The Family of Stars Chapter 9 Outline

Total Page:16

File Type:pdf, Size:1020Kb

The Family of Stars Chapter 9 Outline Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 9 The Family of Stars Outline I. Measuring the Distances to Stars A. The Surveyor's Method B. The Astronomer's Method C. Proper Motion II. Intrinsic Brightness A. Brightness and Distance B. Absolute Visual Magnitude C. Calculating Absolute Visual Magnitude D. Luminosity III. The Diameters of Stars A. Luminosity, Radius, and Temperature B. The H-R Diagram C. Giants, Supergiants, and Dwarfs 1 Outline D. Luminosity Classification E. Spectroscopic Parallax IV. The Masses of Stars A. Binary Stars in General B. Calculating the Masses of Binary Stars C. Visual Binary Systems D. Spectroscopic Binary Systems E. Eclipsing Binary Systems V. A Survey of the Stars A. Mass, Luminosity, and Density B. Surveying the Stars Light as a Wave (1) We already know how to determine a star’s • surface temperature • chemical composition • surface density In this chapter, we will learn how we can determine its • distance • luminosity • radius • mass and how all the different types of stars make up the big family of stars. Distances to Stars d in parsec (pc) p in arc seconds _1_ d = p Trigonometric Parallax: Star appears slightly shifted from different positions of the Earth on its orbit 1 pc = 3.26 LY The farther away the star is (larger d), the smaller the parallax angle p. 2 The Trigonometric Parallax Example: Nearest star, α Centauri, has a parallax of p = 0.76 arc seconds d = 1/p = 1.3 pc = 4.3 LY With ground-based telescopes, we can measure parallaxes p ≥ 0.02 arc sec => d ≤ 50 pc This method does not work for stars farther away than 50 pc. Proper Motion In addition to the periodic back-and- forth motion related to the trigonometric parallax, nearby stars also show continuous motions across the sky. These are related to the actual motion of the stars throughout the Milky Way, and are called proper motion. Intrinsic Brightness/ Absolute Magnitude The more distant a light source is, the fainter it appears. 3 Brightness and Distance (SLIDESHOW MODE ONLY) Intrinsic Brightness / Absolute Magnitude (2) More quantitatively: The flux received from the light is proportional to its intrinsic brightness or luminosity (L) and inversely proportional to the square of the distance (d): L F ~ __ d2 Star A Star B Earth Both stars may appear equally bright, although star A is intrinsically much brighter than star B. Distance and Intrinsic Brightness Example: Recall that: M Intensityagn. Ratio Betelgeuse Diff. App. Magn. m = 0.41 1 2.512 V 2 2.512*2.512 = (2.512)2 = 6.31 … … 5 (2.512)5 = 100 Rigel For a magnitude difference of 0.41 App. Magn. mV = 0.14 – 0.14 = 0.27, we find an intensity ratio of (2.512)0.27 = 1.28 4 Distance and Intrinsic Brightness (2) Rigel is appears 1.28 times brighter than Betelgeuse, But Rigel is 1.6 times further Betelgeuse away than Betelgeuse Thus, Rigel is actually (intrinsically) 1.28*(1.6)2 = 3.3 times brighter than Betelgeuse. Rigel Absolute Magnitude To characterize a star’s intrinsic brightness, define Absolute Magnitude (MV): Absolute Magnitude = Magnitude that a star would have if it were at a distance of 10 pc. Absolute Magnitude (2) Back to our example of Betelgeuse and Rigel: Betelgeuse B etelgeuseRigel V 0.41m 0.14 V -5.5M -6.8 d 152 pc 244 pc Rigel Difference in absolute magnitudes: 6.8 – 5.5 = 1.3 => Luminosity ratio = (2.512)1.3 = 3.3 5 The Distance Modulus If we know a star’s absolute magnitude, we can infer its distance by comparing absolute and apparent magnitudes: Distance Modulus = mV –MV = -5 + 5 log10(d [pc]) Distance in units of parsec Equivalent: d = 10(mM V – V + 5)/5 pc The Size (Radius) of a Star We already know: flux increases with surface temperature (~ T4); hotter stars are brighter. But brightness also increases with size: A Star B will be B brighter than star A. Absolute brightness is proportional to radius squared, L ~ R2. Quantitatively: L = 4 π R2 σ T4 Surface flux due to a Surface area of the star blackbody spectrum Example: Star Radii Polaris has just about the same spectral type (and thus surface temperature) as our sun, but it is 10,000 times brighter than our sun. Thus, Polaris is 100 times larger than the sun. This causes its luminosity to be 1002 = 10,000 times more than our sun’s. 6 , . sizes temperatures We know: , and different Organizing the Family of Stars: The Hertzsprung-Russell Diagram luminosities Stars have different different Temperature (or spectral type) versus To bring some order into that zoo of different types of stars: organize them in a diagram of Luminosity Hertzsprung-RussellTemperature Diagram or Luminosity Absolute mag. Absolute Spectral type: O B A F G K M The Hertzsprung-Russell Diagram Most stars are found along the Main Sequence 7 Same temperature, but much brighter than MS stars Must be → much larger Giant → Stars The Hertzsprung-Russell Diagram (2) Stars spend most of their active life time on the Main Sequence (MS). ut p., b e tem fs Sam war r → D fainte 10,000 times the sun’s radius The Radii of Stars in the Hertzsprung-Russell Diagram Rigel Betelgeuse 100 times the sun’s radius Polaris As large as the sun Sun 100 times smaller than the sun Ib Supergiants II Bright Giants Luminosity ClassesIb Ia BrightIa Supergiants II III Giants IV Subgiants III IV V Main-Sequence Stars V 8 Example Luminosity Classes G2V luminosity: • Our Sun: G2 star on the Main Sequence: G2Ib • Polaris: G2 star with Supergiant Spectral Lines of Giants Pressure and density in the atmospheres of giants are lower than in main sequence stars. => Absorption lines in spectra of giants and supergiants are narrower than in main sequence stars => From the line widths, we can estimate the size and luminosity of a star. → Distance estimate (spectroscopic parallax) Binary Stars More than 50 % of all stars in our Milky Way are not single stars, but belong to binaries: Pairs or multiple systems of stars which orbit their common center of mass. If we can measure and understand their orbital motion, we can estimate the stellar masses. The Center of Mass center of mass = balance point of the system. Both masses equal => center of mass is in the middle, rA = rB. The more unequal the masses are, the more it shifts toward the more massive star. 9 Center of Mass (SLIDESHOW MODE ONLY) Estimating Stellar Masses Recall Kepler’s 3rd Law: 2 3 Py = aAU Valid for the Solar system: star with 1 solar mass in the center. We find almost the same law for binary stars with masses MA and MB different from 1 solar mass: 3 ____aAU M A + MB = 2 Py (MA and MB in units of solar masses) Examples: Estimating Mass a) Binary system with period of P = 32 years and separation of a = 16 AU: ____163 M + M = = 4 solar masses. A B 322 b) Any binary system with a combination of period P and separation a that obeys Kepler’s 3. Law must have a total mass of 1 solar mass. 10 Visual Binaries The ideal case: Both stars can be seen directly, and their separation and relative motion can be followed directly. Spectroscopic Binaries Usually, binary separation a can not be measured directly because the stars are too close to each other. A limit on the separation and thus the masses can be inferred in the most common case: Spectroscopic Binaries Spectroscopic Binaries (2) The approaching star produces blue shifted lines; the receding star produces red shifted lines in the spectrum. Doppler shift → Measurement of radial velocities → Estimate of separation a → Estimate of masses 11 Spectroscopic Binaries (3) Typical sequence of spectra from a spectroscopic binary system Time Eclipsing Binaries Usually, inclination angle of binary systems is unknown → uncertainty in mass estimates. Special case: Eclipsing Binaries Here, we know that we are looking at the system edge-on! Eclipsing Binaries (2) Peculiar “double-dip” light curve Example: VW Cephei 12 Eclipsing Binaries (3) Example: Algol in the constellation of Perseus From the light curve of Algol, we can infer that the system contains two stars of very different surface temperature, orbiting in a slightly inclined plane. The Light Curve of Algol Masses of Stars in the Hertzsprung- Russell Diagram The higher a star’s mass, Masses in units of the more luminous solar masses (brighter) it is: 40 3.5 L ~ M H 18 ig h High-mass stars have m a s 6 much shorter lives than se s low-mass stars: 3 1.7 t ~ M-2.5 M life 1.0 as s 0.8 0.5 L m o w a s Sun: ~ 10 billion yr. s e s 10 Msun: ~ 30 million yr. 0.1 Msun: ~ 3 trillion yr. 13 Maximum Masses of Main-Sequence Stars Mmax ~ 50 - 100 solar masses a) More massive clouds fragment into b) Very massive stars lose smaller pieces during star formation. mass in strong stellar winds η Carinae Example: η Carinae: Binary system of a 60 Msun and 70 Msun star. Dramatic mass loss; major eruption in 1843 created double lobes. Minimum Mass of Main-Sequence Stars Mmin = 0.08 Msun At masses below 0.08 Msun, stellar Gliese 229B progenitors do not get hot enough to ignite thermonuclear fusion. → Brown Dwarfs Surveys of Stars Ideal situation: Determine properties of all stars within a certain volume.
Recommended publications
  • Astronomy, Astrophysics, and Cosmology
    Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson I February 2, 2016 arXiv:0706.1988 L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 1 / 22 Table of Contents 1 Stars and Galaxies 2 Distance Measurements Stellar parallax Stellar luminosity L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 2 / 22 Stars and Galaxies Night sky provides a strong impression of a changeless universe G Clouds drift across the Moon + on longer times Moon itself grows and shrinks G Moon and planets move against the background of stars G These are merely local phenomena caused by motions within our solar system G Far beyond planets + stars appear motionless L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 3 / 22 Stars and Galaxies According to ancient cosmological belief + stars except for a few that appeared to move (the planets) where fixed on sphere beyond last planet The universe was self contained and we (here on Earth) were at its center L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 4 / 22 Stars and Galaxies Our view of universe dramatically changed after Galileo’s telescopic observations: we no longer place ourselves at the center and we view the universe as vastly larger L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 5 / 22 Stars and Galaxies Is the Earth flat? L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 6 / 22 Stars and Galaxies Distances involved are so large that we specify them in terms of the time it takes the light to travel a given distance light second + 1 ls = 1 s 3 108 m/s = 3 108m = 300, 000 km × × light minute + 1 lm = 18 106 km × light year + 1 ly = 2.998 108 m/s 3.156 107 s/yr × · × = 9.46 1015 m 1013 km × ≈ How long would it take the space shuttle to go 1 ly? Shuttle orbits Earth @ 18,000 mph + it would need 37, 200 yr L.
    [Show full text]
  • 190 6Ap J 23. . 2 4 8C the LUMINOSITY of the BRIGHTEST
    8C 4 2 . 23. J 6Ap 190 THE LUMINOSITY OF THE BRIGHTEST STARS By GEORGE C. COMSTOCK The prevailing opinion among astronomers admits the presence in the heavens of at least a few stars of extraordinary intrinsic bril- liancy. ‘ Gill, Kapteyn, and Newcomb have under differing forms announced the probable existence of stars having a luminosity exceeding that of the Sun by ten-thousand fold or more, possibly a hundred-thousand fold, and Canopus is cited as an example of such a star. It is the purpose of the present article to examine the evidence upon which this doctrine is based, and the extent to which that evidence is confirmed or refuted by other considerations. As respects Canopus, the case is presented by Gill, Researches on Stellar Parallax, substantially as follows. The measured par- allaxes of this star and of a Centauri are respectively ofoio and 0^762, and their stellar magnitudes are — 0.96 and+ 0.40; i. e., Canopus is 3.50 times brighter than a Centauri. The light of the one star, is therefore 3.50 times as great as that of the other. But since a Centauri has the same mass and the same spectrum as the Sun, and therefore presumably emits the same quantity of light, we may substitute the Sun in place of a Centauri in this com- parison, and find from the expression given above that Canopus is more than 20,000 times as bright as the Sun. I have sought for other cases of a similar character, using a method slightly different from that of Gill.
    [Show full text]
  • Lecture 5: Stellar Distances 10/2/19, 802 AM
    Lecture 5: Stellar Distances 10/2/19, 802 AM Astronomy 162: Introduction to Stars, Galaxies, & the Universe Prof. Richard Pogge, MTWThF 9:30 Lecture 5: Distances of the Stars Readings: Ch 19, section 19-1 Key Ideas Distance is the most important & most difficult quantity to measure in Astronomy Method of Trigonometric Parallaxes Direct geometric method of finding distances Units of Cosmic Distance: Light Year Parsec (Parallax second) Why are Distances Important? Distances are necessary for estimating: Total energy emitted by an object (Luminosity) Masses of objects from their orbital motions True motions through space of stars Physical sizes of objects The problem is that distances are very hard to measure... The problem of measuring distances Question: How do you measure the distance of something that is beyond the reach of your measuring instruments? http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/distances.html Page 1 of 7 Lecture 5: Stellar Distances 10/2/19, 802 AM Examples of such problems: Large-scale surveying & mapping problems. Military range finding to targets Measuring distances to any astronomical object Answer: You resort to using GEOMETRY to find the distance. The Method of Trigonometric Parallaxes Nearby stars appear to move with respect to more distant background stars due to the motion of the Earth around the Sun. This apparent motion (it is not "true" motion) is called Stellar Parallax. (Click on the image to view at full scale [Size: 177Kb]) In the picture above, the line of sight to the star in December is different than that in June, when the Earth is on the other side of its orbit.
    [Show full text]
  • Cosmic Distances
    Cosmic Distances • How to measure distances • Primary distance indicators • Secondary and tertiary distance indicators • Recession of galaxies • Expansion of the Universe Which is not true of elliptical galaxies? A) Their stars orbit in many different directions B) They have large concentrations of gas C) Some are formed in galaxy collisions D) The contain mainly older stars Which is not true of galaxy collisions? A) They can randomize stellar orbits B) They were more common in the early universe C) They occur only between small galaxies D) They lead to star formation Stellar Parallax As the Earth moves from one side of the Sun to the other, a nearby star will seem to change its position relative to the distant background stars. d = 1 / p d = distance to nearby star in parsecs p = parallax angle of that star in arcseconds Stellar Parallax • Most accurate parallax measurements are from the European Space Agency’s Hipparcos mission. • Hipparcos could measure parallax as small as 0.001 arcseconds or distances as large as 1000 pc. • How to find distance to objects farther than 1000 pc? Flux and Luminosity • Flux decreases as we get farther from the star – like 1/distance2 • Mathematically, if we have two stars A and B Flux Luminosity Distance 2 A = A B Flux B Luminosity B Distance A Standard Candles Luminosity A=Luminosity B Flux Luminosity Distance 2 A = A B FluxB Luminosity B Distance A Flux Distance 2 A = B FluxB Distance A Distance Flux B = A Distance A Flux B Standard Candles 1. Measure the distance to star A to be 200 pc.
    [Show full text]
  • Magisterarbeit
    MAGISTERARBEIT Titel der Magisterarbeit BINARY AGB STARS OBSERVED WITH HERSCHEL Verfasser Klaus Kornfeld, Bakk.rer.nat. angestrebter akademischer Grad Magister der Naturwissenschaften (Mag.rer.nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 066 861 Studienrichtung lt. Studienblatt: Astronomie Betreuer: Ao. Univ.-Prof. Mag. Dr. Franz Kerschbaum 2 Every atom in your body came from a star that ex- ploded. And the atoms in your left hand probably came from a different star than your right hand. It really is the most poetic thing I know about physics: You are all stardust. You couldn't be here if stars hadn't exploded, because the elements - the carbon, nitrogen, oxygen, iron, all the things that matter for evolution - weren't created at the beginning of time. They were created in the nuclear furnaces of stars, and the only way they could get into your body is if those stars were kind enough to explode. So, forget Jesus. The stars died so that you could be here today. - Lawrence Krauss 3 4 Contents Kurzbeschreibung/Abstract9 Danksagung/Acknowledgement 13 1 Introduction 17 1.1 The Herschel Space Observatory....................... 17 1.1.1 The satellite.............................. 18 1.1.2 On-board instrumentation...................... 18 1.1.3 The Herschel Interactive Processing Environment......... 21 1.1.4 The Herschel Key Program MESS.................. 22 1.2 The Asymptotic Giant Branch........................ 23 1.2.1 AGB stars............................... 25 1.3 The atmosphere and outer CSE....................... 29 1.3.1 Observational properties....................... 30 1.3.2 Mass loss............................... 32 1.3.3 Geometry of the CSE......................... 33 1.4 Outflow morphology............................
    [Show full text]
  • Determining Stellar Properties
    Determining stellar properties Physical parameters: Measurements: • distance d • position on sky • luminosity L • flux in different bands • temperature Te • spectrum • radius R • time dependence of • mass M above • age t • chemical composition Xi Determining distance Standard candle L 1 ⎛ L ⎞ 2 d = ⎝⎜ 4π f ⎠⎟ d Standard ruler θ R R d = θ Determining distance: Parallax RULER R R tanπ = ≈ π π d d R = 1AU = 1.5 × 1013 cm Define new distance unit: parsec (parallax-second) 1AU ⎛ d ⎞ 1 1pc = = 206,265AU = 3.26ly = tan(1′′) ⎝⎜ 1pc⎠⎟ π′′ Determining distance: Parallax Determining distance: Parallax Point spread function (PSF) Determining distance: Parallax 1 Need high angular precision to probe far away stars. d = π Error propagation: 2 2 ⎛ ∂d ⎞ 2 ⎛ 1 ⎞ 2 σ π σ π σ d = ⎜ ⎟ σ π = ⎜ − 2 ⎟ σ π = 2 = d ⎝ ∂π ⎠ ⎝ π ⎠ π π σ σ d = π d π At what distance do we get a given fractional distance error? ⎛ σ d ⎞ 1 d = ⎜ ⎟ ⎝ d ⎠ σ π Determining distance: Parallax 0.1 e.g., to get 10% distance errors dmax = σ π Mission Dates σ π dmax Earth telescope ~ 0.1 as 1 pc HST ~ 0.01 as 10 pc Hipparcos 1989-1993 ~ 1 mas 100 pc Gaia 2013-2018 ~ 20 µas 5 kpc SIM cancelled ~ 4 µas 25 kpc Determining distance: moving cluster method v Proper motion t R dθ d ⎛ R⎞ v µ = = = t dt dt ⎝⎜ d ⎠⎟ d d -1 vt ⎛ d ⎞ (vt 1 kms ) d = = µ ⎝⎜ 1pc⎠⎟ 4.74(µ 1′′yr-1 ) Determining distance: moving cluster method RULER 1. Measure proper motions of stars in a cluster 2.
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • Spectacular Ultraviolet Flash May Finally Explain How White Dwarfs Explode1: Event Also Could Give Insight Into Dark Energy and the Creation of Iron
    Spectacular ultraviolet flash may finally explain how white dwarfs explode1: Event also could give insight into dark energy and the creation of iron. Summary by : Mehul Jangir Date : August 2020 Professor : Dr. Jamie Lombardi This summary was prepared by Mr. Mehul Jangir as a part of his undergraduate coursework for Principles of Astronomy under the guidance of Professor Jamie Lombardi at Allegheny College. Original Research: https://iopscience.iop.org/article/10.3847/1538-4357/ab9e05 Credits: 1 Miller, A. A., et al. “The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq.” The Astrophysical Journal, vol. 898, no. 1, 2020, p. 56., doi:10.3847/1538-4357/ab9e05. Source: Northwestern University Summary: White dwarfs are stars that have burnt up all of the hydrogen they once used as fuel. The inward push of gravity is balanced by electron degeneracy pressure. Fusion in a white dwarf’s core produces outwards pressure, which is balanced by the inward push of gravity due to the star’s mass. A type Ia supernova occurs when a white dwarf in a binary star system goes over the Chandrashekhar limit due to accreting mass from or a merger with its companion star. Ultraviolet radiation is produced by high temperature surfaces in space, such as the surfaces of blue supergiants. The research article1 details an astronomical event wherein a type Ia supernova explosion, a relatively common phenomenon, is accompanied by a UV flash, an incredibly rare phenomenon. This is pointed out as the second observed occurrence of such an event, making it innately important and intriguing.
    [Show full text]
  • ASTR 101 Introduction to Astronomy: Stars & Galaxies
    ASTR 101 Introduction to Astronomy: Stars & Galaxies REVIEW 3 Main Galaxy Types EllipticalElliptical Galaxy Galaxy Irregular Galaxies Spiral Galaxy Hubble classification of galaxy types Spirals Ellipticals Barred spiral Where do spirals and ellipticals live? HST: Hickson CG 44 • Spirals: mostly in groups (3-10 galaxies) • Ellipticals - most often in dense clusters of galaxies (involve 100’s to 1000’s) HST: Abell 1689 The Big Picture: Universe is filled with network of galaxies in groups and clusters ~100 billion galaxies! Pattern of galaxies (3 million+),15o portion of sky Brighter = more galaxies Clicker Question Which of the following is NOT a classification of a type of galaxy? A. Keplerian B. Spiral C. Lenticular D. Elliptical E. Irregular Clicker Question Which of the following is NOT a classification of a type of galaxy? A. Keplerian B. Spiral C. Lenticular D. Elliptical E. Irregular Our “Local Group” of galaxies 3 spirals: Andromeda (M31) 3/2 MMW Milky Way 1 MMW Triangulum (M33) 1/5 M MW ~21 Galaxies 2 irregulars: LMC 1/8 MMW SMC 1/30 MMW 16+ dwarfs Biggest is Andromeda (Sb - M33) • Andromeda is ~3 million light years away (or ~30 MW diameters), has ~1.5 mass of MW • We see it as it was 3 million years ago, not as it is today! – this is lookback time • Oops! It may crash into MW in about 2 billion years Triangulum (M33) • 1/5 mass of MW, spiral classified as Sc • Several bright (pink) star forming regions Large & Small Magellanic Clouds SMC LMC LMC has 30 Doradus, home of SN 1987A Clicker Question What are the Magellanic Clouds? A.
    [Show full text]
  • 1. This Question Is About the Mean Density of Matter in the Universe
    1. This question is about the mean density of matter in the universe. (a) Explain the significance of the critical density of matter in the universe with respect to the possible fate of the universe. ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (3) The critical density ρ0 of matter in the universe is given by the expression 3H 2 ρ = 0 , 0 π 8 G where H0 is the Hubble constant and G is the gravitational constant. –18 –1 An estimate of H0 is 2.7 × 10 s . (b) (i) Calculate a value for ρ0. ........................................................................................................................... ........................................................................................................................... ........................................................................................................................... (1) (ii) Hence determine the equivalent number of nucleons per unit volume at this critical density. ..........................................................................................................................
    [Show full text]
  • Stars I Distance and Magnitude Distances How Does One Measure Distance? Stellar Parallax
    Stars I Chapter 16 Distance and Magnitude W hy doesn‘t comparison work? Distances • The nearest star (Alpha Centauri) is 40 trillion kilometers away(4 ly) • Distance is one of the most important quantities we need to measure in astronomy How Does One Measure Distance? • The first method uses some simple geometry œ Parallax • Have you ever notice that as you change positions the background of a given object changes? œ Now we let the Earth move in its orbit • Because of the Earth‘s motion some stars appear to move with respect to the more distant stars • Using the apparent motion of stars gives us the method called… Stellar Parallax • p = r/d œ if r = 1 A.U. and we rearrange… • W e get: d = 1/p • Definition : œ if p = 1“ then d = 1 parsec • 1 parsec = 206,265 A.U. • 1 parsec = 3.09 x 1013 km • 1 parsec = 3.26 lightyears œ So Alpha Centauri is 1.3 pc away 40 trillion km, 24.85 trillion mi, and 4 ly Distance Equation– some examples! • Our distance equation is: d = 1/p“ • Example 1: œ p = 0.1“ and d = 1/p œ d = 1/0.1“ = 10 parsecs • Example 2 Barnard‘s Star: œ p = 0.545 arcsec œ d = 1/0.545 = 1.83 parsecs • Example 3 Proxima Centauri (closest star): œ p = 0.772 arcsec œ d = 1/0.772 = 1.30 parsecs Difficulties with Parallax • The very best measurements are 0.01“ • This is a distance of 100 pc or 326 ly (not very far) Improved Distances • Space! • In 1989 ESA launched HIPPARCOS œ This could measure angles of 0.001 arcsec This moves us out to about 1000 parsecs or 3260 lightyears HIPPARCOS has measured the distances of about 118,000 nearby stars • The U.S.
    [Show full text]
  • Stellar Masses
    GENERAL I ARTICLE Stellar Masses B S Shylaja Introduction B S Shylaja is with the Bangalore Association for The twinkling diamonds in the night sky make us wonder at Science Education, which administers the their variety - while some are bright, some are faint; some are Jawaharlal Nehru blue and red. The attempt to understand this vast variety Planetarium as well as a eventually led to the physics of the structure of the stars. Science Centre. After obtaining her PhD on The brightness of a star is measured in magnitudes. Hipparchus, Wolf-Rayet stars from the a Greek astronomer who lived a hundred and fifty years before Indian Institute of Astrophysics, she Christ, devised the magnitude system that is still in use today continued research on for the measurement of the brightness of stars (and other celes­ novae, peculiar stars and tial bodies). Since the response of the human eye is logarithmic comets. She is also rather than linear in nature, the system of magnitudes based on actively engaged in teaching and writing visual estimates is on a logarithmic scale (Box 1). This scale was essays on scientific topics put on a quantitative basis by N R Pogson (he was the Director to reach students. of Madras Observatory) more than 150 years ago. The apparent magnitude does not take into account the distance of the star. Therefore, it does not give any idea of the intrinsic brightness of the star. If we could keep all the stars at the same 1 Parsec is a natural unit of dis­ distance, the apparent magnitude itself can give a measure of the tance used in astronomy.
    [Show full text]