Toward an Imagined Speech-Based Brain Computer Interface Using EEG Signals

Total Page:16

File Type:pdf, Size:1020Kb

Toward an Imagined Speech-Based Brain Computer Interface Using EEG Signals Toward an Imagined Speech-Based Brain Computer Interface Using EEG Signals Mashael M. Alsaleh Department of Computer Science The University of Sheffield This thesis is submitted for the degree of Doctor of Philosophy Speech and Hearing Research Group July 2019 I would like to dedicate this thesis to My loving parents, thank you for everything. Ever loving memory of my sister Norah, until we meet again. Declaration I hereby declare that I am the sole author of this thesis. The contents of this thesis are my original work and have not been submitted for any other degree or any other university. Some parts of the work presented in Chapters 3, 4, 5, and 6 have been published in conference proceedings, and a journal as given below: • AlSaleh, M. M., Arvaneh, M., Christensen, H., and Moore, R. K. (2016, Decem- ber). Brain-computer interface technology for speech recognition: a review. In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (pp. 1-5). IEEE. • AlSaleh, M., Moore, R., Christensen, H., and Arvaneh, M. (2018, July). Discrim- inating Between Imagined Speech and Non-Speech Tasks Using EEG. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1952-1955). IEEE. • Alsaleh, M., Moore, R., Christensen, H., and Arvaneh, M. (2018, October). Ex- amining Temporal Variations in Recognizing Unspoken Words Using EEG Signals. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 976-981). IEEE. • Alsaleh, M., Moore, R., Christensen, H., and Arvaneh, M. (2019). EEG-based Recognition of Unspoken Speech using Dynamic Time Warping. planned journal publication. Mashael M. Alsaleh July 2019 Acknowledgements In the name of ALLAH, the Most Gracious and the Most Merciful. Thanks to ALLAH who is the source of all the knowledge in this world, for the strengths and guidance in completing this thesis. I thank those who rendered their direct or indirect support during the period of my PhD work. First of all, I would like express my utmost gratitude to my supervisors, Professor Roger K. Moore and Dr. Mahnaz Arvaneh, for their mentorship, guidance and support throughout my time studying in Sheffield. Their constructive comments and suggestions, throughout the experimental and thesis work, have contributed to the success of this research. It has been an honour and privilege to work with them. Special thanks to my panel members, Dr. Heidi Christensen and Dr. Anthony Simons for their useful suggestions and for being so kind to me. I also like to thank my examiners, Prof. Tomas Ward and Dr. Yoshi Gotoh for the valuable comments and an intellectually stimulating and enjoyable viva. I am hugely grateful to my parents for their support, prayers, love and care throughout my life; they have played a vital role in helping me to reach this milestone. I owe special thanks to my sister Nouf, my brothers Abdullah and Saad for their continuous love and prayers. My beautiful niece Norah, you came into our family bringing much joy and love. My friends who never let me feel that I am away from my homeland: Rabab, Sadeen, Lubna, Hanan, Maryam, and Najwa. The members of the Speech and Hearing lab and Physiological Signals and Systems lab at University of Sheffield have been, and continue to be, a source of knowledge, friendship and humour. viii Last but not the least, I thankfully acknowledge the financial funding for this work from King Saud University in Saudi Arabia, who gave me a scholarship to pursue my PhD studies. Abstract Individuals with physical disabilities face difficulties in communication. A number of neuromuscular impairments could limit people from using available communication aids, because such aids require some degree of muscle movement. This makes brain–computer interfaces (BCIs) a potentially promising alternative communication technology for these people. Electroencephalographic (EEG) signals are commonly used in BCI systems to capture non-invasively the neural representations of intended, internal and imagined activities that are not physically or verbally evident. Examples include motor and speech imagery activities. Since 2006, researchers have become increasingly interested in classifying different types of imagined speech from EEG signals. However, the field still has a limited understanding of several issues, including experiment design, stimulus type, training, calibration and the examined features. The main aim of the research in this thesis is to advance automatic recognition of imagined speech using EEG signals by addressing a variety of issues that have not been solved in previous studies. These include (1) improving the discrimination between imagined speech versus non-speech tasks, (2) examining temporal parameters to optimise the recognition of imagined words and (3) providing a new feature extraction framework for improving EEG-based imagined speech recognition by considering temporal information after reducing within-session temporal non-stationarities. For the discrimination of speech versus non-speech, EEG data was collected during the imagination of randomly presented and semantically varying words. The non-speech tasks involved attention to visual stimuli and resting. Time-domain and spatio-spectral features were examined in different time intervals. Above-chance-level classification accuracies were achieved for each word and for groups of words compared to the non-speech tasks. To classify imagined words, EEG data related to the imagination of five words was collected. In addition to words classification, the impacts of experimental parameters on classification accuracy were examined. The optimization of these parameters is important to improve the rate and speed of recognizing unspoken speech in on-line applications. These parameters included using different training sizes, classification algorithms, feature extraction in different time intervals and the use of imagination time length as classification feature. Our extensive results showed that Random Forest classifier with features extracted using Discrete Wavelet Transform from 4 seconds fixed x time frame EEG yielded that highest average classification of 87.93% in classification of five imagined words. To minimise within class temporal variations, a novel feature extraction framework based on dynamic time warping (DTW) was developed. Using linear discriminant analysis as the classifier, the proposed framework yielded an average 72.02% accuracy in the classification of imagined speech versus silence and 52.5% accuracy in the classi- fication of five words. These results significantly outperformed a baseline configuration of state-of-the art time-domain features. Table of contents List of figures xvii List of tables xix 1 Introduction1 1.1 Research challenges in speech recognition using EEG signals . .3 1.1.1 The nature of EEG signals . .4 1.1.2 Speech imagery research . .5 1.2 Research aim and objectives . .6 1.3 Thesis structure . .7 2 Brain Computer Interface for Communication 10 2.1 Brain and language . 11 2.1.1 Process of speech production in the human brain . 13 2.1.2 The similarity between voiced and imagined speech production . 14 2.2 How BCI works . 16 2.3 BCI applications . 19 2.4 BCI technologies for signal acquisition . 21 2.4.1 Invasive BCI . 22 2.4.2 Non-invasive . 22 2.5 Electroencephalography (EEG)...................... 23 2.5.1 EEG acquisition device . 24 xii Table of contents 2.5.2 Neurophysiological signals in EEG used for BCI-based communi- cation . 25 2.6 Summary . 32 3 Brain Computer Interface for Unspoken Speech Recognition 34 3.1 Invasive Electrocorticography (ECoG).................. 35 3.2 Functional Magnetic Resonance imaging (fMRI)............. 37 3.3 Functional Near-Infrared Spectroscopy (fNIRS)............. 38 3.4 Magnetencephalography (MEG)...................... 39 3.5 Electroencephalogram (EEG)....................... 39 3.5.1 Word imagination . 40 3.5.2 Syllable imagination . 45 3.5.3 Vowel imagination . 46 3.6 Discussion on current EEG-Based studies . 49 3.6.1 Stimuli and tasks design . 49 3.6.2 Feature extraction . 50 3.6.3 Classification accuracies . 51 3.7 Summary . 55 4 Discriminating between Imagined Speech and Non-speech 56 4.1 Effect of word meaning on brain activity . 58 4.2 Experiment . 59 4.2.1 Participants . 59 4.2.2 Device . 60 4.2.3 Stimuli . 60 4.2.4 Task . 60 4.2.5 Data pre-processing . 61 4.2.6 Feature extraction . 62 4.2.7 Classification . 64 4.3 Results and discussion . 66 Table of contents xiii 4.3.1 Classifying group of words vs non-speech . 66 4.3.2 Spatio-spectral features vs time domain features to classify imag- ined words vs relaxation . 68 4.3.3 Combining spatio-spectral features and time domain features to classify imagined words vs relaxation . 68 4.3.4 Classification of individual words versus relaxation . 70 4.4 Conclusions . 73 4.5 Summary . 74 5 Examining Temporal Issues Related to Imagined Speech Recognition 75 5.1 Experiment design . 77 5.1.1 Participants . 77 5.1.2 EEG Device . 78 5.1.3 Stimuli and task . 78 5.1.4 Procedure . 79 5.2 Data analysis . 80 5.2.1 Pre-processing . 80 5.2.2 Feature extraction . 81 5.2.3 Classification . 82 5.3 Results and discussion . 82 5.3.1 Classifying between the five imagined words . 82 5.3.2 Effect of training size . 85 5.3.3 The relation between repetitions order and classification accuracy 88 5.3.4 The effect of imagination time . 89 5.4 Conclusions . 91 5.5 Summary . 92 6 Dynamic Time Warping in the Recognition of Imagined Speech 93 6.1 Dynamic time warping . 95 6.2 DTW using EEG and ECoG . 97 xiv Table of contents 6.3 Proposed DTW-based framework for feature extraction . 99 6.3.1 Computing training features using the proposed DTW framework 99 6.3.2 Classifying a new EEG trial using the proposed framework . 100 6.4 Methodology .
Recommended publications
  • Aesthetic Appreciation of Poetry Correlates with Ease of Processing in Event-Related Potentials
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Maastricht University Research Portal Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials Citation for published version (APA): Obermeier, C., Kotz, S. A., Jessen, S., Raettig, T., von Koppenfels, M., & Menninghaus, W. (2016). Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 362-373. https://doi.org/10.3758/s13415-015-0396-x Document status and date: Published: 01/04/2016 DOI: 10.3758/s13415-015-0396-x Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals
    sensors Article Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals Dong-Woo Koh 1, Jin-Kook Kwon 2 and Sang-Goog Lee 1,* 1 Department of Media Engineering, Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Korea; [email protected] 2 CookingMind Cop. 23 Seocho-daero 74-gil, Seocho-gu, Seoul 06621, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2164-4909 Abstract: Elderly people are not likely to recognize road signs due to low cognitive ability and presbyopia. In our study, three shapes of traffic symbols (circles, squares, and triangles) which are most commonly used in road driving were used to evaluate the elderly drivers’ recognition. When traffic signs are randomly shown in HUD (head-up display), subjects compare them with the symbol displayed outside of the vehicle. In this test, we conducted a Go/Nogo test and determined the differences in ERP (event-related potential) data between correct and incorrect answers of EEG signals. As a result, the wrong answer rate for the elderly was 1.5 times higher than for the youths. All generation groups had a delay of 20–30 ms of P300 with incorrect answers. In order to achieve clearer differentiation, ERP data were modeled with unsupervised machine learning and supervised deep learning. The young group’s correct/incorrect data were classified well using unsupervised machine learning with no pre-processing, but the elderly group’s data were not. On the other hand, the elderly group’s data were classified with a high accuracy of 75% using supervised deep learning with simple signal processing.
    [Show full text]
  • Brain Responses Before and After Intensive Second Language Learning: Proficiency Based Changes and First Language Background Effects in Adult Learners
    Brain Responses before and after Intensive Second Language Learning: Proficiency Based Changes and First Language Background Effects in Adult Learners Erin Jacquelyn White1,2*, Fred Genesee1,2, Karsten Steinhauer1,3* 1 Centre for Research on Brain, Language and Music, Montreal, Canada, 2 Department of Psychology, McGill University, Montreal, Canada, 3 School of Communication Sciences and Disorders, McGill University, Montreal, Canada Abstract This longitudinal study tracked the neuro-cognitive changes associated with second language (L2) grammar learning in adults in order to investigate how L2 processing is shaped by a learner’s first language (L1) background and L2 proficiency. Previous studies using event-related potentials (ERPs) have argued that late L2 learners cannot elicit a P600 in response to L2 grammatical structures that do not exist in the L1 or that are different in the L1 and L2. We tested whether the neuro- cognitive processes underlying this component become available after intensive L2 instruction. Korean- and Chinese late- L2-learners of English were tested at the beginning and end of a 9-week intensive English-L2 course. ERPs were recorded while participants read English sentences containing violations of regular past tense (a grammatical structure that operates differently in Korean and does not exist in Chinese). Whereas no P600 effects were present at the start of instruction, by the end of instruction, significant P600s were observed for both L1 groups. Latency differences in the P600 exhibited by Chinese and Korean speakers may be attributed to differences in L1–L2 reading strategies. Across all participants, larger P600 effects at session 2 were associated with: 1) higher levels of behavioural performance on an online grammaticality judgment task; and 2) with correct, rather than incorrect, behavioural responses.
    [Show full text]
  • ERP Peaks Review 1 LINKING BRAINWAVES to the BRAIN
    ERP Peaks Review 1 LINKING BRAINWAVES TO THE BRAIN: AN ERP PRIMER Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Psychological and Brain Sciences University of Louisville Louisville, Kentucky Short title: ERPs Peak Review. Key Words: ERP, peak, latency, brain activity source, electrophysiology. Please address all correspondence to: Alexandra P. Fonaryova Key, Ph.D. Department of Psychological and Brain Sciences 317 Life Sciences, University of Louisville Louisville, KY 40292-0001. [email protected] ERP Peaks Review 2 Linking Brainwaves To The Brain: An ERP Primer Alexandra Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Abstract This paper reviews literature on the characteristics and possible interpretations of the event- related potential (ERP) peaks commonly identified in research. The description of each peak includes typical latencies, cortical distributions, and possible brain sources of observed activity as well as the evoking paradigms and underlying psychological processes. The review is intended to serve as a tutorial for general readers interested in neuropsychological research and a references source for researchers using ERP techniques. ERP Peaks Review 3 Linking Brainwaves To The Brain: An ERP Primer Alexandra P. Fonaryova Key, Guy O. Dove, and Mandy J. Maguire Over the latter portion of the past century recordings of brain electrical activity such as the continuous electroencephalogram (EEG) and the stimulus-relevant event-related potentials (ERPs) became frequent tools of choice for investigating the brain’s role in the cognitive processing in different populations. These electrophysiological recording techniques are generally non-invasive, relatively inexpensive, and do not require participants to provide a motor or verbal response.
    [Show full text]
  • Elizabeth Bowen's “Narrative Language at White Heat”
    Elizabeth Bowen’s “narrative language at white heat”: A literary-linguistic perspective Inauguraldissertation zur Erlangung des Akademischen Grades eines Dr. phil., vorgelegt dem Fachbereich 05 – Philosophie und Philologie der Johannes Gutenberg-Universität Mainz von Julia Rabea Kind aus Darmstadt Mainz 2016 Referentin: Korreferent: Tag des Prüfungskolloquiums: 20. Mai 2016 Contents 1. Introduction: The experience of reading Bowen’s “narrative language at white heat” 3 1.1 Bowen’s poetic practice: Composition, form and reading ...................................... 5 1.2 Literary scholarship on Bowen’s language ........................................................... 12 1.3 Parameters of analysis: The Last September, To the North and The Heat of the Day .............................................................................................................................. 15 1.4 A literary-linguistic perspective on Bowen’s language ........................................ 18 2. A model of literary sentence processing and aesthetic pleasure ................................. 23 2.1 Neuroscience: The human brain and experimental methods ................................. 27 2.2 Neuroaesthetics: Sources of aesthetic pleasure ..................................................... 29 2.3 Neurolinguistics: Sentence processing .................................................................. 43 2.4 Conceptual compatibility of neuroaesthetics and neurolinguistics ....................... 58 2.5 Difficulty, ease and aesthetic pleasure in
    [Show full text]
  • Response to Reviewers: the Relationship Between the Late
    Response to Reviewers: The relationship between the late posterior positivity/P600 in language comprehension and task demands Gina Kuperberg and Trevor Brothers There has been much discussion about the late posterior positivity/P600 in relation to task demands and its relevance to ‘natural’ language comprehension. Here we discuss some of these issues. We first consider the question of whether an overt judgment task is necessary or sufficient to produce a late posterior positivity/P600 effect. We then ask whether the study of ERP responses to anomalies, with or without a coherence judgment task, is relevant to understanding neurocognitive mechanisms engaged in ‘natural’ language comprehension. We note that both these questions relate to a more general issue concerning the relationship between the late posterior positivity/P600 evoked during language comprehension and the posteriorly distributed P300 component. We are currently writing a review about these relationships and plan to post this review on BioRxiv when available. This review will also include some of the points discussed below. 1. Is a task-relevant decision necessary or sufficient to produce a late posterior positivity/P600 effect? In many of the studies reporting a late posterior positivity/P600 to semantic incongruities, comprehenders are asked to judge the coherence or acceptability of each scenario, typically after a short delay. As discussed by Kuperberg (2007), the presence of a coherence judgment task is one of several factors that can increase the likelihood observing a semantic P600. Additional factors include: 1) whether or not the semantic incongruity is actually anomalous, producing an impossible interpretation 1 (as opposed to simply an odd or unlikely interpretation), 2) whether the semantically incongruous word is semantically attracted or associated with the prior context, and 3) whether the semantically incongruous word appears in an extended linguistic context, particularly one that is highly lexically constraining.
    [Show full text]
  • The Bilingual Brain
    The Bilingual Brain LSA Summer Institute 2019 Class 341 Tuesdays and Fridays: 1:05-2:30 Instructors: Loraine Obler, Ph.D. CUNY Graduate Center [email protected] Eve Higby, Ph.D. Cal State University, East Bay [email protected] Office Hours by ApPointment Course Description This class Provides exposure to the current toPics in study of the brain and bilingualism. The course will introduce attendees with a variety of backgrounds to the raPidly growing field of neurolinguistics, with a special focus on bilingualism. Although the study of language deficits in people with brain damage or degenerative neural diseases has been around for a long time, neuroimaging methods, such as magnetic resonance imaging and electroPhysiology, have been applied more recently to questions about the way that language is processed in the brain. Bilingualism provides a unique lens for understanding fundamental concepts about language processing, such as the interactions between different levels of language representation, what drives language change, and individual differences in language Processing. After an introduction to regions of the brain traditionally thought to be involved in language processing, we turn to topics of interest in the field today. Students will learn about the similarities and differences seen for processing in the native versus a non-native language. They will explore recent research on neuroPlasticity in adulthood and how it relates to the debate on critical Periods and develop an understanding of the “bilingual cognitive advantage” debate and its relation to the notion of cognitive reserve. Students will obtain a foundational understanding of neurolinguistic methods, which will allow them to further exPlore research in this area beyond the course.
    [Show full text]
  • EEG Theta and Gamma Responses to Semantic Violations in Online Sentence Processing
    Brain and Language 96 (2006) 90–105 www.elsevier.com/locate/b&l EEG theta and gamma responses to semantic violations in online sentence processing Lea A. Hald a,c, Marcel C.M. Bastiaansen a,b,¤, Peter Hagoort a,b a Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH Nijmegen, The Netherlands b F. C. Donders Centre for Cognitive Neuroimaging, Radbout Universiteit Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands c Center for Research in Language, University of California, San Diego, 9500 Gilman Dr., Dept. 0526, La Jolla, CA 92093-0526, USA Accepted 18 June 2005 Available online 3 August 2005 Abstract We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More speciWcally, we examine whether increases in theta (t3–7 Hz) and gamma (around 40 Hz) band power occur in response to sen- tences that were either semantically correct or contained a semantically incongruent word (semantic violation). ERP results indicated a classical N400 eVect. A wavelet-based time-frequency analysis revealed a theta band power increase during an interval of 300– 800 ms after critical word onset, at temporal electrodes bilaterally for both sentence conditions, and over midfrontal areas for the semantic violations only. In the gamma frequency band, a predominantly frontal power increase was observed during the processing of correct sentences. This eVect was absent following semantic violations. These results provide a characterization of the oscillatory brain dynamics, and notably of both theta and gamma oscillations, that occur during language comprehension. 2005 Elsevier Inc.
    [Show full text]
  • Domain-General Conflict Monitoring Predicts Neural and Behavioral Indices of Linguistic Error Processing During Reading Comprehension
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425590; this version posted January 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. This paper was submitted for peer review on November 6, 2020. Based on our past experience, we expect that it will change significantly from this date until the time it is published, based on our reviewers' comments, comments of colleagues, and additional work by the authors. Thus, although we provide the manuscript for open access at this early stage, we ask interested readers to bear in mind that this version is NOT final, and, to check back to find the latest version. We will provide the final peer- reviewed version of the manuscript on our website once it is accepted for publication. ----------------------------------------------------------------------------------------------------------------------------------------- Domain-general conflict monitoring predicts neural and behavioral indices of linguistic error processing during reading comprehension Trevor Brothers1,2, Margarita Zeitlin1, Arim Choi Perrachione1, Connie Choi1, Gina Kuperberg1,2 Tufts University1; Martinos Center for Biomedical Imaging, Massachusetts General Hospital2 Abstract: The ability to detect and respond to linguistic errors is critical for successful reading comprehension, but these skills can vary considerably across readers. In the current study, healthy adults (age 18-35) read short discourse scenarios for comprehension while monitoring for the presence of semantic anomalies. Using a factor analytic approach, we examined if performance in non-linguistic conflict monitoring tasks (Stroop, AX-CPT) would predict individual differences in neural and behavioral measures of linguistic error processing.
    [Show full text]
  • CNS 2015 Program
    CNS2015 | san francisco Innovations in Mind and Brain Science : Understanding the Brain and Mind Elsevier’s books are available online via ScienceDirect and in ebook or print format on the Elsevier Store! CNS attendees save 30% off books/ebooks when ordering from store.elsevier.com Use code NEURO315. Offer ends April 30, 2015 ISBN: 9780123750709 ISBN: 9780124158054 ISBN: 9780124160088 ISBN: 9780124170421 Feb 2010 $89.95 Jan 2012 $59.95 Sep 2013 $89.95 Jan 2015 $99.95 ISBN: 9780124160408 ISBN: 9780123859488 ISBN: 9780123749512 ISBN: 9780124078185 Jul 2014 $150.00 May 2011 $105.00 Nov 2009 $116.00 May 2014 $59.95 ISBN: 9780124200715 ISBN: 9780124201330 ISBN: 9780123984517 ISBN: 9780123814319 Apr 2014 $99.95 Oct 2014 $99.95 Oct 2013 $99.95 Oct 2011 $83.95 Visit store.elsevier.com or info.sciencedirect.com Join our community • facebook.com/elsevierneuroscience • twitter.com/ELSNeuroscience Cognitive Neuroscience Society 22nd Annual Meeting, March 28-31, 2015 Hyatt Regency Hotel, San Francisco, California 2015 Annual Meeting Program Contents 2015 Committees & Staff . 2 Schedule Overview . 3 Keynote . 5 George A. Miller Prize . 6 Distinguished Career Contributions Award. 7 Young Investigator Award . 8 Special Events. 9 Data Blitz . 10 General Information. 12 GSA/PFA Awards . 14 Exhibits . 15 Save the Date . 15 Invited-Symposium Sessions . 16 Mini-Symposium Sessions . 20 Poster Schedule . 33 Poster Session A . 34 Poster Session B . 62 Poster Session C . 90 Poster Session D . 119 Poster Session E . .147 Poster Session F. .176 Poster Session G
    [Show full text]
  • Language Pathways Defined in a Patient with Left Temporal Lobe Damage
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-12-01 Language Pathways Defined in a atientP with Left Temporal Lobe DamageSecondary to Traumatic Brain Injury: A QEEG & MRI Study Janelle Lee Bailey Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Communication Sciences and Disorders Commons BYU ScholarsArchive Citation Bailey, Janelle Lee, "Language Pathways Defined in a atientP with Left Temporal Lobe DamageSecondary to Traumatic Brain Injury: A QEEG & MRI Study" (2014). Theses and Dissertations. 4363. https://scholarsarchive.byu.edu/etd/4363 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Language Pathways Defined in a Patient with Left Temporal Lobe Damage Secondary to Traumatic Brain Injury: A QEEG & MRI Study Janelle Lee Bailey A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science David L. McPherson, Chair Erin Bigler Christopher Dromey Richard W. Harris Department of Communication Disorders Brigham Young University December 2014 Copyright © 2014 Janelle Lee Bailey All Rights Reserved ABSTRACT Language Pathways Defined in a Patient with Left Temporal Lobe Damage Secondary to Traumatic Brain Injury: A QEEG and MRI Study Janelle Lee Bailey Department of Communication Disorders, BYU Master of Science Though the current understanding of language processing is incomplete, it has been established that the left hemisphere is dominant for language in the majority of the population.
    [Show full text]
  • BRAIN COMPUTER INTERFACE for EMERGENCY TEXT and SPEECH CARE SYSTEM [1]Arpitha MJ, [2]Binduja, [3]Jahnavi G, [4]Dr.Kusuma Mohanchandra
    Vol-7 Issue-4 2021 IJARIIE-ISSN(O)-2395-4396 BRAIN COMPUTER INTERFACE FOR EMERGENCY TEXT AND SPEECH CARE SYSTEM [1]Arpitha MJ, [2]Binduja, [3]Jahnavi G, [4]Dr.Kusuma Mohanchandra 1 Student, Department of Information Science &engg, DSATM, Karnataka,India 2 Student, Department of Information Science &engg, DSATM, Karnataka,India 3 Student, Department of Information Science &engg, DSATM, Karnataka,India 4 Professor, Department of Information Science &engg, DSATM, Karnataka,India ABSTRACT Brain computer interface (BCI) is one among the thriving emergent technology which acts as an interface between a brain and an external device. BCI for speech is acquiring recognition in various fields. Speech is one among the foremost natural ways to precise thoughts and feelings by articulate vocal sounds. Text is one of the way to keep caregivers an information about emergency needs of patients[21]. The purpose of this study is to restore communication ability through speech, text and display of the people suffering from severe muscular disorders like amyotrophic lateral sclerosis (ALS)[14], stroke which causes paralysis, locked-in syndrome, tetraplegia, Myasthenia gravis. They cannot interact with their environment albeit their intellectual capabilities are intact .Although few recent studies attempt to provide speech based BCI and text based BCI separately. Our work attempts to combine techniques for acquiring signals from brain through brainsense device(EEG signals) to provide speech and text to patients suffering from neurodegenerative diseases through python, Arduino code and some hardware components[1]. Experimental results manifest that the proposed system has an ability to impart a voice emergency command from the computer or laptop, send a text message regarding the emergency command to closed ones and also display the command on LCD screen.
    [Show full text]