilescens Krasch. et Iljin s. l. 1949 in Animadv. Syst. Herb. Univ. Tomsk. 1–2, 2: 3; Filat., 1966, Fl. Kaz., 9: 122; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 167; Nasimova, 1993, Determ. Plants Central Asia, 10: 567. Typus: South of Western Siberia, « Altai Territory, Kulundinskaya steppe, pine-forest saline lakes, on solonetzes, 23 VII 1913, L. А. Utkin» (TAK, isotypus LE). Solonetz steppes, slopes and peaks of saline hills. Usually 10. WU; 10а. Ulyt.; 11. EU; 11а. Kark. On the territory of 11. EU, subspecies are sometimes found: A. gracilescens subsp. depauperata Kupr. with small anthodes located at the end of branches and A. gracilescens subsp maxima Kupr. with large anthodes and thick winding stems (Kupriyanov, 1995). A. halophila Krasch. 1930, Мат. комис. эксп. ислл. 26: 272; Filat., 1966, Fl. Kaz., 9: 117; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 167; Nasimova , 1993, Determ. Plants Central Asia, 10: 567. Typus: « Kazakhstan, Adaevskii district, Ustyurt – Emba, Donguz-tau, 2 X 1926, № 232, R.Yu. Rozhevits and A.O. Geirikhson » (LE). Tertiary salted clays, solonchaks. Rarely 10. WU 16. BD.. A. pauciflora Weber, 1775, Dissert. Artem.: 26; Filat., 1966, Fl. Kaz., 9: 124; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 166; Nasimova, 1993, Determ. Plants Central Asia, 10: 567. – A. pauciflora subsp. majkara H.Krasch. 1930, Report on the work of the soil-botanical detachment of Kaz. expeditions of the USSR Academy of Sciences. 1926, 3, 2: 273. – A. majkara (Krasch.) Pavl. 1938, Fl. Centr. Kazak. 3: 270. Typus: Lower reaches of the Volga river, «In ripa elata nigra Wolgae fluvii ut et Zarizinae ad Wolgam fluvium» Solonetz steppes, solonetzes, solonchaks. Usually 5. Koksh.; 10. WU; 10а. Ulyt.; 11. EU; 11а. Kark.; 16. BD. As noted by I.M. Krasheninnikov (1926) south of 48 ° N on solonetzic complexes, a special form of A. pauciflora, called by the local population "Maikara", with drooping branches, is very characteristic. He isolated it in a special subspecies of A. pauciflora subsp. majkara. Paratype selected from territory 10. WU: «fl. Sary-su, prope Ted-bulak, 4 VI 2014, n° 5225, leg. H. Krascheninnikov». Later N.V. Pavlov (l.c.) raised the rank to a species. According to our observations, specimens with drooping branches can occur within the same population. On the territory of KU, we did not see populations of A. pauciflora, consisting solely of specimens with drooping branches, there are also no differences in the ecology of this form (=A. pauciflora v. majkara comb. nov.). A. lerchiana Web. ex Stechm. 1775, Dissert Artem. 24: 25; Filat., 1966, Fl. Kaz. 9: 120; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 168; Nasimova , 1993, Determ. Plants Central Asia, 10: 564. Typus: Lower reaches of the Volga river, «Astrachaniae ut et ad ripam latam nigram (Tschornoi Jar) Wolgae fluvii D. Lerche» (MW) On sabulous saliferous and saline soils, solonetzes. Rarely 10. WU. A. semiarida (Krasch. et Lavrenko) Filat. 1966, in Fl. Kaz. 9: 121; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 169; Nasimova , 1993, Determ. Plants Central Asia, 10: 568. – A. terae-albae subsp. semiarida Krasch. et Lavr. ex Kryl. 1949, Fl. of West. Siberia. 11: 2787. Typus: East upland, «Semipalatinsk region, Karkaraly district, between Ulkun and Kishkinokereptas. 18.08. 1910. S. Kucherevskaya» (LE, the lectotype was chosen by N. S. Filatova). On light-chestnut soils in solonetzic and solonchak complexes of vegetation. Rarely 10. WU; 11. EU; 16. BD. On the territory of 10. WU, A. semiarida subsp. argillaceum Kupr. (1995, Bot. Res. Siberia and Kazakhstan, I: 20) with a thin root, loose, widely spaced panicle and omitted capitulum A. terrae-albae Krasch. s.l. 1930, Мат. комис. эксп. ислл. 26: 269; Filat. 1966, in Fl. Kaz. 9: 120; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 169; Nasimova , 1993, Determ. Plants Central Asia, 10: 568. 48 ISSN 2224-5308 Series of biological and medical. 4. 2020

Syntypi: Turgay, «Kazakhstan, Turgai, the Sarysu River in its lower reaches, environs of ur. Kizil- Dzhangil, near Kugaly-say, wormwood steppe, 29 VI 1914, № 5189, I. Krasheninnikov; Mangyshlak, Aktau, the region of the village of Ogyuz, sandy slopes of the valley, wormwood and gramineous association, 11 X 1926, № 1069, I. Krasheninnikov» (LE). On the stony and gravelly slopes of hills, in sandy and clay deserts, wide intersectional basins. Usually 10. WU; 10а. Ulyt.; 16. BD. A. terrae-albae var pallida (Poljak.et Krasch.) Filat. (1966, Fl. Kaz. 9: 104) found in the vicinity of Zhezkazgan. It is characterized by a wide-ovoid capitul. Subsect. Mongolicae Filat. 1986. Novit. Syst. Plant. Vascul. 23: 234. A. compacta Fisch. ex DC. 1838, Prodr. 6:102; Krasch. in Fl. of West. Siberia. 1949, 11:2784; Filat., 1984, Novit. Syst. Plant. Vascul., 21:170; Nasimova, 1993, Determ. Plants Central Asia, 10: 565. – A. albida Willd. ex Spreng. 1826. Sist. Veg. 3: 496; Filat. 1966, in Fl. Kaz.. 9:139. Typus: Altai, «ad Tschujam, 1832, Fischer» (LE) Saline clay, solonetzs, solonchaks. Rarely 5. Koksh.; 10. WU. A. kasakorum (Krasch.) Pavl. s. l. 1938. Fl. of Centr. Kazakh. 3: 274; Kupr. 1995, Bot. Res. Siberia and Kazakhstan, I: 22. – A. maritima Bess. subsp. kasakorum N. Krasch. 1930, Report on the work of the soil and botan. detach. of the Kazakh exped. of the Acad. of Sci. of the USSR Research. 1926, 3, 2: 272. Typus: Ustyurt: «Kasachstan, prope Ustj-urt, inter Kaiakty et Sorpai-orpa, 17 VI 1926, Roschevitz et Iljin» (LE). Plump solonchaks, solonetzs. Rarely 10. WU; 11. EU; 16. BD. In the first third of the 20th century, the name A. maritima was considered as Kazakhstani and Central Asian species of wormwood with pinnatisect leaves. The determination of the systematic location of A. kasakorum has been examined in various ways. N. Filatova [15], considered this species as a variation of A. nitrosa, since the lower stem leaves are exclusively twice pinnatisected. T. Nasimova [17] referred it to A. scopaeformis Ledeb. in which the lower stem leaves are once pinnatisected. N. Krasheninnikov (l.c.) diagnosed “folia caulina interior petiolata intermedia sesilia, 1 <5–2 cm longa, 3-6 mm lataambitu oblong-linearia, bippinatisecta...”, which excludes the proximity of A. kasakorum to A. scopaeformis. Along with a typical subspecies, A. kasakorum subsp adekenovii Kupr. found in salt bogs 11. EU, with thin surface roots, small (1.0-1.5 cm) leaves [16]. A. nitrosa Weber s.l. 1775. Dissert. Artem.: 24; Filat., 1966, Fl. Kaz., 9: 126; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 166. Typus: South of Krasnoyarsk region, «in montosis lacus salsi Utschjumi Krasnojarensis tractus sub finem Augusti adhuc florentem Luneni» (MW). Solonetzes, solonchaks, saline lands. Usually 5. Koksh.; 10. WU; 10а. ulyt.; 11. EU; 11а. Kark.; 16. BD. In the mountains of Karkaraly, A. nitrosa subsp. subglabra (Krasch.) Kupr., with evanesced pubescence and straw-yellow almost bare stems. A. schrenkiana Ledeb., s.l. 1845, Fl. Ross. 2: 575; Filat., 1966, Fl. Kaz. 9: 127; Filat., 1984, Novit. Syst. Plant. Vascul., 21: 170; Nasimova , 1993, Determ. Plants Central Asia, 10: 565. Typus: Tarbagatai, «In Sibiria altaica ad m. Tarbagatai, VIII, 1840, Schrenk» (LE) Solonetzes, salsuginous meadows, solonchaks. Usually 5. Kosh.; 10. WU; 10а. Ulyt.; 11. EU; 11а. Kark.; 16. BD. A. schrenkiana ssp compressa Filat. located in territory of 10. ЗМ. with capituls grouped at the end of branches and A. schrenkiana ssp. declinata Kupr. (1995, Bot. Res. Siberia and Kazakhstan. I: 19) with branches almost horizontally located on the shoot and capituls lowered.

49 News of the National Academy of Sciences of the Republic of Kazakhstan

Е. М. Ғабдуллин1, А. Н. Куприянов2, С. М. Әдекенов1

1«Фитохимия» халықаралық ғылыми-өндірістік холдингі» АҚ, Қарағанды, Қазақстан; 2Кузбасс ботаникалық бағы, РҒА СБ Көмір және көмір химиясы федералды институты, Кемерово, Ресей

ҚАЗАҚ ҰСАҚ ШОҚЫСЫНДАҒЫ ARTEMISIA L. (SUBGEN. SERIPHIDIUM (BESS.) PETERM

Аннотация. Қазақ ұсақ шоқысы (ҚҰШ) дала және солтүстік шөл аймағына жатады. Өсімдіктердің аймақ биіктігі 1000 м-ден асатын тау көтермелері негізінде (Қарқаралы, Баян-ауыл, Бектауата, Қызыларай, Ұлытау, Арғанаты таулары, Шыңғыстау жотасы) бұзылады. Ұсақ шоқылар солтүстікте Батыс-Сібір ойпатына, солтүстік-шығыста Ертіс кең алқабына ауысады, ал батысы мен оңтүстік-батысында оған Торғай және Оңтүстік Бетпақдала жас неогенді үстірттері жалғасады, оңтүстік-шығыста Алтай мен Тарбағатай тауларына тіреледі. ҚҰШ оңтүстік шекарасы 46° солтүстік ендіктен біршама оңтүстікке қарай созылып, Бетпақдаланың солтүстік және ішінара орталық бөлігін қамтиды. Оның аумағы 641,7 км2, яғни Қазақстан аумағының 23,5%-ын құрайды. Қазақ ұсақ шоқысы алты флористикалық және кіші аудандарда орналасқан: 5. Көкшетау (Көкш.); 10. Батыс ұсақ шоқысы (БҰШ); 10а Ұлытау (Ұлыт.); 11. Шығыс ұсақ шоқысы (ШҰШ); 11а. Қарқаралы (Қарқ.); 16. Бетпақдала (БД). Аумақтың ерекшелігі – Artemisia дала және шөл түрлері болып келеді. Әлемдік флорада Artemisia L. тегінің саны – 450-500 түр. Seriphidium туыс тармағының Азиядағы, Африкадағы, Қытайдағы 100-ден астам түрі бар. Қазақстан флорасында Seriphidium туыс тармағының 43 түрі өседі. ҚҰШ аумағында барлығы 4 секцияның 17 түрі кездеседі, бұл Қазақстан флорасындағы Seriphidium туыс тармағы Artemisia-ның барлық түрлерінің 40%-ын құрайды: 1 Секция. Junceum Poljak. Juncaceae Filat. кіші секциясына Artemisia juncea Kar. et Kir. – қияқ жусан, Robustae Filat. кіші секциясына Artemisia serotina Bunge – күздік жусан жатады. 2 Секция. Leocophyton Filat. Turaniaceae Filat. кіші секциясына. Artemisia turanica Krasch. – туран жусаны жатады. 3 Секция. Sclerophyllum Filat. Kazachstanicae Filat. кіші секциясына Artemisia sublessingiana Krasch. ex Poljakov – майқара жусан жатады. 4 Секция. Halophyllum Filat. Heterophyllae Filat. кіші секциясына Artemisia saissanica (Krasch.) Poljak. et Filat. – зайсан жусаны және Artemisia scopaeformis Ledeb. – шыбық тәрізді жусан жатады, Aralocaspicae Filat. кіші секциясына келесі түрлер жатады: Artemisia camelorum Krasch. – түйе жусан, Artemisia gracilescens Krasch. et Iljin – жұқа жусан, Artemisia halophila Krasch. – тұзды жусан, Artemisia pauciflora Weber – қара жусан, Artemisia lerchiana Web. ex Stechm. – Лерх жусаны, Artemisia semiarida (Krasch. et Lavrenko) Filat. – жартылай құрғақ жусан, Artemisia terrae-albae Krasch. – боз жусан жатады. Mongolicae Filat. кіші секциясына келесі түрлер жатады: Artemisia compacta Fisch. ex DC. – шағын жусан, Artemisia kasakorum (Krasch.) Pavl. – қазақ жусан, Artemisia nitrosa Weber – селитра жусаны, Artemisia schrenkiana Ledeb. – Шренк жусаны. Artemisia saissanica (Krasch.) Poljak. et Filat. – зайсан жусаны және Artemisia scopaeformis Ledeb. – шыбық тәрізді жусан Қазақстан эндемигі болып саналады. Түйін сөздер: Қазақ ұсақ шоқысы, Қазақстан флорасы, Artemisia subsp. Seriphidium.

Е. М. Габдуллин1, А. Н. Куприянов2, С. М. Адекенов1

1АО «Международный научно-производственный холдинг «Фитохимия», Караганда, Казахстан; 2Кузбасский ботанический сад, Федеральный Институт угля и углехимии СО РАН, Кемерово, Россия

ARTEMISIA L. (SUBGEN. SERIPHIDIUM (BESS.) PETERM. В КАЗАХСКОМ МЕЛКОСОПОЧНИКЕ

Аннотация. Казахский мелкосопочник (КМ) относится к степной зоне и зоне северных пустынь. Зональность растительности нарушается наличием многочисленных горных поднятий высотой более 1000 м (горы Каркаралы, Баян-Аул, Бектауата, Кызыларай, Улытау, Арганаты, хребет Чингизтау). На севере мелкосопочник переходит в Западно-Сибирскую низменность, на северо-востоке – в широкую долину Иртыш, а на западе и юго-западе к нему примыкают молодые неогеновые плато Тургая и южной Бетпак- далы, на юго-востоке упирается в горы Алтая и Тарбагатая. Южная граница КМ простирается несколько южнее 46° с.ш. и охватывает северную и частично центральную часть Бетпакдалы. Его территория составляет 641,7 км2, что охватывает около 23,5% территории Казахстана. Казахский мелкосопочник находится в шести флористических районах и подрайонах: 5. Кокшетау (Кокш.); 10. Западный мелкосопочник (ЗМ); 10а Улытау (Улыт.); 11. Восточный мелкосопочник (ВМ); 11а. Каркаралы (Карк.); 16. 50 ISSN 2224-5308 Series of biological and medical. 4. 2020

Бетпак-Дала (БД). Особенностью территории является наличие степных и пустынных видов Artemisia. В мировой флоре численность рода Artemisia L. составляет около 450-500 видов. Видов подрода Seriphidium из Азии, Африки, Китая насчитывается более 100 видов. Во флоре Казахстана 43 вида подрода Seriphidium. Всего на территории КМ встречается 17 видов из 4 секций, что составляет около 40% всех видов Artemisia подрода Seriphidium флоры Казахстана: Секция 1. Junceum Poljak. K подсекции Juncaceae Filat. относится Artemisia juncea Kar. et Kir. – полынь ситниковая к подсекций Robustae Filat. Artemisia. serotina Bunge – полынь осенняя. Секция 2. Leocophyton Filat., подсекции Turaniaceae Filat. относится Artemisia turanica Krasch. - полынь туранская. Секция 3. Sclerophyllum Filat., подсекции Kazachstanicae Filat. относится Artemisia sublessingiana Krasch. ex Poljakov – полынь лессинговидная. Секция 4. Halophyllum Filat., подсек- ции Heterophyllae Filat. относится Artemisia saissanica (Krasch.) Poljak. et Filat. – полынь зайсанская и Artemisia scopaeformis Ledeb. – полынь прутьевидная. К подсекции Aralocaspicae Filat. относится следующие виды Artemisia. camelorum Krasch. – полынь верблюдов, Artemisia gracilescens Krasch. et Iljin – полынь тонковатая, Artemisia halophila Krasch. - полынь солелюбивая, Artemisia pauciflora Weber – полынь черная, Artemisia lerchiana Web. ex Stechm. – полынь Лерха, Artemisia semiarida (Krasch. et Lavrenko) Filat. – полынь полусухая, Artemisia terrae-albae Krasch. – полынь белоземельная. К подсекции Mongolicae Filat. относится следующие виды Artemisia compacta Fisch. ex DC. – полынь компактная, Artemisia kasakorum (Krasch.) Pavl. – полынь казахская, Artemisia nitrosa Weber - полынь селитряная, Artemisia schrenkiana Ledeb. – полынь Шренка. Два вида Artemisia saissanica (Krasch.) Poljak. et Filat. – полынь зайсанская и Artemisia scopaeformis Ledeb. – полынь прутьевидная являются эндемиками Казахстана. Ключевые слова: казахский мелкосопочник, флора Казахстана, Artemisia subsp. Seriphidium.

Information about authors: Gabdullin Erbol Madiyarovich, Researcher, JSC «International Research and Production Holding «Phytochemistry», Karaganda, Kazakhstan; [email protected]; https://orcid.org/0000-0002-6444-444X Kupriyanov Andrey Nikolaevich, Director of the Kuzbass Botanical Garden, Doctor of Biological Sciences, Professor, Kuzbass Botanical Garden, Federal Institute of Coal and Coal Chemistry SB RAS, Kemerovo, Russia; [email protected]; https://orcid.org/0000-0001-5129-3497 Adekenov Sergazy Mynzhasarovich, General Director of JSC "IRPH "Phytochemistry", Academician of the NAS RK, Doctor of Chemical Sciences, Professor, JSC «International Research and Production Holding «Phytochemistry», Karaganda, Kazakhstan; [email protected]; https://orcid.org/0000-0001-7588-6174

REFERENCES

[1] Pontedera J. Dissertationes. 1720. Patavii. 296 p. [2] Besser W.G. De Seriphidiis seu de sectione III Artemisiarum Linnaei // Bull. Soc. Nat. M. 1834. Vol. 7. P. 5-46. [3] De Candolle A.P. Prodromus systimatis naturalis regni vegatabilis. 1837. Pars. 6. Parisiis. P. 93-127. [4] Ledebour C.F. Flora Rossica Stuttgard. 1845-1846. T. 2, fasc. 2 (Artemisia: P. 560-600). [5] Boisser E. Flora Orientalis. 1875. Vol. 3. P. 360-376. [6] Hooker J.D. Flora of British India. Vol. 3. 1882. P. 321-330. [7] Lessing C. F. Sinopsis generum Compositarum. Berolinii. 1832. 264 p. [8] Anderberg A.A., Baldwin B.G., Bayer R.G., et al. The families and genera of vascular plants. Vol. VIII. Flowering plants. . Asterales / edited by K. Kubitzki; volume editors J.W. Kadereit and C. Jeffrey. Berlin: Springer. 2007. P. 61-588. [9] Wales J., McArtur E.D. Artemisia systematics and phylogeny: cytogenetic and molecular insight // Schrabland ecosystem genetics and biodiversity. 2001. Provo UT. P. 67-74. [10] Koul B., Taak P., Kumar A., Khatri T., Sanyal I. The Artemisia genus: a review on Traditional Users, Phytochemical Constituens, Pharmacologica, Properties and Germplasm Conservation // J. Glicomics Lipidomics. 2017. Vol. 7 (1). P. 142-148. DOI: 10.4172/2153-0637.1000142/ [11] Filatova N. Generis Artemisia L. subgeneris Seriphidium (Bess.) Peterm. Species florae URSS // Novitatus systemstica plantarum vascularium. 1984. T. 21. Leningrad.: Nauca. P. 155-185. [12] Filatova N. Systema specierum generis Artemisia L. subgeneris Seriphidium (Bess.) Peterm. in Eurasia et Africa Boreale vigentium // Novitatus systemstica plantarum vascularium. 1986. T. 23. Leningrad.: Nauca. P. 217-240. [13] Ling Y. R. The chinense Seriphidium (Bess.) Poljak. The classification, distribution and application of Seriphidium (Bess.) Poljak. In China // Dul. Bot. 1988. Res. Vol. 8 (3). P. 111-123. [14] Ling Y.R. A. revien of the classification, distribution and application of Artemisia L. and Sereipidium (Bess.) Poljak. In China // Guahaia. 1991. Vol. 1 (11). P. 19-35. [15] Filatova N. Genus Artemisia L. // Flora of Kazakhstan. 1966. T. 9. Alma-Ata. P. 86-140. [16] Kupriyanov A.N. Wormwood of Central Kazakhstan (Artemisia L., Asteraceae) // Bot. Res. Siberia and Kazakhstan. 1995. Vol. 1. P. 4-29. [17] Nasimova T.N. Genus Atemisia L. subgenus Seriphydium (Bess.) Determ. Plants Central Asia. 1993. Vol. 10. Tashkent. P. 563-586.

51 News of the National Academy of Sciences of the Republic of Kazakhstan

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 52 – 61 https://doi.org/10.32014/2020.2519-1629.32

UDC 504.05:62/69 IRSTI 87.15.91

A. Kenzhegaliyev1, A. A. Abilgaziyeva1, A. K. Shakhmanova1, A. Sh. Kanbetov1, D. K. Kulbatyrov1, V. F. Zaitsev2, M. K. Urazgaliyeva1

1Non-profit JSC «Atyrau Oil and Gas University named after S. Utebayev», Atyrau, Kazakhstan; 2Astrakhan State Technical University, Astrakhan, Russia. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; viacheslav- [email protected]; [email protected]

THE CONDITION OF HYDROBIONTS NEAR KASHAGAN FIELD AREA

Abstract. The study results of the condition of hydrobionts near the artificial islands, where oil and gas fields of “Kashagan” are under development and which was conducted during spring and autumn periods of 2018, showed that 173 species of algae were found in spring as part of phytoplankton and 19 species less, i.e. 154 in autumn. The cyanobacteria outnumbered other species with 51.68%, whereas, diatomic algae predominated in biomass with 80.1%. In 2017 blue-green algae was the largest in number, diatomic algae predominated in biomass in 2017, as well as in 2018. As a part of zooplankton presence of 24 taxons in spring and 23 species in autumn was detected. During study period the other species of zooplankton predominated with 67.79% in number and 95.1% in biomass. The seasonal dynamics of zooplankton described above generally repeated that of 2017, when from spring to autumn there was also a decrease in diversity and a growth in the number of zooplankton. It was found 50 taxons in zoobenthos during both spring and autumn studies. Basically, this number was formed by worms - 72.54%, whereas biomass was predominated by mollusks - 40.26% of the total biomass. The number and biomass of bottom invertebrates were higher in spring 2017 and lower in autumn than in the corresponding seasons of 2018. Key words: NCOC, «Kashagan» field, artificial islands, phytoplankton, zooplankton, zoobenthos.

Introduction. Offshore oil production is an essential component of the world's energy supply [1,2]. It requires the use of increasingly sophisticated technologies and increasing attention due to its harmful effects on the environment. The Kashagan field is one of the largest fields in the world discovered in the last 40 years, as well as the largest oil field at sea [3]. Development of the deposit is carried out under difficult conditions: shelf zone, unfavorable combination of shallow water conditions and ice formation (about 5 months per year), eco-sensitive zone, large depths of deposit occurrence (up to 4800 m), high formation pressure (80 MPa), high content of hydrogen sulfide (up to 19%) from artificial islands [4,5]. Considering that the area of deposit location is productive of not only hydrocarbon fuel, but also biodiversity of the sea, i.e. there is a reproduction process of semi-passing ichthyofauna and their feed capacity, it becomes significantly important to monitor them. This work is devoted to the study of the latter. Researches on the condition of hydrobionts (phytoplankton, zooplankton and zoobenthos) in this area began from the moment of oil exploration [6-11]. The development of phytoplankton depends on many factors, the author of the work [4] has established a close relation with the volume of the Ural River, as well as salinity of water for diatomic algae. Research [9] reports that it depends primarily on the temperature and presence of biogens (silicon and phosphorus). In recent decades, phytoplankton dynamics have been influenced by rising sea levels. 52 ISSN 2224-5308 Series of biological and medical. 4. 2020

The author of the work [7] studied seasonal dynamics and established the following: from spring to summer the number of cladocera crustaceances increased 12.7 times, biomass increased 8.8 times and the reduction of the number and biomass from summer to autumn. It is reported in the research work [10] that the monitoring did not reveal significantly negative changes in the composition, distribution and productivity of zooplankton in the North-East Caspian Sea. The dynamics of zooplankton biomass reflected the natural processes, which are typical for inter-annual changes in the abundance of plankton invertebrate animals. The results of long-term research of bottom organisms of the north-eastern part of the sea make it possible to do the following: it states in [8] that the distribution of benthos is determined primarily by the type of soils, salinity and gas regime of the bottom layer. During whole period of study, the "Kashagan" structure was predominated by worms on average by 60% and crustaceans by 38% in number and mollusks on average by 50% in biomass. As a result of the conducted research, it was revealed that the largest biomass was observed in the spring period. There was a decrease in the mass of bottom organisms from spring to summer. According to the data of multi-year observations in work [11] the species composition of bottom fauna is relatively stable. Seasonal and multi-year dynamics of zoobenthos number are mainly due to natural factors. The condition of the bottom population of invertebrate animals at the fields, in general, is comparable to its condition at the control stations. Local changes in the composition of bottom sediments, for example, an increase in the share of fine fractions in the construction area of artificial islands leads to a decrease in the share of large forms of benthos (shellfish) and, in some cases, to a decrease in the overall abundance of the bottom population of organisms. Generally, exposed area is small, being limited to a radius of up to 700 meters. After completion of the construction, the composition and abundance of bottom communities are restored quite quickly - within 1-2 years. The authors of the research works [12,13] revealed that the summer distribution of phytoplankton in the area of artificial island D at the Kashagan field is subjected to general patterns of the Northern Caspian Sea. From year to year, there may be differences in its composition, which mainly depends on the inter-annual variability of the hydrological and hydrochemical regime of water. Among all the members of zooplankton species in this part of the sea, copepoda crustaceans are turned out to be the largest mass group. Variation of taxonomic composition of zoobenthos and its quantitative characteristics, predominance of certain groups in biomass and number in its composition on observation stations of the water area of Kashagan field's Island D were primarily related to hydrological and hydrochemical conditions of habitat (among which salinity is on the first place) and type of soil. The study [14] states that the structure of phytoplankton depended on a number of natural and anthropogenic factors. The lowering of sea level was favorable for the main algae divisions. Decreasing concentrations of some pollutants in the water had a positive effect on blue-green and partly green algae. There was a non-linear inter-annual trend of reduction of the average individual weight of the zooplancter throughout all seasons. Considering the increase in zooplankton quantities, this may indicate an increase of eutrophication processes in the context of a sea level decline. Most of the external factors did not have a statistically significant impact on the inter-annual and spatial dynamics of plankton invertebrates. From 2006 to 2016, there was a tendency of a decrease of the average annual values of the macrosoobenthos quantity during irregular inter-annual changes in the biomass value [15]. The number of small-sized autochthonous polychets M.caspica, H.kowalewskii and oligochet decreased the most. The inter-annual dynamics of macrosoobenthos population depended on changes of natural factors, primarily of hydrological (sea level change) and hydrochemical (salinity) parameters. The impact of anthropogenic factors on the structure of macrosoobenthos was local. The purpose of the research is to monitor the dynamics of change of hydrobionts in the hydrocarbon fuel production area and assess their condition. Object and methods of research. The object of the study is the Kashagan field area. Phyto and zooplankton samples were taken from the surface layer of water, whereas zoobenthos was taken from the bottom by a known technique and fixed with 4% formalin. Then they were concentrated by sedimentary method [16-19] and these samples were processed by conventional methods in laboratory conditions [20-22], where the following parameters were determined: composition of species, number of species - million cl. per cubic meter, biomass – mg. per cubic meter of algae; taxonomic composition, 53 News of the National Academy of Sciences of the Republic of Kazakhstan number (ex. per 1 m3) and biomass (mg. per 1 m3) of zooplanktons; taxonomic composition, number (ex. per 1 m2) and biomass (mg. per 1 m2) of zoobenthos. Results and discussion. Samples were taken from 9 stations during spring and autumn periods and were delivered to an accredited laboratory after fixation. The results of the study are given below. The condition of phytoplankton. The species composition for 2018 is given in table 1. 173 species of algae were found as a part of phytoplankton in spring 2018 and composed of 34 blue- green, 106 diatomic, 5 miozoa, 1 ohrophite, 25 green and 2 egglene. 154 species of algae were found as part of phytoplankton in autumn 2018 and composed of 26 blue- green, 89 diatomic, 6 miozoa, 1 ohrophite and 32 green. The number of species decreased by 19 by autumn, but/however 2 species detected which were not found in spring and 3 species were not found which were detected in the spring study.

Table 1 – Species composition of phytoplankton by seasons of 2018 [20]

Number of species Species composition spring autumn Cyanophyta / blue-green 34 – Bacillariophyta / diatomic 106 89 Dinophyta / dinophyta 5 – Ochrophyta / ochrophyta 1 1 Chlorophyta / green 25 32 Euglenophyta / euglena 2 – Cyanobacteria – 26 Miozoa – 6 Total 173 154

M. contortum green algae, diatomic C. choctawhatcheeana, N. cryptocephala, blue-green M. Punctata were the most widespread in the studied water area in spring. The total number of phytoplankton varied from 247 to 5353.8 million cl/m3, with an average value of 933.2 million cl/m3. Blue-green algae predominated in number, among of which A.clathrata (11%) and L.limnetica (14%) were the most. The biomass of phytoplankton ranged from 112 to 3035 mg/m3, with an average value of 874.8 mg/m3. Diatomic predominated in biomass, the share of which was 82% in the total. Large-cell species C.jonesianus (22%) and C.clypeus (9%) have the largest contribution in biomass formation. Blue-green algae species of P.limnetica, G.laxissima, M.punctata, Phormidium sp., P.contorta, diatomic C.choctawhatcheeana, C.meneghiniana, green B.lauterbornii, B.lauterbornii var.crassa met on the most part of water area or throughout the water area in autumn. The following species are common: In spring from the group of Cyanophyta - Lyngbya contorta – 53%, Merismopedia punctata – 62%, Microcystis pulverea f.pulverea- 30%, Merismopedia minima – 30%, Lyngbya limnetica – 47 %, Phormidium tenue – 32%, Spirulina laxissima – 36%; – from group of Bacillariophyta - Amphora coffeaeformis-53%, Cyclotella meneghiniana-57%, Diploneis Smithii – 51%, Navicula cryptocephala – 62%, Navicula radiosa – 34%, Navicula salinarum – 47%, Nitzschia tenuirostris – 32%, Nitzschia tryblionella – 34%, Sellaphora pupula – 55%; – from group of Dinophyta - Gymnodinium variabile – 43%, Peridiniopsis polonica – 38%; – from group of Chlorophyta - Monoraphidium arcuatum – 34%, Monoraphidium contortum - 87%, Monoraphidium griffithii - 36%, Planctonema lauterbornii – 49%; In autumn from the group of Cyanobacteria - Anathece clathrata-55%, Aphanocapsa incerta – 66%, Chroococcus minimus – 70%, Chroococcus minutus – 57 %, Glaucospira laxissima – 96 %, Merismopedia minima – 77%, Merismopedia punctata – 98%, Oscillatoria amphibia – 77 %, Phormidium sp. -94%, Planktolyngbya contorta - 96%, Planktolyngbya limnetica – 100%;  from group of Bacillariophyta - Actinocyclus octonarius – 36%, Caloneis amphisbaena – 30 %, Campylodiscus araliensis – 57%, Campylodiscus clypeus – 40%, Coscinodiscopsis jonesiana – 62%, 54 ISSN 2224-5308 Series of biological and medical. 4. 2020

Cyclotella choctawhatcheeana – 94%, Diploneis interrupta – 60%, Diploneis ovalis – 62%, Diploneis Smithii – 62%, Halamphora coffeiformis – 66%, Halamphora veneta - 36%, Haslea spicula -47%, Hyalodiscus sphaerophorus – 34%, Navicula cryptocephala – 74%, Navicula radiosa – 45%, Navicula rhynchocephala – 47%, Navicula salinarum – 74%, Navicymbula pusilla – 36%, Nitzschia tenuirostris – 68%, Podosira parvula – 53%, Proschkinia longirostris – 36%, Sellaphora pupula – 47%, Thalassiosira caspica – 68%, Tryblionella apiculata – 79%, Tryblionella debilis – 72%;  from group of Miozoa - Prorocentrum cordatum - 64%;  from group of Ochrophyta - Mallomonas sp. – 57%;  from group of Chlorophyta - Binuclearia lauterbornii – 98%, Binuclearia lauterbornii var.crassa - 94%, Chlorella vulgaris - 70%, Monoraphidium contortum - 87%, Monoraphidium griffithii – 36%. As it can be seen from these tables, the number of algae increases from spring to autumn during the study period. During autumn research the following spring algae were absent - blue-green, dinophytic and euglene, on the contrary there appeared other cyanobacteria and mioza. Cyanobacteria having 51.68% predominated in number, blue-green having 30.4% was the second and the green ones having 10.31% was the third (figure 1). Figure 2 shows a chart in biomass, where diatomic predominated with 80.1%, then goes green with 8.44% and cyanobacteria with 7.7%.

Figure 1 – Average number of main divisions of Figure 2 – Average biomass of main divisions phytoplankton in % for 2018 of phytoplankton in % for 2018

The condition of zooplankton. 24 taxons were found as part of zooplankton, 8 of them were rotifer, 3 were cladocera, 7 were copepoda, 6 were other species in spring 2018 and 23 species were present in autumn study. The rotifer decreased from 8 to 3 species, whereas number of copepoda remained unchanged. Cladocera species were not detected, but the number of other species increased by 7 (table 2).

Table 2 – Species composition of zooplankton by seasons of 2018 [12]

Number of species Species composition Spring autumn Rotatoria / rotifera 8 3 Cladocera /cladocera 3 – Copepoda / copepoda 7 7 Others /others 6 13 Total 24 23

As it can be seen from spring period of this table there were Brachionus quadridentatus – 49% and Synchaeta vorax – 38% from rotifera species, Podonevadne camptonyx – 38% and Podonevadne trigona – 43% from cladocera species, Acartia tonsa – 84%, Calanipeda aquae-dulcis – 100%, Halicyclops sarsi – 34% from copepoda species, Bivalvia gen.sp. – 83%. Cirripedia gen.sp. – 62% and Hediste diversicolor – 30% from other species. In autumn period there were Brachionus quadridentatus - 40% from rotifera species, Acartia tonsa - 100%, Calanipeda aquae-dulcis - 100%, 32% Ectinosoma concinnum and 32% Harpacticoida gen.sp. 55 News of the National Academy of Sciences of the Republic of Kazakhstan from copepoda, Bivalvia gen.sp - 47%, Cirripedia gen.sp.- 40%, Hediste diversicolor – 53% and Spionidae gen.sp. – 98% from the other species. During the research period other zooplankton species predominated in the sea area with 68 060 pcs/m3, copepoda were the second with 27345 pcs/m3 and rotifera was the third with 4891 ec/m3 (figure 3, 4).

Figure 3 – The number of main zooplankton groups Figure 4 – The biomass of main zooplankton groups in % for 2018 in % for 2018

Other species had 3942.6 mg/m2 of biomass or 95.1% in number, copepoda crustaceans with 191.34 mg/m2 or 4.6% occupied the following position and biomass of other species did not reach 1%. The condition of macrzoobenthos. 50 taxons from 4 groups were detected during spring studies: worms - 7, shellfish - 9, crustaceans - 32, others - 2 (table 3). H. diversicolor, Oligochaeta gen sp., H. kowalewskii, Pt. pectinata, St. (St.) similis и St. graciloides met everywhere. 50 taxons from 4 groups were identified in autumn studies as well as in spring studies: worms – 7, shellfish - 10, crustaceans - 28, others - 4. H. diversicolor and Oligochaeta gen. sp. met everywhere. Polychete H. kowalewskii, C. lamarcki mollusc, and Pt. pectinata crustaceans, St. graciloides, G. (Y.) pusilla inhabit on the most part of water area.

Table 3 – Species composition of macrozoobenthos be seasons of 2018 [12]

Number of species/taxons Species composition spring autumn Vermes / worms 7 7 Mollusca / molluscs 9 10 Crustacea / crustaceans 32 28 Insecta / feeding – 1 Others / 2 4 Total 50 50

The following species often met during spring period: Hediste diversicolor – 99.6%, Hypaniola kowalewskii – 74.3%, Oligochaeta gen.sp. – 98.2% all from group of worms, Abra ovata – 46.5% from group of mollusks, Pterocuma pectinata - 6.0%, Stenocuma gracilis – 49.7%, Stenocuma graciloides – 55.5%, Stenogammarus (Stenogammarus) kereuschi – 39.1%, Stenogammarus (Stenogammarus) similis – 59.3% from group of crustaceans. During autumn period Nematoda gen.sp. 33,5%, Spionidae gen.sp. – 58,7%, Hediste diversicolor – 100,0%, Hypaniola kowalewskii - 79,2%, Oligochaeta gen.sp. – 98,8% all from the group worms, Abra ovata – 50,1%, Cerastoderma lamarcki – 78,6%, Hypanis angusticostata – 53,9% all from the mollusc group. The average number of macrozoobenthos was 5045 ex./m2, with extreme values ranging from 193 to 3660 ex./m2. This number was formed mainly by worms - 72.54%, with the leading contribution of Oligochaeta gen. sp. (98,2%) и H. diversicolor (99,6%). 56 ISSN 2224-5308 Series of biological and medical. 4. 2020

The average biomass of the bottom animals was 16507 mg/m2, with varying range of 3277 to 6646 mg/m2. Molluscs predominated with 40.26% of the total, worms subdominated - 39.9%. The species of H. diversicolor and D.trigonoides (50% and 15% of benthos biomass, respectively) were the most important (figure 5, 6).

Figure 5 – Number of main groups Figure 6 – Biomass of main groups of zoobenthos in % for 2018 of zoobenthos in % for 2018

Conclusions. Phytoplankton communities were enriched with species from spring to autumn 2018 (number of species per sample increased). In both seasons, blue-green algae predominated in number. Large-cell diatomic algae predominated in biomass. Similar seasonal dynamics of all structural indicators of phytoplankton was reported in 2017. That year, as well as year later, blue-green predominated in number, diatomic algae predominated in biomass. The absolute values of number and biomass of algae in both years were close. In 2018, the species wealth of zooplankton did not change significantly. The heterogeneity of the species composition of zooplankton communities, which formed two clusters, reflected the heterogeneity of abiotic factors during spring period. One of significant factors, contributing to the differences in species composition, may be the uneven warm-up of the water thickness at the beginning of the growing season. In autumn, the composition of zooplankton communities was uniform throughout the water area. From spring to autumn 2018, the quantitative indicators of zooplankton increased by magnitude order. The seasonal dynamics of zooplankton described above generally repeated that of 2017, when from spring to autumn there was also a decrease in diversity and an increase in the quantitative figures of zooplankton. However, in 2017 the growth of quantitative indicators of the community occurred on account of jellyfish, while in 2018 - on account of polycheta Spionidae. The values of all structural indicators of macrozoobenthos increased from spring to autumn 2018. The worms made main contribution to the seasonal growth of the community. They predominated in biomass, in the sub-dominant position of shellfish. The diversity of the bottom community was moderate, with some increase in the autumn period. In contrast to the pattern above, quantitative indicators of macrozoobenthos decreased from spring to autumn of 2017. Worms and mollusks predominated in the community, as in 2018. The number and biomass of bottom invertebrates were higher in spring 2017 and lower in autumn 2017 than in the corresponding seasons of 2018. Benthos was less diverse and represented by smaller individuals in 2017, than in 2018.

57 News of the National Academy of Sciences of the Republic of Kazakhstan

А. Кенжегалиев1, А. А. Абилгазиева1, А. К. Шахманова1, Д. К. Кулбатыров1, В. Ф. Зайцев2, М. К. Уразгалиева1

1С. Өтебаев атындағы Атырау мұнай және газ университеті, Атырау, Қазақстан; 2Астрахан мемлекеттік техникалық университеті, Астрахан, Ресей

«ҚАШАҒАН» КЕН ОРНЫ АУДАНЫНДАҒЫ ГИДРОБИОНТТАР ЖАҒДАЙЫ

Аннотация. «Қашаған» мұнай-газ кен орнын игеріп жатқан жасанды аралдар маңында 2018 жылдың көктем және күз мезгілінде жүргізілген іденістер қорытындысы бойынша, көктемде фитопланктондар құрамында теңіз балдырларының 173 түрі табылса, ал күзде 19-ға кеміп, 154 түрі анықталған. Саны жағынан 51,68 % цианобактериялар, ал биомассасы бойынша 80,1 % диатомды балдырлар басым болды. 2017 жылы саны жағынан көк-жасыл балдырлар басым түссе, биологиялық массасы бойынша 2018 жылғыдай диатомды балдырлар жоғары шықты. Көктемде зерттелген акваторияда жасыл M.contortum, диатомды C.choctawhatcheeana, N.cryptocephala, көк-жасыл M. Punctata балдырлары кең тараған. Фитопланктонның жалпы саны 247-ден 53,8 млн кл./м3-ге дейін өзгерді, орташа мәні 933,2 млн кл./м3. Көк-жасыл балдырлар басым, олардың ішінде ең көбі A.clathrata (11 %) және L.limnetica (14 %) болды. Фитопланктон биомассасы 112-ден 3035 мг/м3 дейінгі көрсеткішті көрсетті, орташа мәні 874,8 мг/м3. Биомассасы бойынша диатомды басым болды, олардың жалпы көрсеткіштегі үлесі 82 %-ды құрады. Биомас- саны қалыптастырудағы басым үлес C.jonesianus (22%) және C. clypeus (9%) ірі жасушалық түрлерге тиесілі. Күзде көп бөлікте немесе барлық акваторияда көк-жасыл P.limnetica, G.laxissima, M.punctata, Phormidium sp., P.contorta, диатомды C.choctawhatcheana, C.meneghiniana, жасыл B.lauterbornii, B.lauterbornii var.crassa балдырлары кездесті. Көктемде зоопланктон құрамында 24 таксон анықталса, күзгі ізденісте 23 түрі бақыланды. Ізденіс жүр- гізген уақыт ішінде саны және биологиялық массасы жағынан сәйкесінше 67,79 және 95,1 % өзге де түрлері басым болған. 2017 жылы да зоопланктондардың жоғарыда жазылған мезгілдік өзгеру динамикасы көктем- нен күзге қарай олардың сан алуандығының төмендеуі және сандық көрсеткіштерінің артуы қайталанған. Көктемгі және күзгі ізденістерде де зообентостың 50 таксоны анықталған. Санының негізі 72,54 % құрт- тан тұрады, ал биомассасы бойынша жалпы көрсеткіштің 40,26 %-ын моллюскалар құрады. Ізденіс кезеңінде осы теңіз ауданында сандық көрсеткіш бойынша 68060 экз/м3 тең зоопланктондардың басқа түрлері басым болды, келесі позицияда 27345 экз/м3 ескек аяқты шаяндар, ал үштікті 4891 экз/м3 көр- сеткішімен коловраткалар түйіндеді. Биомассасы бойынша 3942,6 мг/м2 немесе 95,1 % сандық көрсеткіш бойынша өзге түрлер басым болып, одан кейін 191,34 мг/м2 немесе 4,6 % көрсеткішімен ескек аяқты шаяндар орналасса, ал қалған түрлердің биомассасы 1 %-ға да жетпеді. Көктемгі ізденіс бойынша макрозообентос 4 топтан 50 таксонды құрады, атап айтқанда, 7 құрт, 9 моллюска, 32 шаян тәрізді, 2 өзге түр. Күзгі ізденістер де көктемгі ізденістегідей, 4 топтан 50 таксон тіркелді: 7 құрт, 10 моллюска, 28 шаян тәрізді, 4 өзге түр. Сонымен қатар, H. diversicolor және Oligochaeta gen. sp. кездесті. Акваторияның басым бөлігінде H. kowalewskii полихеті, C.lamarcki моллюскі, Pt. pectinata, St. graciloides, G.(Y.) pusilla шаян тәрізділері мекендеді. Макрозообентос барлық құрылымдық көрсеткіштерінің мәні 2018 жылдың көктемінен күзгі бағытқа қарай өсті. Қауымдастық санының маусымдық өсуінің негізгі үлесі құрттарға тиесілі. Дәл осы топ моллюскалардың суббасымдылық жағдайында да биомасса бойынша басым болды. Су түбі қауымдасты- ғының көп түрлілігі оның күзгі кезеңде кейбір өсуіміне қарамастан орташа деңгейде болды. Жоғарыда келтірілген жағдайға қарама-қарсы макрозообентостың сандық көрсеткіштері көктемнен күзге қарай төмендеді. Қауымдастықта 2018 жылғы сияқты құрттар мен моллюскалар үстем болды. 2017 жылдың көктемінде түпкі омыртқасыздар саны мен биомассасы жоғары, ал күзде 2018 жылдың тиісті маусымына қарағанда төмен болды. 2017 жылы бентос айтарлықтай көптүрлі болған жоқ және 2018 жылға қарағанда ұсақ дарақтары тіркелді. Көктемгі кезеңде келесі түрлер – құрттар тобынан 99,6 % Hediste diversicolor, 74,3 % Hypaniola kowalewskii, 98,2 % Oligochaeta gen.sp. моллюскалардан 46,5 % Abra ovata, шаян тәрізділерден 55,5 % Stenocuma graciloides, 59,3 % Stenogammarus (Stenogammarus) similis жиі кездесті. Күзде құрттар тобынан 58,7 % Spionidae gen.sp., 100,0 % Hediste diversicolor, 79,2 % Hypaniola kowalewskii, 98,8 % Oligochaeta gen.sp., моллюскалар тобынан 78,6 % Cerastoderma lamarcki түрлері анықталды. Түйін сөздер: NCOC, «Қашаған» кен орны, жасанды арал, фитопланктон, зоопланктон, зообентос.

58 ISSN 2224-5308 Series of biological and medical. 4. 2020

А. Кенжегалиев1, А. А. Абилгазиева1, А. К. Шахманова1, А. Ш. Канбетов1, Д. К. Кулбатыров1, В. Ф. Зайцев2, М. К. Уразгалиева1

1НАО «Атырауский университет нефти и газ им. С. Утебаева», Атырау, Казахстан; 2Астраханский государственный технический университет, Астрахань, Россия

СОСТОЯНИЯ ГИДРОБИОНТОВ В РАЙОНЕ МЕСТОРОЖДЕНИЯ КАШАГАН

Аннотация. Результаты исследований за состоянием гидробионтов в районе искусственных островов разрабатываемого нефтегазового месторождения «Кашаган» в весенний и осенний периоды 2018 г. показали, что весной в составе фитопланктона было обнаружено 173 вида водорослей, а осенью на 19 видов меньше, т.е. 154. По численности преобладали цианобактерии – от 51,68%, по биомассе – от 80,1% лидируют диатомовые. Если в 2017 г. по численности доминировали сине-зеленые, то по биомассе, как и в 2018 г. – диатомовые водоросли. Весной на исследованной акватории наиболее широко были распространены зеленые водоросли M.contortum, диатомовые C.choctawhatcheeana, N.cryptocephala, сине-зеленые M. Punctata. Общая численность фитопланктона изменялась от 247 до 5353,8 млн кл./м3 при среднем значении 933,2 млн кл./м3. Доминировали сине-зеленые водоросли, среди которых наиболее многочисленными были A.clathrata (11%) и L.limnetica (14%). Биомасса фитопланктона варьировала от 112 до 3035 мг/м3 при среднем значении 874,8 мг/м3. По биомассе лидировали диатомовые, доля которых в общем показателе составляла 82%. Наибольший вклад в формировании биомассы играли крупноклеточные виды C. jonesianus (22%) и C. clypeus (9%). Осенью на большей части или по всей акватории встречались сине-зеленые водоросли видов P.limnetica, G.laxissima, M.punctata, Phormidium sp., P.contorta, диатомовые C.choctawhatcheeana, C.meneghiniana, зеленые B.lauterbornii, B.lauterbornii var.crassa. Весной в составе зоопланктона было обнаружено 24 таксона, а в осеннем исследовании присутствовали 23 вида. За исследованный период по численности, а также по биомассе от 67,79% и 95,1% соответственно доминировали прочие виды. Описанная выше сезонная динамика зоопланктона в целом повторяла таковую 2017 г., когда от весны к осени также произошло снижение разнообразия и повышение количественных показателей зоопланктона. Как в весенних, так и в осенних исследованиях в зообентосе обнаружено по 50 таксонов. По численности основу составляли черви – 72,54%, а по биомассе – 40,26% моллюски. За исследованный период в данном участке акватории моря по численности 68060 экз/м3 доминировали прочие виды зоопланктонов, следующая позиция – 27345 экз/м3 веслоногие рачки и 4891 экз/м3 коловратки. По биомассе 3942,6 мг/м2 или 95,1%, как и по численности лидировали прочие виды, веслоногие рачки - 191,34 мг/м2 или 4,6% занимали следующую позицию, а биомасса остальных видов не доходила и до 1%. В весенних исследованиях макрозообентос насчитывал 50 таксонов из 4 групп: черви – 7, моллюски – 9, ракообразные – 32, прочие – 2. В осенних исследованиях, как и в весенних, зарегистрировано 50 таксонов из 4 групп: черви – 7, моллюски – 10, ракообразные – 28, прочие – 4. Повсеместно встречались H. diversicolor и Oligochaeta gen. sp. На большей части акватории обитали полихета H. kowalewskii, моллюск C. lamarcki, ракообразные Pt. pectinata, St. graciloides, G. (Y.) pusilla. Значения всех структурных показателей макрозообентоса возросли от весны к осени 2018 г. Основной вклад в сезонный рост численности сообщества вносили черви. Эта же группа доминировала по биомассе, при субдоминирующем положении моллюсков. Разнообразие донного сообщества находилось на умеренном уровне, при его некотором увеличении в осенний период. В противоположность описанной выше картине, в 2017г. количественные показатели макрозообентоса снижались от весны к осени. Доминирующее положение в сообществе занимали черви и моллюски, как и в 2018 г. Весной 2017 г. численность и биомасса донных беспозвоночных были выше, а осенью ниже, чем в соответствующие сезоны 2018 г. В 2017 г. бентос был менее разнообразен и представлен более мелкими особями, чем в 2018 г. За весенний период часто встречались следующие виды: из группы черви - Hediste diversicolor - 99,6%, Hypaniola kowalewskii – 74,3%, Oligochaeta gen.sp. – 98,2%, из группы моллюски - Abra ovata – 46,5%, из группы ракообразные - Stenocuma graciloides – 55,5%, Stenogammarus (Stenogammarus) similis – 59,3%. Осенью, наиболее распространены были: из группы черви – Spionidae gen.sp. 58,7%, Hediste diversicolor – 100,0%, Oligochaeta gen.sp. - 98,8%, из группы моллюски – Cerastoderma lamarcki – 78,6. Ключевые слова: NCOC, месторождения «Кашаган», искусственный остров, фитопланктон, зоопланктон, зообентос.

59 News of the National Academy of Sciences of the Republic of Kazakhstan

Information about authors: Kenzhegaliyev Akimgali, Doctor of technical science, professor, Head of SRL «Geoekolgiya», Non-profit JSC «Atyrau Oil and Gas University n.a. S. Utebayev»; Atyrau, Kazakhstan; [email protected]; https://orcid.org/0000-0003-0571-4056 Abilgaziyeva Ainagul Adilovna, Candidate of biological sciences, associate professor, Non-profit JSC «Atyrau Oil and Gas University n.a. S. Utebayev»; Atyrau, Kazakhstan; [email protected], https://orcid.org/0000-0001- 6914-1491 Shakhmanova Ayauzhan Kabdrashevna, Candidate of biological sciences, associate professor, Non-profit JSC «Atyrau Oil and Gas University n.a. S. Utebayev»; Atyrau, Kazakhstan; [email protected], https://orcid.org/0000-0003-1082-3038 Kanbetov Assylbek Shakhmuratovich, Candidate of biological sciences, associate professor, Non-profit JSC «Atyrau Oil and Gas University n.a. S. Utebayev»; Atyrau, Kazakhstan; [email protected]; https://orcid.org/0000-0002-9990-0230 Kulbatyrov Dauren Kamysbayevich, Master of Natural Sciences, deputy chief of Management of information technology and education control, Non-profit JSC «Atyrau Oil and Gas University n.a. S. Utebayev»; Atyrau, Kazakhstan; [email protected]; https://orcid.org/0000-0002-9463-149X Zaitsev Vyacheslav FedorovichDoctor of Agricultural Sciences, professor, Head of the Department of Hydrobiology and General Ecology, Astrakhan State Technical University, Astrakhan, Russia; viacheslav- [email protected]; https://orcid.org/0000-0001-6161-9948 Urazgaliyeva Meiramgul Kadyrbayevna, Master of engineering and technology, Non-profit JSC «Atyrau Oil and Gas University n.a. S. Utebayev»; Atyrau, Kazakhstan; [email protected], https://orcid.org/0000-0002- 3622-2356

REFERENCES

[1] Amirgaliev N., Askarova M., Normatov I., Ismukhanova L., Kulbekova R. (2019) On the choice of optimal parameters for theintegrated assessment of surface water quality. News of the Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences. Vol. 3, N 435. P. 150-158. https://doi.org/10.32014/2019.2518-170X.81. ISSN 2518-170X (Online), ISSN 2224-5278 (Print). [2] Kenzhegaliyev А. (2010) Antropogennyye nagruzki morskikh neftepoiskovykh rabot na ekologiyu Kaspiya i metody yeye snizheniya. [Anthropogenic influence of offshore oil exploration works on the Caspian Sea ecology and methods of its reduction]. Almaty. 185 p. ISBN 978-601-289-010-5 (in Russ.). [3] Kartamysheva E.S., Ivanchenko D.S. (2017) Posledstviya dobychi nefti i gaza na Kaspiyskom more. [The consequences of oil and gas production on Caspian Sea]. Molodoi uchenyi [Young scientist]. N 25. P. 113-117. URL: https://moluch.ru/archive/159/44710/ (request date: 22.01.2020). (in Russ.). [4] Johnston Daniel. (2003) Chapter 12. Kashagan and Tengiz - Castor and Pollux // International exploration economics, risk, and contract analysis. Tulsa, Oklahoma: PennWell Corporation. P. 201-203. 416 p. ISBN 978-0-87814-887-5 (in Eng.). [5] Kenzhegaliyev А., Orazbayev B.B., Zhumagaliyev S.Zh., Kenzhegaliyev D.А. (2013) Istoriya otkrytiya i osvoyeniya mestorozhdeniya Kashagan. [The development history of Kashagan field]. Neft i gaz [Oil and gas]. №5. PP. 107-118 (in Russ.). [6] Abilgaziyeva А.А. (2006) Otsenka vliyaniya neftegazovoy promyshlennosti na sostoyaniye okruzhayushchey sredy i fitoplankton vostochnoy chasti severnogo Kaspiya. Avtoreferat dissertatsii na soiskaniye uchenoy stepeni kandidata biologicheskikh nauk. [The impact assessment of oil and gas industry on environment condition and phytoplankton at eastern part of Northern Caspian Sea. Dissertation thesis on theses for degree of candidate of biological sciences]. Makhachkala. 26 p. (in Russ.). [7] Shakhmanova А.К. (2006) Ekologicheskiye osobennosti zooplanktona severo-vostochnoy chasti Kaspiyskogo morya (zony predstoyashchey razrabotki neftegazovykh mestorozhdeniy Kazakhstanskogo sektora). Avtoreferat dissertatsii na soiskaniye uchenoy stepeni kandidata biologicheskikh nauk. [The environmental features of zooplankton of the north-eastern part of the Caspian Sea (areas of the forthcoming development of oil and gas fields of the Kazakhstan sector). Dissertation thesis on theses for degree of candidate of biological sciences]. Makhachkala. 24 p. (in Russ.). [8] Kalimanova D.Zh. (2008) Ekologicheskiye osobennosti severo-vostochnoy chasti Kaspiyskogo morya (zony osvoyeniya neftegazovykh mestorozhdeniy Kazakhstanskogo sektora) Avtoreferat dissertatsii na soiskaniye uchenoy stepeni kandidatov biologicheskikh nauk. [The environmental features of zoobenthos of the north-eastern part of the Caspian Sea (the zone to be developed in oil and gas fields of the Kazakhstan sector). Dissertation thesis on theses for degree of candidate of biological sciences]. Astrakhan. 24 p. (in Russ.). [9] Sharapova L.I., Rakhmatullina L.Т. (2014) Fitoplankton Severo-Vostochnogo Kaspiya. Monitoring prirodnoy sredy Severo-Vostochnogo Kaspiya pri osvoyenii neftyanykh mestorozhdeniy (Rezul'taty issledovaniy Adzhip KKO 1993-2006 gg.). [The phytoplankton of the North-East Caspian Sea. Monitoring of the environment of the North-East Caspian Sea during the 60 ISSN 2224-5308 Series of biological and medical. 4. 2020 development of oil fields (Research results of Agip KCO, 1993-2006)]. Almaty. P. 90-104. URL: URL: https://www.ncoc.kz/Documents/Environmental_Monitoring_of_the_North-East_Caspian_Sea_rus.pdf (in Russ.). [10] Sharapova L.I. (2014) Zooplankton Severo-Vostochnogo Kaspiya. Monitoring prirodnoy sredy Severo-Vostochnogo Kaspiya pri osvoyenii neftyanykh mestorozhdeniy (Rezul'taty issledovaniy Adzhip KKO 1993-2006 gg.). [The zooplankton of the North-East Caspian Sea. Monitoring of the environment of the North-East Caspian Sea during the development of oil fields (Research results of Agip KCO, 1993-2006)]. Almaty. P. 105-116. URL: https://www.ncoc.kz/Documents/Environmental_Monitoring_of_the_North-East_Caspian_Sea_ rus.pdf. (in Russ.). [11] Mutysheva G.K., Epova Y.V., Smirnova D.А., Kochno L.I., Boos N.А., Falomeeva А.P., Kiiko О.А. (2014) Zoobentos Severo-Vostochnogo Kaspiya. Monitoring prirodnoy sredy Severo-Vostochnogo Kaspiya pri osvoyenii neftyanykh mestorozhdeniy (Rezul'taty issledovaniy Adzhip KKO 1993-2006 gg.). [The zoobenthos of the North-East Caspian Sea. Monitoring of the environment of the North-East Caspian Sea during the development of oil fields (Research results of Agip KCO, 1993-2006)]. Almaty. P. 117-131. URL: https://www.ncoc.kz/Documents/Environmental_Monitoring_of_the_North- East_Caspian_Sea_ rus.pdf. (in Russ.). [12] Kenzhegaliyev А., Zhumagaliyev S.Zh., Orazbayev B.B., Kenzhegaliyeva D.А. (2013) Issledovaniya ekologicheskogo sostoyaniya gidrobiologicheskikh soobshchestv Kazakhstanskogo sektora Kaspiyskogo morya v period podgotovki neftegazovykh mestorozhdeniy k razrabotke. [Studies of ecological state of hydrobiological communities of Kazakhstan sector of Caspian Sea during preparation of oil and gas fields for development]. Bezopasnost zhiznedeyatelnosti [Life safety]. N 10. P. 39-44. URL: http://novtex.ru/bjd/bgd2013/Bg1013_web.pdf (in Russ.). [13] Kenzhegaliyev А., Orazbayev B.B., Zhumagaliyev S.Zh., Kenzhegaliyeva D.А. (2017) Sostoyaniye gidrobiontov v rayone iskusstvennykh ostrovov «D» Kashaganskogo mestorozhdeniya. [The condition of hydrobionts in the area of the artificial island "D" of Kashagan deposit]. Neft i gaz [Oil and gas]. N 1, P. 77-90 (in Russ.). [14] Environmental Monitoring of the North-East Caspian Sea during Development of NCOC N.V. Oil Fields in the Period 2006-2016. (2018) Almaty: NCOC C. V., KAPE. P. 400. ISBN 978-601-332-146-2 URL: https://www.ncoc.kz/Documents/NCOC_full_eng.pdf. (in Eng.). [15] Kenzhegaliev A., Abilgazieva A., Shahmanova A., Kulbatyrov D., Saginayev A. (2018) Dynamics of the State of Macrobenthos in the Gulf of Tub-Karagan. IOP Conference Series: Materials Science and Engineering. Vol. 301, Issue 1. 5th Annual International Conference on Material Science and Environmental Engineering, MSEE, Xiamen, Fujian; China. https://doi.org/10.1088/1757-899X/301/1/012116 (in Eng.). [16] Kiselev I.А. (1956) Metody issledovaniya planktona. V kn. Zhizn' presnykh vod SSSR. [The research methods of plankton. The life of freshwater of USSR]. L., ed. AN USSR. Vol. 4, ed. 1. P. 183-265 (in Russ.). [17] Rukovodstvo po metodike gidrobiologicheskogo analiza poverkhnostnykh vod i donnykh otlozheniy. [The guide to hydrobiological analysis of surface waters and bottom sediments]. (1983) L., Gidrometeoizdat. P. 78-86 (in Russ.). [18] Sostoyaniye bioraznoobraziya v Kazakhstanskoy chasti Kaspiyskogo moray. [The state of biodiversity in the Kazakhstan part of the Caspian Sea]. (2000) National report of RK, Atyrau. P. 26-36 (in Russ.). [19] Metodicheskiye ukazaniya k izucheniyu bentosa yuzhnykh morey SSSR. [Methodological guidelines for the study of benthos of the southern seas of the USSR]. (1983) М.: VNIRO. 13 p. (in Russ.). [20] Методика изучения биогеоценозов внутренних водоёмов. [The research method of biogeocenoses of inland water reservoirs]. (1975) М.: Nauka. 240 p. (in Russ.). [21] Metodicheskoye posobiye pri gidrobiologicheskikh rybokhozyaystvennykh issledovaniyakh vodoyomov Kazakhstana (plankton, zoobentos). [The methodological manual for hydrobiological fisheries research of water reservoirs of Kazakhstan (plankton, zoobenthos)]. (2006) Almaty. 27 p. (in Russ.). [22] Morskoy monitoring vozdeystviya. Otchet o NIR (zaklyuchit.). [Marine impact monitoring. Report about research work (final.)]. TOO «Kazakhstan Agency of Applied Ecology». [LLP «Kazakhstanskoe Agenstvo Prikladnoi Ekologii»]. (2018) Almaty. 326 p. (in Russ.).

61 News of the National Academy of Sciences of the Republic of Kazakhstan

N E W S OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF BIOLOGICAL AND MEDICAL ISSN 2224-5308 Volume 4, Number 340 (2020), 62 – 67 https://doi.org/10.32014/2020.2519-1629.33

T. V. Murzova1, N. A. Tazhibaeyava2

1Institute of Botany and Phyto-production, Almaty, Kazakhstan; 2Abai Kazakh National Pedagogical University, Almaty, Kazakhstan. E-mail: [email protected], [email protected]

INTRODUCTION OF L. SPECIES AT THE INSTITUTE OF BOTANY AND PHYTOINTRODUCTION IN ALMATY

Abstract. The article “Introduction of Euphorbia L. species at the Institute of Botany and Phytointroduction in Almaty” presents the results of many years of introduction experiment with the genus Euphorbia L. in the closed ground of the Institute of Botany and Phytointroduction. The collection of the genus Euphorbia L. continues, which today has 14 species. We carried out a taxonomic analysis based on the literature data of 14 species that are presented in our collection. Euphorbia abyssinica J.F.Gmel., Eu. leuconeura Boiss, Eu. lophogona Lam., Eu. milii var. splendens (Bojer ex Hook.) Ursch & Leandri, Eu. monteiroi Hook., Eu. obesa Hook.f., Eu. polygona Haw., Eu.pseudocactus A.Berger., Eu. ramipressa Croizat, Eи. trigona Mill., Eu. tirucalli L., Eu. tithymaloides `Variegata` L., Eu. pulcherrima Willd.exKlotzsch, Eu. phosphorea Mart. Distribution area of plants: Madagascar, Northeast, Central and South Africa, tropical and subtropical North and Central America. As a result of the study, the features of the individual development of certain species were identified. For example, we found out that for some species of Euphorbia L. it is necessary to shade plants for several months so that they bloom better or in winter increase the temperature so that the plant forms better than children. Under the conditions of our microclimate, not all plants bloom and bear fruit, i.e. all ontogenetic periods and stages of development do not pass, resistant to pests and diseases. Features such as high decorativeness of leaves, stems, inflorescences, as well as a high percentage of vegetative propagation, resistance to pests and diseases, and ecological plasticity make these plants promising for growing indoors. Key words: Euphorbia, succulent, introduction, closed ground, phytodesign.

The role of flora in creating the contemporary look of our planet is invaluable. However, today many plant species disappear from the face of the Earth due to human activities. Their introduction into botanical gardens might be the most reliable way to preserve them. Euphorbia L. is a good example since it is in extinction at its habitat [5]. Spurge, or Euphorbia L., is a large genus of the Spurge family (), which includes about 2000 species of monoecious and dioecious, perennial and annual plants growing in different climatic conditions. These are herbage plants, subshrubs, shrubs, and trees, succulents very similar to cacti. Euphorbia ranks third among succulents in number, amounting to about 290 species, and is one of the TOP 10 species of flowering plants. It is characterized by large morphological diversity; some species are highly ornamental, ecologically flexible, and are widely used in phytodesign. Their properties make these plants valuable for herbal medicine. Euphorbia was named after Mr. Euphorb, the Surgeon in Ordinary to the King, who was the first to determine the medicinal properties of Euphorbia resinifera O.Berg. Its milk sap was long used in medicines. Most of the succulent originate from South Africa, Ethiopia, Congo, and Madagascar, where they are used as plant hedge. Thorn bushes with thin branches or ribbed, upright sprouts grow up to 10 m and serve to both protect and decorate the house. All euphorbia plants discharge milk sap at the slightest damage to the plant. Euphorbia flowers are unisexual. They are unattractive but have bright leaves or nectar glands to attract insects. The fruit is a three-cell box with seeds [1]. Our purpose was to introduce Euphorbia L. species. Tasks to achieve this: introduction of this genus in greenhouses, the development of differentiated cultivation methods, a preliminary biological assessment. 62 ISSN 2224-5308 Series of biological and medical. 4. 2020

Studies on the introduction of Euphorbia L. at the Institute of Botany and Phytointroduction started in 1932, as evidenced by the mention of Euphorbia songorica Boiss. in the list of plants for that year. The collection was replenished with Delectus semenum seeds and living plants obtained from various botanical gardens during business trips and provided by amateur gardeners. Today, the Almaty Botanical Garden possesses a whole exposition section called “Plants of arid regions,” where Euphorbia L. occupies a large area. In previous years, plants of this genus passed the first stages of introduction, with a successful introduction of 10 species. Certain species have grown large. E.g., Eu.tirucalli L. has reached 12 m high, with a trunk of 40 cm in dia. Eu. leuconeura Boiss., Eu. lophogona Lam., and Eu. Trigona Mill also grew large. The plants aged 35 to 60 years. However, our collection of succulents, including the Euphorbia genus, has been destroyed during the cold winter of 2018, and we are currently restoring the succulent section. Many years of introduction tests gave us a wide experience in obtaining a collection of plants of this genus [2]. At the Institute of Botany and Phytointroduction, these plants grow indoor under the illumination of 10,000 lux. The air temperature is about 11-15°C in winter and reaches 40-45°C in summer. Therefore, the watering and spraying shall be abundant in summer and moderate in winter. The plants are watered three times a week in the spring-summer period and twice a week – in the autumn-winter season. The soil mixture includes clay-turf, leafy earth, peat, and sand, with the addition of pieces of charcoal (2:1:1:2:0.5). Young plants need annual replanting into fresh soil. Adult plants are replanted less often – every 2-3 years, while the plants planted in the ground (exposition “Plants of arid regions”) are not replanted. In summer, we add the fertilizer for cacti 1-2 times a month. We have identified the specific features of the individual development of some species. E.g., the plants need shading for several months to bloom better, or they need higher temperatures in winter to form better pups. Not all plants can bloom and yield crop, i.e., pass through all ontogenetic periods and stages of development, in our climate. The plants are resistant to pests and diseases. In our greenhouse, all types of euphorbia are propagated mainly by cuttings harvested in June-July. After cutting, the cut is submerged into warm water to let the milk sap out, then sprinkled with crushed coal. After 2-3 days, the dried cutting is planted in well-washed river sand for rooting. Rooting occurs in 20-25 days at the optimum temperature of 20°C. Table shows the taxonomic analysis of the 14 species from our collection based on literature data [3-4]. According to the table, these plants are common in the isle of Madagascar, in Northeast, Central, and South Africa, tropical and subtropical parts of North and Central America. We can only bloom three species: Eu. milii var. splendens (Bojer ex Hook.) Ursch & Leandri, Eu. pulcherrima Willd.ex Klotzsch, and Eu. leuconeura Boiss. Only Eu. leuconeura Boiss sets seeds. All plants from the table (except Eu. Obesa Hook.f.) spread by vegetative propagation. Tropical and subtropical euphorbias include many popular and beautiful species used for winter gardens or pot planting. We have some of these species from the introduced genus Euphorbia L. in our collection: Euphorbia leuconeura Boiss. – one of the most popular species. Habitat: Madagascar. A slightly branched succulent-stem shrub with 3-4 rib stems and normally developed leaves. The leaves gradually fall off from the trunk remaining only on the top. In our conditions, it blooms with white flowers from May to August. It sets seeds that scatter around and germinate. Propagates by self-seeding or cuttings (figure 1). Eu. milii var. splendens (Bojer ex Hook.) Ursch & Leandri. Habitat: Madagascar. A wide-spreading, highly branched shrub with bizarrely curving branches up to 1 m long. It is also called ‘indoor blackthorn.’ The stems are round, brownish-gray, covered with numerous strong and very sharp spikes up to 2 cm long. Between the spikes, there are green oblong leaves slightly pointed at the top. In our conditions, the blooming is constant, though more active in the warm season. The inflorescence is umbellate, with 2-4 flowers located on a long, sticky peduncle. The flowers are small and nondescript but surrounded by bright two-lobed bracts, painted in bright red, orange, or yellow. Propagates easily by cuttings or division of the bush (figure 2).

63 News of the National Academy of Sciences of the Republic of Kazakhstan

Euphorbia L. species introduced at the Institute of Botany and Phytointroduction in Almaty

Fruits Propagated Flowering No. Species Habitat in protected in protected indoors ground ground 1 2 3 4 5 6 1 Euphorbia abyssinica J.F.Gmel. Africa No No Vegetatively Yes (May- By seeds, 2 Eu. leuconeura Boiss Madagascar Yes August) vegetatively 3 Eu. lophogona Lam. Southeast Madagascar No No Vegetatively Eu. milii var. splendens (Bojer Yes (April- 4 Endemic species of Madagascar No Vegetatively ex Hook.) Ursch & Leandri November) 5 Eu. monteiroi Hook. South Africa No No Vegetatively 6 Eu. obesa Hook.f. RSA (Cape Province) No No No 7 Eu. polygona Haw. South Africa No No Vegetatively 8 Eu.pseudocactus A.Berger. RSA No No Vegetatively 9 Eu. ramipressa Croizat Madagascar No No Vegetatively 10 Eи. trigona Mill. South West Africa No No Vegetatively Africa, Asia, India, Madagascar, 11 Eu. tirucalli L. No No Vegetatively Arabian Peninsula 12 Eu. tithymaloides `Variegata` L. Central and South America No No Vegetatively Eu. pulcherrima Tropical Mexico and Central Yes (January, 13 No Vegetatively Willd.exKlotzsch America February) 14 Eu. phosphorea Mart. Madagascar No No Vegetatively

Figure 2 – Eu. milii var. splendens (Bojer ex Hook.) Figure 1 – Euphorbia leuconeura Boiss Ursch & Leandri

Euphorbia pulcherrima Willd. ex Klotzsch. Habitat: Tropical Mexico and Central America. In the wild, it is a shrub up to 2.5-3 m high. The leaves are 10 to 15 cm long, ovoid-elliptical with a pointed top, on long reddish cuttings. At the ends of the annual sprouts, there appear complex umbellate inflorescences with small, inconspicuous flowers surrounded by bright bracts of red, white, or yellow color. In our conditions, it blooms without seeding. It spreads easily, by vegetative propagation only (figure 3).

64 ISSN 2224-5308 Series of biological and medical. 4. 2020

Euphorbia tirucalli L. Habitat: Tropical and subtropical areas of Africa, Asia, Arabian Peninsula, Madagascar, and India. Succulent-stem shrub up to 4 m or a tree up to 12 m tall, with smooth cylindrical bunched branches with falling leaves. It grows along the banks of small rivers, forming groves in bright forests at high altitudes. Propagates by cuttings (figure 4).

Figure 3 – Euphorbia pulcherrima Willd.ex Klotzsch Figure 4 – Euphorbia tirucalli L.

Euphorbia obesa Hook. f. Habitat: RSA (Cape Province). It looks similar to Astrofhytum asterias (Zucc.) Lem. However, its body is slightly elongated, and it grows slower. A dioecious succulent-stem perennial with spherical or hemispherical non-branching leaves. The plant is gray-green, with transverse stripes, has 8-10 very flat ribs. With age, lateral sprouts are formed at the base. It does not bloom in our conditions but sometimes produces pups (figure 5). Euphorbia (Pedilanthus) tithymaloides `Variegata` L. Habitat: Central and South America. A shrub with many branches, cylindrical stems, ovate sessile green or mottled leaves, and small flowers. It does not bloom in our conditions but spreads easily by vegetative propagation (figure 6).

Figure 6 – Euphorbia (Pedilanthus) tithymaloides Figure 5 – Euphorbia obesa Hook `Variegata` L.

65 News of the National Academy of Sciences of the Republic of Kazakhstan

Thus, the Institute of Botany and Phytointroduction continues forming the collection of Euphorbia L. plants, which today accounts for 14 species. The plants were taxonomized based on the literature data. The conducted introduction tests allowed selecting the proper soil substrate, illumination, humidity, and temperature conditions. The article also describes the five most popular species of this genus. We can recommend these plants for indoor cultivation thanks to the good decorative properties of leaves, stems, inflorescences, as well as extensive vegetative propagation, the resistance to pests and diseases, and ecological flexibility.

Т. В. Мурзова1, Н. А. Тәжібаева2

1Ботаника және фитоинтродукция институты зертханасы, Алматы, Қазақстан; 2Абай атындағы Қазақ ұлттық педагогикалық университеті, Алматы, Қазақстан

АЛМАТЫ ҚАЛАСЫДАҒЫ БОТАНИКА ЖӘНЕ ФИТОИНТРОДУКЦИЯ ИНСТИТУТЫНДА EUPHORBIA L. ТҰҚЫМ ТҮРІН ЖЕРСІНДІРУ

Аннотация. «Алматы қаласындағы БжФИ-да Euphorbia L. тұқымдарының түрлерін енгізу» атты мақалада Ботаника және фитоинтродукция институтының жабық алаңында Euphorbia L. Тұқымы негізінде көпжылдық тәжірибе нәтижелерін ұсынады. Euphorbia L. тұқымдарының коллекциясы жалғасуда, бүгінде 14 түрі бар. Euphorbia abyssinica J.F.Gmel., Eu. leuconeura Boiss, Eu. lophogona Lam., Eu. milii var. splendens (Bojer ex Hook.) Ursch & Leandri, Eu. monteiroi Hook., Eu. obesa Hook.f., Eu. polygona Haw., Eu.pseudocactus A.Berger., Eu. ramipressa Croizat, Eи. trigona Mill., Eu. tirucalli L., Eu. tithymaloides `Variegata` L., Eu. pulcherrima Willd.exKlotzsch, Eu. phosphorea Mart әдебиеттер негізінде 14 түрге таксономиялық талдау жүргіздік. Бұл өсімдіктердің таралу аймағы – Мадагаскар, Солтүстік-Шығыс, Орталық және Оңтүстік Африка, тропикалық және субтропикалық Солтүстік және Орталық Америка. Зерттеу нәтижесінде белгілі бір түрлердің жеке даму ерекшеліктері анықталды. Мысалы, Euphorbia L. өсімдіктерінің кейбір түрі бойынша өсімдіктер жақсы гүлденуі үшін немесе қыс мезгілінде өсімдік өскіні (отросток) жақсы қалыптасуы үшін температураны жоғарылатып, бірнеше ай бойы көлеңкелеу қажетін анықтадық. Сонымен қатар, біздің микроклимат жағдайында барлық өсімдіктер гүлдеп, жеміс бермейді, яғни барлық онтогенетикалық және даму кезеңдерінен өтпейтіндігі белгілі болды. Бұған қоса, зиянкестер мен ауруға төзімді. Жапырақ, сабақ, гүлшоғырдың аса сәнділігі, вегетативті көбеюдің жоғары деңгейі, зиянкестер мен ауруларға төзімділік, экологиялық пластикалық сынды қасиеттер өсімдіктерді жабық жерде өсіру үшін перспективті болып саналады. Түйін сөздер: эуфорбия, суккулент, интродукция (жерсіндіру), жабық грунт, фитодизайн.

Т. В. Мурзова1, Н. А. Тәжібаева2

1Институт ботаники и фитоинтродукции, Алматы, Казахстан; 2Казахский национальный педагогический университет имени Абая, Алматы, Казахстан.

ИНТРОДУКЦИЯ ВИДОВ РОДА EUPHORBIA L. В ИБИФ Г. АЛМАТЫ

Аннотация. В статье «Интродукция видов рода Euphorbia L. в ИБиФ г. Алматы» приводятся результа- ты многолетнего интродукционного опыта с родом Euphorbia L. в закрытом грунте Института ботаники и фитоинтродукции. Продолжается сбор коллекции рода Euphorbia L., которая на сегодняшний день насчитывает 14 видов. Нами был проведен таксономический анализ на основе литературных данных 14 видов, которые представлены в нашей коллекции. Euphorbia abyssinica J.F.Gmel., Eu. leuconeura Boiss, Eu. lophogona Lam., Eu. milii var. splendens (Bojer ex Hook.) Ursch & Leandri, Eu. monteiroi Hook., Eu. obesa Hook.f., Eu. polygona Haw., Eu.pseudocactus A.Berger., Eu. ramipressa Croizat, Eи. trigona Mill., Eu. tirucalli L., Eu. tithymaloides `Variegata` L., Eu. pulcherrima Willd.exKlotzsch, Eu. phosphorea Mart. Ареал распространения растения Мадагаскар, Северо-Восточной, Центральной и Южной Африке, тропической и субтропической Северной и Центральной Америке. В результате исследования были выявлены особенности индивидуального развития некоторых видов. Например, мы выяснили, что для 66 ISSN 2224-5308 Series of biological and medical. 4. 2020

некоторых видов Euphorbia L. растения необходимо притенять на несколько месяцев для того, чтобы они лучше цвели или в зимнее время повышать температуру содержания для того, чтобы растение образовывало лучше деток. В условиях нашего микроклимата не все растения цветут и плодоносят, т.е. не проходят все онтогенетические периоды и этапы развития. Устойчивы к вредителям и болезням. Такие особенности, как высокая декоративность листьев, стебля, соцветий, а также высокий процент вегетативного размножения, устойчивость к вредителям и болезням, экологическая пластичность делают эти растения перспективными для выращивания в закрытом грунте. Ключевые слова: эуфорбия, суккулент, интродукция, закрытый грунт, фитодизайн.

Information about authors: Murzova T.V., laboratory head, Institute of Botany and Phyto-production, Almaty, Kazakhstan; [email protected]; Tazhibaeyava N.A., PhD, Abai Kazakh National Pedagogical University, Almaty, Kazakhstan; [email protected]; https://orcid.org/0000-0002-6497-2410

REFERENCES

[1] Vasilieva I.M., Udalova R.A. Succulents and other xerophytes in the greenhouses of the Botanical Garden of the V. L. Komarov Botanical Institute. St. Petersburg. Rostok, 2007. 415 p. [2] «Succulent plants in the collection of the Institute of Botany and Phytointroduction in Almaty.» Tazhibaeva N.A., Murzova T.V., Audarbaeva D.K., Zhatkanbaeva A.R. Izvestiya NAN RK. N 4 (334). P. 58-61. [3] Sajeva Maurizio, Costanzo Mariangela. Succulents 1the illustrated dictionary. Paperback first published in the UK 1995 by Cassell plc, Wellington House 125 Strand, and London WC2R OBB. [4] Sajeva Maurizio, Costanzo Mariangela. Succulents 2the new illustrated dictionary.Oregon Printed and bound in Italy Tipografia ABC, 2000. 225 p. [5] IUCN Red List of Threatened Species Version 2012.2 www.iucnredlist.org

67 News of the National Academy of Sciences of the Republic of Kazakhstan

Памяти ученых

САЯТОВ МАРАТ ХУСАИНОВИЧ

(10.02.1937 – 17.07.2020)

17 июля 2020 года на 83-м году ушел из жизни известный ученый вирусолог, доктор биологических наук, профессор, академик НАН РК Саятов Марат Хусаинович. Саятов М.Х. родился 10 февраля 1937 г. в с. Дзержинске (ныне с. Токжайлау) Алакольского района Алма-Атинской области в семье служащего. В 1960 г. он окончил санитарно- гигиенический факультет Казахского государственного медицинского института и поступил в аспирантуру при Институте микробиологии и вирусологии АН КазССР, где под руководством основоположника вирусологической науки в Казахстане академика АН КазССР и члена- корреспондента АМН СССР Х.Ж. Жуматова выполнил кандидатскую диссертацию, посвященную изучению вопросов гуморального иммунитета при гриппе. С 1963 г., работая в этом же Институте, последовательно прошел стадии научного роста от младшего научного сотрудника до руководителя лаборатории общей вирусологии (1973-1996) и экологии вирусов (1996-2006). С января 2007 г. Саятов Марат Хусаинович являлся главным научным сотрудником Института микробиологи и вирусологии. Основные направления научных исследований Саятова М.Х. были сосредоточены на разработке методологических подходов к изучению природы и роли отдельных факторов и механизмов невосприимчивости к вирусным инфекциям, оптимизации и совершенствовании серологических методов диагностики, анализе взаимосвязей эпидемических и эпизоотических процессов. Саятов М.Х. был инициатором экологических исследований орто- и парамиксовирусов. Результатом этих широкомасштабных полевых и экспериментальных работ, выполненных в 1978-1987 гг. по заданию Государственного Комитета по науке и технике при Совете Министров СССР и расширенной программе Национального центра СССР по экологии гриппа, явилась защита в Институте вирусологии им. Д.И. Ивановского АМН СССР в 1986 году первой в СССР докторской диссертации по экологии вируса гриппа на тему «Экология и иммунология вирусов гриппа А(H1N1), циркулирующих среди диких птиц и населения Казахской ССР». С помощью комплекса вирусологических, молекулярно-биологических и иммунологических методов исследований Саятовым М.Х. установлено, что среди людей и в окружающей биосфере, в частности, среди домашних, диких птиц и млекопитающих животных Южного, Юго-Восточного и 68 ISSN 2224-5308 Series of biological and medical. 4. 2020

Восточного Казахстана циркулируют как эпидемически актуальные, так и атипичные, нехарактерные для данного периода, штаммы вирусов гриппа. В результате многолетних (2002-2010) комплексных эколого-вирусологических исследований возбудителей гриппа в популяциях диких птиц на территории Казахстана Саятовым М.Х. с сотрудниками выделено более 200 изолятов вируса гриппа А. Многие изученные Саятовым М.Х. казахстанские изоляты вирусов гриппа депонированы в Национальной коллекции вирусов и защищены патентами и авторскими свидетельствами патентного ведомства РК, нуклеотидные последовательности их генов зарегистрированы в международном банке данных GeneBank. Под руководством Саятова М.Х. разработаны новые эффективные способы приготовления эритроцитарных иммунореагентов для диагностики гриппа, инфекционной бурсальной болезни, арбовирусной и парамиксовирусной инфекций. Результаты этих исследований обобщены в монографии «Антительные эритроцитарные иммунореагенты в диагностике вирусных инфекций». В последние годы Саятовым М.Х. с сотрудниками разработаны высокоспецифичные и высокочувствительные тест-системы для дифференциальной диагностики вирусов гриппа А, болезни Ньюкасла птиц и ринопневмонии лошадей в полимеразной цепной реакции. Научная новизна исследований Саятова М.Х. защищена 49 авторскими изобретениями, патентами и предпатентами СССР и РК, им опубликовано 460 научных работ, он являлся соавтором первого русско-казахского словаря по вирусологии, иммунологии, генетике и молекулярной биологии (1993). Саятов М.Х. вел большую научно-организационную работу, являясь председателем Экспертного совета по биологическим наукам ВАК РК, членом Высшего научно-технического совета МН-АН РК, председателем секции биологических наук ВНТС, членом Президиума и бюро отделения биологических наук НАН РК, членом диссертационных советов по защите кандидатских и докторских диссертаций при Институте микробиологии и вирусологии МОН РК и Институте эпидемиологии, микробиологии и инфекционных болезней МЗ РК, членом редакционного совета международного журнала «Вопросы вирусологии» (Москва) и редколлегий журналов «Известия НАН РК. Серия биологическая и медицинская», «Биотехнология. Теория и практика», «Поиск», «Микробиология және вирусология». Много сил, внимания и душевной теплоты академик НАН РК Саятов М.Х. уделял подготовке научных кадров. Под его руководством защищены 4 докторских и 18 кандидатских диссертаций, подготовлены десятки дипломных работ, его ученики успешно трудятся в ведущих научных и педагогических центрах Казахстана, Москвы и Санкт-Петербурга. Будучи мудрым и требовательным наставником, Марат Хусаинович передал своим многочисленным ученикам трудолюбие и настойчивость в достижении высоких целей науки. Многолетняя активная деятельность Саятова Марата Хусаиновича на благо становления и развития вирусологический науки в Казахстане получила заслуженное признание, оценена и отмечена высокими правительственными наградами. За плодотворную научно-организационную, педагогическую и общественную деятельность, большие достижения и значительный научный вклад в развитие биологической науки Республики Казахстан Саятов М.Х. награжден медалями «За трудовое отличие», «За доблестный труд», «Ветеран труда», «70 лет победы в Великой Отечественной войне», знаками «За заслуги в развитии науки Казахстана», «Изобретатель СССР», «75 лет победы в Великой Отечественной войне», почетными грамотами МН-АН РК, Президиума НАН РК и Президиума республиканского комитета профсоюза работников просвещения, высшей школы и научных учреждений. Саятов Марат Хусаинович был образцом ученого, безраздельно отдавшего всю свою энергию и глубокие знания делу развития отечественной науки. Светлая память об Академике Саятове Марате Хусаиновиче, выдающемся ученом, беззаветно служившем своей Родине, навсегда сохранится в памяти и сердцах соотечественников, его учеников, коллег, друзей, родных и близких.

Коллектив ТОО «НПЦ микробиологии и вирусологии»

69 News of the National Academy of Sciences of the Republic of Kazakhstan

МАЗМҰНЫ

Биохимия

Әдекенов С.M., Макубаева А.И., Сейдахметова Р.Б. Artemisia transiliensis Poljakov эфир майының компоненттік құрамы және биологиялық белсенділігі...... 5

Микробиология

Коротецкий И.С., Шилов С.В., Рева О.Н., Кузнецова Т.В., Джумагазиева А.Б., Ахматуллина Н.Б., Ильин А.И. Құрамында наномолекула иоды бар кешен әсерінен кейінгі E. coli мультирезистенттік штамм гендері экспрессиясын профилирлеу...... 10

Өсімдіктер физиологиясы

Жайлыбай К.Н., Медеуова Г.Ж., Қалиева А.Н. Ауыр металдар тұздарының концентрациясына байланысты күріш сорттарының биомасса құрастыруы...... 19

Генетика

Даурова А.К., Волков Д.В., Дауров Д.Л., Жапар К.К., Шамекова М.Х., Жамбакин К.Ж. Рапс селекциясы үшін оқшауланған микроспор дақылынан алынған эмбриоидтарды EMS мутагенімен өңдеу (Brassica napus)...... 27

Флора и фауна

Байжүніс М.Ж., Есенбекова П.А., Анарбекова Г.Д. Шарын Мемлекеттік ұлттық табиғи паркі (оңтүстік-шығыс Қазақстан) ағаш жартылай қаттықанаттылары (Heteroptera)...... 38 Ғабдуллин Е.М., Куприянов А.Н., Әдекенов С.М. Қазақ ұсақ шоқысындағы Artemisia L. (Subgen. Seriphidium (Bess.) Peterm...... 46 Кенжегалиев А., Абилгазиева А.А., Шахманова А.К., Кулбатыров Д.К., Зайцев В.Ф., Уразгалиева М.К. Қашаған кен орны ауданындағы гидробионттар жағдайы...... 52 Мурзова Т.В., Тәжібаева Н.А. Алматы қаласыдағы ботаника және фитоинтродукция институтында Euphorbia L. тұқым түрін жерсіндіру...... 62

Ғалымдарды еске алу

САЯТОВ Марат Хусаинович...... 68

70 ISSN 2224-5308 Series of biological and medical. 4. 2020

СОДЕРЖАНИЕ

Биохимия

Адекенов С.M., Макубаева А.И., Сейдахметова Р.Б. Компонентный состав и биологическая активность эфирного масла Artemisia transiliensis Poljakov...... 5

Микробиология

Коротецкий И.С., Шилов С.В., Рева О.Н., Кузнецова Т.В., Джумагазиева А.Б., Ахматуллина Н.Б., Ильин А.И. Профилирование экспрессии генов мультирезистентного штамма E. Coli после воздействия наномолекулярным йод-содержащим комплексом...... 10

Физиология растений

Жайлыбай К.Н., Medeuova G.Z., Kaliyeva A.N. Накопление биомассы сортов риса в зависимости от концентрации растворов солей тяжелых металлов...... 19

Генетика

Даурова А.К., Волков Д.В., Дауров Д.Л., Жапар К.К., Шамекова М.Х., Жамбакин К.Ж. Обработка мутагеном EMS эмбриоидов, полученных в культуре изолированных микроспор для селекции рапса (Brassica napus)...... 27

Флора и фауна

Байжүніс М.Ж., Есенбекова П.А., Анарбекова Г.Д. Древесные хищные полужесткокрылые (Heteroptera) Чарынского ГНПП (юго-восточный Казахстан)...... 38 Габдуллин Е.М., Куприянов А.Н., Адекенов С.М. Artemisia L. (Subgen. Seriphidium (Bess.) Peterm. в Казахском мелкосопочнике...... 46 Кенжегалиев А., Абилгазиева А.А., Шахманова А.К., Канбетов А.Ш., Кулбатыров Д.К., Зайцев В.Ф., Уразгалиева М.К. Состояния гидробионтов в районе месторождения Кашаган...... 52 Мурзова Т.В., Тәжібаева Н.А. Интродукция видов рода Euphorbia L. в ИБиФ г. Алматы...... 62

Памяти ученых

САЯТОВ Марат Хусаинович...... 68

71 News of the National Academy of Sciences of the Republic of Kazakhstan

CONTENTS

Biochemistry

Adekenov S.M., Makubayeva А.I., Seidakhmetova R.B. Component composition and biological activity of essential oil of Artemisia transiliensis Poljakov...... 5

Microbiology

Korotetskiy I.S., Shilov S.V., Reva O.N., Kuznetsova T.V., Jumagaziyeva A.B., Akhmatullina N.B., Ilin A.I. Gene expression profiling of multi-drug resistant E. coli after exposure by nanomolecular iodine-containing complex...... 10

Plant physiology

Zhailybay K.N., Medeuova G.Z., Kaliyeva A.N. Biomass accumulation by rice cultivars depending on heavy metals salts solutions concentration...... 19

Genetics

Daurova A.K., Volkov D.V., Daurov D.L., Zhapar K.K., Shamekova M.Kh., Zhambakin K.Zh. Mutagen EMS treatment of microspore-derived embryos for rapeseed breeding (Brassica napus)...... 27

Flora and fauna

Baizhunys M.ZH., Esenbekova P.A., Anarbekova G.D. Wood hemiptera (Heteroptera) predators of Charynskiy SNNP (south-east Kazakhstan)...... 38 Gabdullin Е.М., Kupriyanov А.N., Adekenov S.М. Artemisia L. (Subgen. Seriphidium (Bess.) Peterm. in Kazakh upland...... 46 Kenzhegaliyev A., Abilgaziyeva A.A., Shakhmanova A.K., Kanbetov A.Sh., Kulbatyrov D.K., Zaitsev V.F., Urazgaliyeva M.K. The condition of hydrobionts near Kashagan field area...... 52 Murzova T.V., Tazhibaeyava N.A. Introduction of Euphorbia L. species at the institute of botany and phytointroduction in Almaty...... 62

In memory of scientists

SAJАTOV Marat Husainovich...... 68

72 ISSN 2224-5308 Series of biological and medical. 4. 2020

Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics. Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted. No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect. The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research. The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders. The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan. The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

73 News of the National Academy of Sciences of the Republic of Kazakhstan

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz

ISSN 2518-1629 (Online), ISSN 2224-5308 (Print)

http://biological-medical.kz/index.php/en/

Редакторы: М. С. Ахметова, Д. С. Аленов, А. Ахметова Верстка на компьютере Д. А. Абдрахимовой

Подписано в печать 15.08.2020. Формат 60х881/8. Бумага офсетная. Печать – ризограф. 4,6 п.л. Тираж 300. Заказ 4.

Национальная академия наук РК 050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19 74 ISSN 2224-5308 Series of biological and medical. 4. 2020

Уважаемые авторы научных журналов НАН РК!

Президиумом НАН РК принято решение, в целях повышения международного рейтинга академических изданий, объединить следующие 3 журнала, начиная с № 5 (сентябрь-октябрь), 2020 г., с высокорейтинговыми журналами НАН РК, входящими в международные базы Scopus, WoS и др.: 1. «Известия НАН РК. Серия биологических и медицинских наук» объединить с журналом «Доклады НАН РК»; 2. «Известия НАН РК. Серия аграрных наук» – «Доклады НАН РК»; 3. «Известия НАН РК. Серия общественных и гуманитарных наук» – с журналом «Вестник НАН РК». Статьи, которые публиковались в журналах «Известия НАН РК. Серия биологических и медицинских наук» и «Известия НАН РК. Серия аграрных наук», впредь будут публиковаться в журнале «Доклады НАН РК», а статьи, публикуемые в журнале «Известия НАН РК. Серия общественных и гуманитарных наук», – в журнале «Вестник НАН РК». При подаче статей просим указывать название журнала и отрасль науки, согласно представленного перечня (см. ниже) в данном журнале:

I. Научный журнал «Вестник НАН РК» посвящен исследованиям фундаментальной науки (гуманитарные и естественные): Редакционная коллегия принимает статьи по следующим отраслям науки: 1. Гуманитарные (экономика, юриспруденция, история и археология, политология и социология, философия, филология, педагогика и психология, литературоведение, искусствоведение) 2. Естественные (астрономия, физика, химия, биология, география и технические науки). Примеры технических наук: космонавтика, кораблестроение, машиностроение, системотехника, электротехника, электросвязь, радиоэлектроника, ядерная энергетика и т.д.

Адрес сайта «Вестник НАН РК» – http://www.bulletin-science.kz/index.php/en/arhive

II. Научный журнал «Доклады НАН РК» посвящен исследованиям в области получения наноматериалов, биотехнологии и экологии. Редакционная коллегия принимает статьи по следующим отраслям науки: 1. Получение наноматериалов в области естественных наук, медицины и сельского хозяйства. 2. Биотехнология в земледелии, растениеводстве и зоотехнике. 3. Общая биология и биотехнология в медицине. 4. Экология.

Адрес сайта «Доклады НАН РК» – http://reports-science.kz/index.php/en/archive

Кроме того, в журналах «Известия НАН РК. Серия физико- математическая», «Известия НАН РК. Серия химии и технологий» и «Известия НАН РК. Серия геологии и технических наук» также указаны отрасли науки, по которым будут приниматься научные статьи для экспертизы и дальнейшего опубликования:

75 News of the National Academy of Sciences of the Republic of Kazakhstan

III. Научный журнал «Известия НАН РК. Серия физико-математическая» посвящен исследованиям в области математики, физики и информационной технологии. Редакционная коллегия принимает статьи по следующим отраслям науки: 1. Математика. 2. Информатика. 3. Интеллектуальный анализ данных и распознавание образов. 4. Математическое моделирование социальных и экономических процессов. 5. Механика. 6. Механика машин и роботов. 7. Теория управления и космические исследования. 8. Физика. 9. Ядерная физика. 10. Теоретическая физика. 11. Астрономия. 12. Ионосфера.

Адрес сайта «Известия НАН РК. Серия физико-математическая» – http://physics-mathematics.kz/index.php/en/archive

IV. Научный журнал «Известия НАН РК. Серия химии и технологий» посвящен исследованиям в области химии и технологий новых материалов. Редакционная коллегия принимает статьи по следующим отраслям науки: 1. Органическая химия. 2. Неорганическая химия. 3. Высокомолекулярные соединения. 4. Физическая химия (катализ, электрохимия). 5. Технология новых материалов. 6. Технология органических веществ. 7. Технология неорганических веществ. 8. Технология химических удобрений. 9. Технология полимерных и строительных материалов и силикаты. 10. Технология пищевых продуктов. 11. Фармацевтическая химия.

Адрес сайта «Известия НАН РК. Серия химии и технологии» – http://chemistry-technology.kz/index.php/en/arhiv

V. Научный журнал «Известия НАН РК. Серия геологии и технических наук» посвящен исследованиям в области геологии и технических наук: Редакционная коллегия принимает статьи по следующим отраслям науки: 1. Геология. 2. Региональная геология. 3. Петрология. 4. Геология нефти и газа. 5. Геология и генезис рудных месторождений. 6. Гидрогеология. 7. Горное дело и геомеханика. 8. Фундаментальные проблемы обогащения минерального сырья. 9. Инженерная геология. 10. Геофизика и сейсмология. 11. География.

Адрес сайта «Известия НАН РК. Серия геологии и технических наук» – http://www.geolog-technical.kz/index.php/en/archive

76