water Article Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania) Elena Hu¸tanu 1, Alin Mihu-Pintilie 2,* , Andrei Urzica 1 , Larisa Elena Paveluc 1,3, Cristian Constantin Stoleriu 1 and Adrian Grozavu 1 1 Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Ia¸si,Bd. Carol I 20A, 700505 Ia¸si,Romania;
[email protected] (E.H.);
[email protected] (A.U.);
[email protected] (L.E.P.);
[email protected] (C.C.S.);
[email protected] (A.G.) 2 Science Research Department, Institute for Interdisciplinary Research, Alexandru Ioan Cuza University of Ia¸si,St. Lascăr Catargi 54, 700107 Ia¸si,Romania 3 Siret Water Basin Administration, St. Cuza Voda 1, 600274 Bacău, Romania * Correspondence:
[email protected] or
[email protected]; Tel.: +40-741-912-245 Received: 24 April 2020; Accepted: 3 June 2020; Published: 6 June 2020 Abstract: The ability to extract flood hazard settings in highly vulnerable areas like populated floodplains by using new computer algorithms and hydraulic modeling software is an important aspect of any flood mitigation efforts. In this framework, the 1D/2D hydraulic models, which were generated based on a Light Detection and Ranging (LiDAR) derivate Digital Elevation Model (DEM) and processed within Geographical Information Systems (GIS), can improve large-scale flood hazard maps accuracy. In this study, we developed the first flood vulnerability assessment for 1% (100-year) and 0.1% (1000-year) recurrence intervals within the Jijia floodplain (north-eastern Romania), based on 1D HEC-RAS hydraulic modeling and LiDAR derivate DEM with 0.5 m spatial resolution.