Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly

Total Page:16

File Type:pdf, Size:1020Kb

Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly Brian Rogers, Siddhartha Chhabra, Milos Prvulovic§ Yan Solihin NC STATE §Georgia UNIVERSITY Tech Motivation Why is there a need for secure processors? Digital Rights Management, Copy Protection, Trusted Distributed Computing, Software Piracy, Reverse Engineering, Data Theft Why are architectural mechanisms necessary? Hardware attacks emerging (e.g. Mod-chips, bus analyzers) SW-only protection vulnerable to HW attacks $59.99 $53.49 $49.69 XBOX mod-chip PS mod-chip GC mod-chip Brian Rogers AISE + BMT for Secure Processors MICRO 40 2 Secure Processor Architecture Processor Core Cache Secure Processor Crypto Engine Trusted Domain UnTrusted Domain ?? Main Memory (Encrypted Code/Data & Authentication Codes) Private and Tamper Resistant execution environment Brian Rogers AISE + BMT for Secure Processors MICRO 40 3 Prior Work Memory Encryption Counter Mode Encryption [Suh ’03], [Yang ’03] Overlap decryption and memory latencies System-level issues (difficult to support common features) Virtual Memory Shared memory-based Inter-Process Communication (IPC) Memory Integrity Verification Merkle Tree Integrity Verification [Gassend ’03] Prevents data replay attacks Performance & storage overheads Brian Rogers AISE + BMT for Secure Processors MICRO 40 4 Contributions Address Independent Seed Encryption (AISE) Retains same cryptographic latency-hiding ability Compatible with support for virtual memory and IPC Bonsai Merkle Trees (BMT) New, reduced size Merkle Tree organization Same protection, but lower storage & performance overheads Extended Merkle Tree Protection Novel mechanism to protect both physical memory and the disk from tampering attacks Brian Rogers AISE + BMT for Secure Processors MICRO 40 5 Outline Motivation & Background Memory Encryption Overview of counter-mode encryption Address Independent Seed Encryption Memory Integrity Verification Evaluation Conclusion Brian Rogers AISE + BMT for Secure Processors MICRO 40 6 Counter Mode Encryption Lowest-level Cache Secret Key Pad Seed AES Secure Chip Boundary Main Memory Security: Seed must be used only once Performance: Seed must be known at cache miss time 128 bits Seed Padding Block Address Block Counter Spatial Uniqueness Temporal Uniqueness Brian Rogers AISE + BMT for Secure Processors MICRO 40 7 Problems with Address-Based Seeds What if seed includes Physical Address? Security: Possible pad reuse between disk & memory Complexity: Extra cryptographic work on page swaps What if seed includes Virtual Address? Complexity: Storage of VA’s in lowest-level on-chip cache Security: Possible pad reuse between different processes Prevented by including process ID in seed, but… Shared-memory based IPC is difficult to support OS will reuse process ID’s Fundamental Problem: Address used for memory management purposes, not as a component for security Brian Rogers AISE + BMT for Secure Processors MICRO 40 8 Possible Solution – Global Counter Eliminates system-level problems of address-based seeds Maintain a large (64b) global counter on-chip Seed == global counter value Larger performance and storage overheads Large per-block counters do not cache well Require more storage in memory Brian Rogers AISE + BMT for Secure Processors MICRO 40 9 Address Independent Seed Encryption Use logical identifiers in seeds instead of address Manage logical ID per physical page, not per block New seed composition: Padding Logical Page IDentifier (LPID) Block Page Offset Block Counter Spatial Uniqueness Temporal Uniqueness LPID Unique value assigned to a page when allocated Obtained from a 64b on-chip Global Page Counter Stored in a non-volatile register Overflow not an issue Remains associated with page throughout its lifetime Brian Rogers AISE + BMT for Secure Processors MICRO 40 10 LPID Storage Borrow an idea from split counter organization [Yan ’06] Co-store LPID’s with block counters Example – 4KB page size, 64B block size, 64-bit LPID, 7-bit counter per block 64B Counter Block LPID 64b 64 x 7-bit block counters On block counter overflow: Assign new LPID to block’s page & re-encrypt that page On-chip counter cache to enable latency-hiding Brian Rogers AISE + BMT for Secure Processors MICRO 40 11 AISE Advantages Retains latency-hiding ability Counter caching or counter prediction Seeds are globally unique Eliminates pad reuse No special mechanisms for page swaps Swap page of data, LPID, & block counters to/from disk Shared-memory IPC naturally supported Low memory storage overhead (1.6%) Brian Rogers AISE + BMT for Secure Processors MICRO 40 12 Outline Background Memory Encryption Memory Integrity Verification Merkle Tree overview Bonsai Merkle Trees Evaluation Conclusion Brian Rogers AISE + BMT for Secure Processors MICRO 40 13 Merkle Tree Integrity Verification Root MAC • 64B Block Size • 128b Auth. Codes . MAC MAC MAC Intermediate MACs MAC MAC . MAC Main Memory Brian Rogers AISE + BMT for Secure Processors MICRO 40 14 Performance Optimization Problem: Large performance overhead Verify MACs to root for every data fetch Optimization: Cache MACs Cached MAC blocks are verified & trusted Only verify up the Merkle Tree to first cached MAC Lower performance overhead, but… Large portion of L2 cache may be occupied by MACs Increase in cache capacity misses Brian Rogers AISE + BMT for Secure Processors MICRO 40 15 Bonsai Merkle Trees (BMT) Leverage counter-mode memory encryption Two Observations: Merkle Tree only needed to prevent replay attacks Counter-mode encryption schemes maintain a counter per memory block Essentially a version number Claim Data blocks don’t need MT to guard replay attacks if: (1) Each block is protected with a MAC (2) Block’s MAC computed on ciphertext & counter value (3) Integrity & freshness of counter values guaranteed Brian Rogers AISE + BMT for Secure Processors MICRO 40 16 BMTs (Cont.) Why claim holds true: old old old MAC = Hk(Ctext , Counter ) Attacker replays MACold & Ctextold instead of MACfresh & Ctextfresh old old fresh MAC ≠ Hk(Ctext , Counter ) Processor knows Counterfresh How to guarantee processor knows Counterfresh? We protect counters with Merkle Tree! Significantly smaller and shallower Bonsai Merkle Tree Brian Rogers AISE + BMT for Secure Processors MICRO 40 17 BMT Structure Standard Merkle Tree Bonsai Merkle Tree Secure Chip Secure Chip Secure Root Boundary Boundary Secure Root Merkle Merkle Tree Data MACs Tree Data Ctrs MT nodes Data Ctrs MT nodes Reduced memory storage overhead & L2 cache contention Brian Rogers AISE + BMT for Secure Processors MICRO 40 18 Outline Background Memory Encryption Memory Integrity Verification Evaluation Conclusion Brian Rogers AISE + BMT for Secure Processors MICRO 40 19 Simulation Setup SESC – A detailed, execution-driven simulator Three issue, out of order processor L1 Cache Split I&D, 32KB each, 2-way set-associative, 64B line, 2-cycle/access L2 Cache Unified 1MB, 8-way set-associative, 64B line, 10-cycle/access Memory/Bus 200-cycle uncontended access time, 600MHz Bus AES/SHA-1 Engines 80 cycle latency, 16-stage pipeline Counter Cache 32KB, 16-way set associative, 64B line One 64b LPID, 64-7b minor (4KB page) Merkle-Tree Covers 1GB memory space, 128b MACs Brian Rogers AISE + BMT for Secure Processors MICRO 40 20 Address Independent Seed Encryption 23% 33% 39% AISE 20% d global32 global64 15% 10% 5% Execution Overhea Time 0% art gap mcf apsi mesa swim applu mgrid equake AVG21 wupwise AISE performs significantly better for memory-intensive applications AISE performance equivalent to prior counter-mode studies [Yan ’06] Brian Rogers AISE + BMT for Secure Processors MICRO 40 21 Bonsai Merkle Tree 74% 35% 63% d 30% 25% AISE AISE + MT AISE + BMT 20% 15% 10% 5% Execution Overhea Time 0% art gap mcf apsi mesa swim applu mgrid equake AVG21 wupwise BMTs eliminate significant portion of the overhead of Merkle Tree-based integrity protection (12% to 2%) Brian Rogers AISE + BMT for Secure Processors MICRO 40 22 L2 Cache Miss Rate 60% AISE+MT AISE+BMT 50% 40% 30% 20% 10% Normalized L2 Cache Miss Rate 0% art mcf gap apsi swim mesa applu mgrid AVG21 equake wupwise BMTs significantly reduce cache contention & L2 miss rates Counter Cache hits filter Merkle Tree integrity checks Brian Rogers AISE + BMT for Secure Processors MICRO 40 23 Conclusions AISE Retains cryptographic latency-hiding ability Compatible w/ virtual memory & shared memory IPC Simplifies process of page swapping encrypted pages BMTs Retain security of standard Merkle Tree over memory Significant reduction in performance overheads (12% to 2%) and memory storage overheads (33% to 21%) Brian Rogers AISE + BMT for Secure Processors MICRO 40 24 Questions Email: [email protected] NC STATE Georgia UNIVERSITY Tech Brian Rogers AISE + BMT for Secure Processors MICRO 40 25.
Recommended publications
  • GCM) for Confidentiality And
    NIST Special Publication 800-38D Recommendation for Block DRAFT (April, 2006) Cipher Modes of Operation: Galois/Counter Mode (GCM) for Confidentiality and Authentication Morris Dworkin C O M P U T E R S E C U R I T Y Abstract This Recommendation specifies the Galois/Counter Mode (GCM), an authenticated encryption mode of operation for a symmetric key block cipher. KEY WORDS: authentication; block cipher; cryptography; information security; integrity; message authentication code; mode of operation. i Table of Contents 1 PURPOSE...........................................................................................................................................................1 2 AUTHORITY.....................................................................................................................................................1 3 INTRODUCTION..............................................................................................................................................1 4 DEFINITIONS, ABBREVIATIONS, AND SYMBOLS.................................................................................2 4.1 DEFINITIONS AND ABBREVIATIONS .............................................................................................................2 4.2 SYMBOLS ....................................................................................................................................................4 4.2.1 Variables................................................................................................................................................4
    [Show full text]
  • Block Cipher Modes
    Block Cipher Modes Data and Information Management: ELEN 3015 School of Electrical and Information Engineering, University of the Witwatersrand March 25, 2010 Overview Motivation for Cryptographic Modes Electronic Codebook Mode (ECB) Cipher Block Chaining (CBC) Cipher Feedback Mode (CFB) Output Feedback Mode (OFB) 1. Cryptographic Modes Problem: With block ciphers, same plaintext block always enciphers to the same ciphertext block under the same key 1. Cryptographic Modes Solution: Cryptographic mode: • block cipher • feedback • simple operations Simple operations, as the security lies in the cipher. 1. Cryptographic Modes 1.1 Considerations • The mode should not compromise security of cipher • Mode should conceal patterns in plaintext • Some random starting point is needed • Difficult to manipulate the plaintext by changing ciphertext • Requires multiple messages to be encrypted with same key • No significant impact on efficiency of cipher • Ciphertext same size as plaintext • Fault tolerance - recover from errors 2. Electronic Codebook Mode Uses the block cipher without modifications Same plaintext block encrypts to same ciphertext under same key Each plaintext block is encrypted independently of other plaintext blocks. Corrupted bits only affects one block Dropped/inserted bits cause sync errors ! all subsequent blocks decipher incorrectly 2. Electronic Codebook Mode 2.1 Advantages ECB exhibits `random access property' because plaintext blocks are encrypted independently • Encryption and decryption can be done in any order • Beneficial for databases, records can be added, deleted, modified, encrypted and deleted independently of other records Parallel implementation • Different blocks can simultaneously be decrypted on separate processors Many messages can be encrypted with the same key, since each block is independent. 2.
    [Show full text]
  • Cryptographic Sponge Functions
    Cryptographic sponge functions Guido B1 Joan D1 Michaël P2 Gilles V A1 http://sponge.noekeon.org/ Version 0.1 1STMicroelectronics January 14, 2011 2NXP Semiconductors Cryptographic sponge functions 2 / 93 Contents 1 Introduction 7 1.1 Roots .......................................... 7 1.2 The sponge construction ............................... 8 1.3 Sponge as a reference of security claims ...................... 8 1.4 Sponge as a design tool ................................ 9 1.5 Sponge as a versatile cryptographic primitive ................... 9 1.6 Structure of this document .............................. 10 2 Definitions 11 2.1 Conventions and notation .............................. 11 2.1.1 Bitstrings .................................... 11 2.1.2 Padding rules ................................. 11 2.1.3 Random oracles, transformations and permutations ........... 12 2.2 The sponge construction ............................... 12 2.3 The duplex construction ............................... 13 2.4 Auxiliary functions .................................. 15 2.4.1 The absorbing function and path ...................... 15 2.4.2 The squeezing function ........................... 16 2.5 Primary aacks on a sponge function ........................ 16 3 Sponge applications 19 3.1 Basic techniques .................................... 19 3.1.1 Domain separation .............................. 19 3.1.2 Keying ..................................... 20 3.1.3 State precomputation ............................ 20 3.2 Modes of use of sponge functions .........................
    [Show full text]
  • Recommendation for Block Cipher Modes of Operation Methods
    NIST Special Publication 800-38A Recommendation for Block 2001 Edition Cipher Modes of Operation Methods and Techniques Morris Dworkin C O M P U T E R S E C U R I T Y ii C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2001 U.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Arden L. Bement, Jr., Director iii Reports on Information Security Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security, and its collaborative activities with industry, government, and academic organizations. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.
    [Show full text]
  • The Whirlpool Secure Hash Function
    Cryptologia, 30:55–67, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0161-1194 print DOI: 10.1080/01611190500380090 The Whirlpool Secure Hash Function WILLIAM STALLINGS Abstract In this paper, we describe Whirlpool, which is a block-cipher-based secure hash function. Whirlpool produces a hash code of 512 bits for an input message of maximum length less than 2256 bits. The underlying block cipher, based on the Advanced Encryption Standard (AES), takes a 512-bit key and oper- ates on 512-bit blocks of plaintext. Whirlpool has been endorsed by NESSIE (New European Schemes for Signatures, Integrity, and Encryption), which is a European Union-sponsored effort to put forward a portfolio of strong crypto- graphic primitives of various types. Keywords advanced encryption standard, block cipher, hash function, sym- metric cipher, Whirlpool Introduction In this paper, we examine the hash function Whirlpool [1]. Whirlpool was developed by Vincent Rijmen, a Belgian who is co-inventor of Rijndael, adopted as the Advanced Encryption Standard (AES); and by Paulo Barreto, a Brazilian crypto- grapher. Whirlpool is one of only two hash functions endorsed by NESSIE (New European Schemes for Signatures, Integrity, and Encryption) [13].1 The NESSIE project is a European Union-sponsored effort to put forward a portfolio of strong cryptographic primitives of various types, including block ciphers, symmetric ciphers, hash functions, and message authentication codes. Background An essential element of most digital signature and message authentication schemes is a hash function. A hash function accepts a variable-size message M as input and pro- duces a fixed-size hash code HðMÞ, sometimes called a message digest, as output.
    [Show full text]
  • Block Cipher and Data Encryption Standard (DES)
    Block Cipher and Data Encryption Standard (DES) 2021.03.09 Presented by: Mikail Mohammed Salim Professor 박종혁 Cryptography and Information Security 1 Block Cipher and Data Encryption Standard (DES) Contents • What is Block Cipher? • Padding in Block Cipher • Ideal Block Cipher • What is DES? • DES- Key Discarding Process • Des- 16 rounds of Encryption • How secure is DES? 2 Block Cipher and Data Encryption Standard (DES) What is Block Cipher? • An encryption technique that applies an algorithm with parameters to encrypt blocks of text. • Each plaintext block has an equal length of ciphertext block. • Each output block is the same size as the input block, the block being transformed by the key. • Block size range from 64 -128 bits and process the plaintext in blocks of 64 or 128 bits. • Several bits of information is encrypted with each block. Longer messages are encoded by invoking the cipher repeatedly. 3 Block Cipher and Data Encryption Standard (DES) What is Block Cipher? • Each message (p) grouped in blocks is encrypted (enc) using a key (k) into a Ciphertext (c). Therefore, 푐 = 푒푛푐푘(푝) • The recipient requires the same k to decrypt (dec) the p. Therefore, 푝 = 푑푒푐푘(푐) 4 Block Cipher and Data Encryption Standard (DES) Padding in Block Cipher • Block ciphers process blocks of fixed sizes, such as 64 or 128 bits. The length of plaintexts is mostly not a multiple of the block size. • A 150-bit plaintext provides two blocks of 64 bits each with third block of remaining 22 bits. • The last block of bits needs to be padded up with redundant information so that the length of the final block equal to block size of the scheme.
    [Show full text]
  • Characterization of Padding Rules and Different Variants of MD Hash Functions
    Characterization of Padding Rules and Different Variants of MD Hash Functions Mridul Nandi National Institute of Standards and Technology Outline • Introduction to hash function and known Padding Rules. • Thm1 : Suffix-free Padding rule is necessary and sufficient for MD hash functions. • Thm2 : A new suffix-free padding rule handling arbitrary message using log |M| bits and study comparison. • Thm3 : The simplest 10 k padding rule (no length overhead) is secure on a modified MD hash or mMD . • Thm4 : It also works for newly introduced design mode BCM ( Backward Chaining Mode ) and its modification mBCM . Introduction to Hash Function: Security notions, applications and MD iteration and known padding rules Hash Function Arbitrary Length Strings à fixed length strings 101010101010101010101010101010110101010101010010101010101101001001001001010101110100010101110100100001001011100010010001000101101 001010111010001010100010100010100101010101010101010101010000000000011111110110101011010101010101010010110101010101010101111110000 101010101010100101010101010011101010100110101010101010101010101010101010101010101010010111100001110101110000111010001100011110011 101010110101010101010101011001010001010101000010001010111000101110010100000101001110010101010101011101010101010101010101010101010 110101010101010010101010101101001001001001010101110100010101110100100001001011100010010001000101101001010111010001010100010100010 10010101010101010101010101000000000001111111011010101101010101010101001011010101010101010111111000010101010101010010101010101 001 1 10101010011010101010101010101010101010101010101010101001011110000111010111000011101000110001111001110101011010101010101010101
    [Show full text]
  • Secret-Key Encryption Introduction
    Secret-Key Encryption Introduction • Encryption is the process of encoding a message in such a way that only authorized parties can read the content of the original message • History of encryption dates back to 1900 BC • Two types of encryption • secret-key encryption : same key for encryption and decryption • pubic-key encryption : different keys for encryption and decryption • We focus on secret-key encryption in this chapter Substitution Cipher • Encryption is done by replacing units of plaintext with ciphertext, according to a fixed system. • Units may be single letters, pairs of letters, triplets of letters, mixtures of the above, and so forth • Decryption simply performs the inverse substitution. • Two typical substitution ciphers: • monoalphabetic - fixed substitution over the entire message • Polyalphabetic - a number of substitutions at different positions in the message Monoalphabetic Substitution Cipher • Encryption and decryption Breaking Monoalphabetic Substitution Cipher • Frequency analysis is the study of the frequency of letters or groups of letters in a ciphertext. • Common letters : T, A, E, I, O • Common 2-letter combinations (bigrams): TH, HE, IN, ER • Common 3-letter combinations (trigrams): THE, AND, and ING Breaking Monoalphabetic Substitution Cipher • Letter Frequency Analysis results: Breaking Monoalphabetic Substitution Cipher • Bigram Frequency Analysis results: Breaking Monoalphabetic Substitution Cipher • Trigram Frequency analysis results: Breaking Monoalphabetic Substitution Cipher • Applying the partial mappings… Data Encryption Standard (DES) • DES is a block cipher - can only encrypt a block of data • Block size for DES is 64 bits • DES uses 56-bit keys although a 64-bit key is fed into the algorithm • Theoretical attacks were identified. None was practical enough to cause major concerns.
    [Show full text]
  • CRYPTREC Report 2001
    CRYPTREC 2001 CRYPTREC Report 2001 March 2002 Information-technology Promotion Agency, Japan Telecommunications Advancement Organization of Japan CRYPTREC 2001 Contents Introduction 1 On the CRYPTREC Evaluation Committee Report 3 Note on the use of this report 7 1 Overview of Cryptographic Technique Evaluation 8 1.1 Evaluation Organs and Schedule ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8 1.2 How cryptography evaluation was carried out. ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12 1.3 Terminology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13 1.4 Evaluation Committee Members ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14 2 Evaluation of public key cryptographic techniques 17 2.1 Target of Evaluation and Evaluation Method ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17 2.1.1 Evaluated Cryptographic Techniques ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17 2.1.2 Evaluation Policy・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17 2.1.3 Evaluation Method ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・19 2.2 Evaluation result ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21 2.2.1 Outline of evaluation result ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21 2.2.2 General Evaluation of the Difficulty of Arithmetic Problems・・・・・・・・・・・・・・・・・23 2.2.3 Overall Judgment of Cryptographic Techniques that were the Target of Detailed Evaluation ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23 2.2.4 Overall Judgment of Cryptographic Techniques under Observation ・・・・・・・・・・・26 2.2.5 Overall Judgment of Cryptosystems that were Targets of Screening Evaluations in 2001
    [Show full text]
  • Reconsidering the Security Bound of AES-GCM-SIV
    Reconsidering the Security Bound of AES-GCM-SIV Tetsu Iwata1 and Yannick Seurin2 1 Nagoya University, Japan [email protected] 2 ANSSI, Paris, France [email protected] Abstract. We make a number of remarks about the AES-GCM-SIV nonce-misuse resis- tant authenticated encryption scheme currently considered for standardization by the Crypto Forum Research Group (CFRG). First, we point out that the security analysis proposed in the ePrint report 2017/168 is incorrect, leading to overly optimistic security claims. We correct the bound and re-assess the security guarantees offered by the scheme for various parameters. Second, we suggest a simple modification to the key derivation function which would improve the security of the scheme with virtually no efficiency penalty. Keywords: authenticated encryption · AEAD · GCM-SIV · AES-GCM-SIV · CAESAR competition 1 Introduction Authenticated Encryption. An authenticated encryption scheme aims at providing both confidentiality and authenticity when communicating over an insecure channel. The recent CAESAR competition [CAE] has spawned a lot of candidate schemes as well as more theoretical works on the subject. One of the most widely deployed AEAD schemes today is GCM [MV04], which combines, in the “encrypt-then-MAC” fashion [BN00], a Wegman-Carter MAC [WC81, Sho96] based on a polynomial hash function called GHASH, and the counter encryption mode [BDJR97]. GCM is nonce-based [Rog04], i.e., for each encryption the sender must provide a non- repeating value N. Unfortunately, the security of GCM becomes very brittle in case the same nonce N is reused (something called nonce-misuse), in particular a simple attack allows to completely break authenticity [Jou06, BZD+16] (damages to confidentiality are to some extent less dramatic [ADL17]).
    [Show full text]
  • Provable Security in Practice: Analysis of SSH and CBC Mode with Padding
    Provable Security in Practice: Analysis of SSH and CBC mode with Padding Gaven James Watson Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Group Department of Mathematics Royal Holloway, University of London 2010 Declaration These doctoral studies were conducted under the supervision of Prof. Kenneth G. Paterson. The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, whilst enrolled in the Department of Mathe- matics as a candidate for the degree of Doctor of Philosophy. This work has not been submitted for any other degree or award in any other university or educational establishment. Gaven James Watson June, 2010 2 Acknowledgements When I first started my PhD, I did not know where it would take me or even how much it was possible for me to achieve. I have been incredibly lucky to have worked on some interesting problems which have given birth to significant results. This has all been possible due to the excellent supervision of Prof. Kenny Paterson. His advice, constructive criticism and the odd amusing analogy have helped me, not only to develop as a researcher but have taught me a great deal about writing and presenting my work. What I have learnt will be invaluable in my future career, what- ever that may be. I also extend my gratitude to my advisor Dr. Steven Galbraith, whom I met during my Masters at Royal Holloway and without whom I would not have met Kenny. I am grateful to the EPSRC and BT whose financial support has kept me well fed and watered throughout the course of my PhD.
    [Show full text]
  • Short Message RSA Attacks and Padding and RSA Encryption And
    Assignment6 Lab on Short Message RSA Attacks and Padding (100 points) In short message attack of RSA, if it is known that Alice is sending a four-digit number to Bob, Eve can easily try plaintext numbers from 0000 to 9999 to find the plaintext. Therefore, short message must be padded with random bits. If you are Eve, show that you are able to find the plaintext containing four digit numbers given ciphertext. Optimal asymmetric encryption padding (OAEP) is recommended when short messages are encrypted with RSA algorithms. The following is the encryption and decryption processes of OAEP. n Encryption n Pad the message to make m-bit message M, if M is less than m-bit n Choose a random number r n User one-way function G that inputs r-bit integer and outputs m-bit integer. This is the mask. n P1 = M Å G® n P2 = H(P1) Å r, function H inputs m-bit and outputs k-bit n C = E(P1 || P2). User RSA encryption here n Decryption n P = D (P1 || P2) n Bob first recreates the value of r: H(P1) Å P2 = H(P1) Å H(P1) Å r = r n Bob recreates msg: G(r) Å P1 = G(r) Å G(r) Å M = M Pad your message with OAEP padding and then encrypt by RSA. What to submit: A report describes how you find the unpadded short plaintext (30 points), describes what you have observed after you apply OAEP padding (30 points), and discusses feasibility of short message attack after padding (10 points).
    [Show full text]