Research Trend in Quantum Network
Total Page:16
File Type:pdf, Size:1020Kb
Moonshot international symposium December 18,2019 @ Kyoto, Japan Topic 3 Research Trend in Quantum Network Hideo Kosaka Yokohama National University, Japan 1 CONTENTS 1. Quantum Internet 2. Quantum Repeater 3. Quantum Computer Network 2 Quantum Internet 3 Quantum Internet Quantum Communication Blind Quantum Quantum Sensor Computing Network Quantum Repeater Quantum Quantum Computers Sensors Quantum Diagnostics 4 Quantum Key Distribution (QKD) Network By Courtesy of NICT 2004 DARPA Quantum Network Europe 2008 SECOQC Network USA (Boston) (Vienna) M. Peev et al., New J. Phys. 11, 075011 (2009) C. Elliot et al., arXiv:quant-ph/0503058 UK quantum network ( 2010~ Tokyo QKD Network Cambridge-Bristol, Japan ) (Tokyo) under construction 2017~ Quantum Backbone China Network (Beijing-Shanghai) Quantum Satellite 2500km Quantum Backbone 2016,17,18 Micro Satellite 2000km QKD sender and receiver (NEC, 2017) Quantum repeaters2014 are not usedCourtesy by Qiang yet!Zhang (USTC) 5 with quantum repeaters http://quantum-internet.team/ 6 Netherlands Quantum Internet Project Amsterdam Quantum Leiden repeater Hague Delft Quantum loop 50km connecting 4cities 100km in total Ronald Hanson Stephanie Wehner Quantum Sci. Technol. 2 (2017) 034002 https://labs.ripe.net/Members/becha/introduction-to-the-quantum-internet 7 Japan Quantum Internet Task Force Quantum Repeater platforms Diamond Ion/Atom All-photon 8 Development Steps for Quantum Internet 1. Trusted node QKD system ➢ Quantum enhanced security but not absolutely secure < 100km < 100km Classical 2. Quantum repeater–based QKD system ➢ Absolutely secure quantum network ➢ Long-distance & multiparty connections Quantum 3. Quantum computer network ➢ Quantum media converter at end nodes Quantum Quantum Quantum 9 Quantum Repeater 1. Required functions 2. Promising qubits 3. Diamond repeater 4. Current status and prospects 10 Required functions • Remote Entanglement ➢ can be probabilistic but should be heralded • Local Bell Measurement ➢ should be deterministic • Quantum Gate operation ➢ allows not only swapping but also distillation • Quantum Memory ➢ allows scalable quantum network Remote Remote Entanglement Entanglement Quantum Local Bell Measure Memory Swap Quantum gate End-to-end Entanglement operation Distill 11 Promising Qubits Requirements: Gate speed, Gate fidelity, Memory time 99.9999% Diamond NV Hybrid System 99.999% Ion trap 99.99% ~1min ~1min Super- 99.9% conducting m Diamond ~100circuits 99% NV Si Gate fidelity Gate Cold ~100ms center quantum ~10ms ~1min ~1ms atom ~1min dot 90% ~10ms (memory) ~1ms 1kHz 10kHz 100kHz 1MHz 10MHz 100MHz 1GHz Gate speed Based on JST-CRDS report 2019 12 Ion/Atom UK 2014 (ion) China 2017 (atom) High-Fidelity Preparation, Gates, Memory, Experimental realization of a multiplexed quantum and Readout of a Trapped-Ion Quantum Bit memory with 225 individually accessible memory cells T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, Y.-F. Pu, N. Jiang, W. Chang, H.-X. Yang, C. Li & L.-M. Duan N. M. Linke, D. N. Stacey, and D. M. Lucas Preparation&readout: 99.93% An ion 2D optical lattice Single-qubit gate: 99.9999% US 2019 (ion) Germany 2019 (atom) Benchmarking an 11-qubit quantum computer Long-distance distribution of atom-photon entanglement K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, at telecom wavelength N. C. Pisenti, M. Chmielewski, C. CollinsK. M. Hudek, J. Mizrahi, Tim van Leent, Matthias Bock, Robert Garthoff, Kai Redeker, Wei Zhang, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M.Keesan, C. Monroe & J. Kim Tobias Bauer, Wenjamin Rosenfeld, Christoph Becher, Harald Weinfurter Atom 20km Ion chain Quantum wavelength converter Gate speed has to be increased! 13 All-Photon No Memory! UK 2019 A trusted-node-free eight-user metropolitan quantum communication network Siddarth Koduru Joshi, Djeylan Aktas, Sören Wengerowsky, Martin Lončarić, Sebastian Philipp Neumann, Canada 2016 Bo Liu, Thomas Scheidl, Željko Samec, Laurent Kling, Alex Qiu, Mario Stipčević, John G. Rarity, Rupert Ursin Quantum teleportation over 13km Beam splitter 8 users (28 pairings) Entangled photons China 2016 Quantum teleportation over 30km Wavelength multiplex network China 2019 Japan 2019 Experimental quantum repeater without quantum memory Experimental time-reversed adaptive Bell measurement Zheng-Da Li, Rui Zhang, Xu-Fei Yin, Li-Zheng Liu, Yi Hu, Yu-Qiang Fang, Yue-Yang Fei, towards all-photonic quantum repeaters Xiao Jiang, Jun Zhang, Li Li, Nai-Le Liu, Feihu Xu, Yu-Ao Chen & Jian-Wei Pan Yasushi Hasegawa, Rikizo Ikuta, Nobuyuki Matsuda, Kiyoshi Tamaki, 4 uses (6 photon pairs) Hoi-Kwong Lo, Takashi Yamamoto, Koji Azuma & Nobuyuki Imoto Proposal for implementation Multiple photon entanglement Scalable quantum network is challenging! 14 Diamond All-Solid QR with memory replace ion trap with electron trap in an vacancy in diamond Netherlands 2015 Japan 2019 Entanglement distribution Quantum teleportation-based state transfer of between diamonds 1.3km apart photon polarization into a carbon spin in diamond Kazuya Tsurumoto, Ryota Kuroiwa, Hiroki Kano, Yuhei Sekiguchi & Hideo Kosaka Heralded quantum media conversion Memory • Gate fidelity > 99.99% 1.3km apart • Memory time >1 min • 10-qubit resisters Register • Wavelength conversion 39Hz doi.org/10.1038/s41586-018-0200-5 • Teleportation • Error correction UK 2015 • Distillation US 2019 Tunable cavity coupling of the zero phonon line Quantum network nodes based on diamond qubits of a nitrogen vacancy defect in diamond with an efficient nanophotonic interface C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B. Machielse, D. S. Levonian, S Johnson, P R Dolan, T Grange, A A P Trichet, G Hornecker, E. N. Knall, P. Stroganov, R. Riedinger, H. Park, M. Lončar, M. D. Lukin Y C Chen, L Weng, G M Hughes, A A R Watt, A Auffèves and J M Smith Nano photonic structure Nearly deterministic interface with SiV 19% light extraction (estimate) https://doi.org/10.1117/12.2306650 All of these are still component level. 15 Diamond Remote Entanglement Generation SSPD Emission Emission Emission High B e e e 13C 13 13C 13C 13C 13 Spin 1/2 C C Local Bell Measurement Emission Absorption e e e 13 13 13 13 13 13 B = 0 C C C C C C + No need of SSPD in the middle of nodes Spin 1 + 30 times higher efficiency without high-Q cavity + No need of magnetic field allows integration with superconductor 16 Current Status & Prospects Required functions for QR Current Short-term Mid-term goal goal Single-qubit gate operation fidelity ≳99.4% >99.99% >99.999% (gate speed) @3MHz @10MHz @100MHz Preparation and readout fidelity ≳98% >99.9% >99.99% Electron-photon entanglement generation ≳90% >99% >99.9% Photon-to-memory heralded transfer ≳90% >99% >99.9% Bell state measurement ≳90% >99% >99.9% Quantum error correction (distillation) ≳74% >90% >99% Individually accessible qubits ≳10 >20 >100 Photon polarization control 1 mm in radius Diamond SIL with NV in center ×7 emission enhance Microwave polarization control Nature Photonics, 10,507-511(2016) Optics Letters, 43, 2380-2383 (2018) Nature Communications, 7, 11668 (2016) Communictions Physics, 2, 74 (2019) Nature Photonics, 11, 309-314 (2017) Physical Review Applied, 12, 051001 (2019) Nature Communications, 9, 3227 (2018) 17 Modeled Entanglement Distribution Rate Independent of node number 1000 Mid-term goal Fiber loss: 0.2dB/km NV-outcoupling efficiency: 0.6 100 NV-absorption efficiency: 0.25 NV array Frequency-conversion efficiency: 0.3 Multiplex NV-carbon swap-gate time: 200ms Memory number at each node: 2 10 Short-term goal 1 Optical Cavity 0.1 Current Based on Dam et al., Quantum Sci. Technol. (2017) 18 Quantum Computer Network 19 Quantum Computer Network • Quantum media converter ➢ Interface Quantum Computer to Network ➢ Distributed Quantum Computer could be built • NV center in diamond under a zero magnetic field ➢ Interface optical & microwave photons with memory ➢ Other candidates are magnon, surface acoustic wave … Network Optical Network Photon Quantum Media Converter Quantum Quantum Media Computer Converter NV Microwave Photon Superconducting Memory Qubit 20 Roadmap Present (2019) In 5 years (2024) In 10 years (2029) In 20 years (2039) Field demonstration of quantum repeater Entanglement distribution Quantum Entanglement distribution b/w 3 parties > 500 km via Key rate > 1kbps entanglement via a quantum repeater quantum repeater via entanglement distribution Remote entanglement Entanglement with Multi-party distribution generation b/w memories communication-band entanglement via by emission & absorption photon quantum memories · Single-qubit gate Two-qubit gate Individual access · Single-shot measurement fidelity > 99.9% memories Quantum · Quantum error correction 100∼1000 bits Scalable memory Multiple memories ∼10 Complete Bell state Fault-tolerant reconfigurable memory time > 1 min measurement on memories logical memory quantum repeater transferred from photons with quantum coding Quantum media conversion Quantum media conversion b/w photon & b/w superconducting qubit Quantum quantum memory & quantum memory interface Quantum wavelength conversion Wavelength division Distributed Quantum wavelength multiplexing quantum Single photon fiber coupling conversion module communication quantum computer and Photon Single photon source All-photonic quantum sensor source Entangled photon source quantum repeater Based on the draft final report of the "Quantum Technology and Innovation Strategy" 21 Fault-tolerant