Quantum Technologies for Climate Change: Preliminary Assessment
Quantum technologies for climate change: Preliminary assessment Casey Berger,1, 2 Agustin Di Paolo,3 Tracey Forrest,4 Stuart Hadfield,5 Nicolas Sawaya,6 Michał Stęchły,7 and Karl Thibault3 1Department of Physics, Smith College, Northampton, Massachusetts 01063, USA 2Boston University Rafik B. Hariri Institute for Computing and Computational Science & Engineering, Boston, Massachusetts 02215, USA 3Département de physique, Institut quantique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada 4Transformative Quantum Technologies, University of Waterloo, Waterloo, Ontario, Canada 5USRA Research Institute for Advanced Computer Science, Mountain View, California 94043, USA 6Intel Labs, Santa Clara, California 95054, USA 7Zapata Computing Canada Inc., 325 Front St W, Toronto, ON, M5V 2Y1 (Dated: July 13, 2021. Last updated July 13, 2021.) Climate change presents an existential threat to human societies and the Earth’s ecosystems more generally. Mitigation strategies naturally require solving a wide range of challenging problems in science, engineering, and economics. In this context, rapidly developing quantum technologies in computing, sensing, and communication could become useful tools to diagnose and help mitigate the effects of climate change. However, the intersection between climate and quantum sciences remains largely unexplored. This preliminary report aims to identify potential high-impact use-cases of quantum technologies for climate change with a focus on four main areas: simulating physical systems, combinatorial optimization, sensing, and energy efficiency. We hope this report provides a useful resource towards connecting the climate and quantum science communities, and to this end we identify relevant research questions and next steps. INTRODUCTION Emerging quantum technologies are anticipated to provide new approaches to challenging scientific and engineering problems [1, 2].
[Show full text]