Hidden Passage

Total Page:16

File Type:pdf, Size:1020Kb

Hidden Passage Hidden Passage the journal of glen canyon institute Issue XIX, Fall 2013 Glen Canyon Institute An Answer for the Colorado River: Fill Mead First President Richard Ingebretsen by Wade Graham Board of Trustees Barbara Brower In this issue of Hidden Passage, we present Glen Canyon Institute’s Fill Mead First Scott Christensen plan to begin the transition to a more sustainable management system on the Ed Dobson Colorado River, by saving significant amounts of water lost to seepage and taking David Wegner large steps towards the restoration of Glen and Grand Canyons. The plan is Wade Graham buttressed by an important new hydrological study demonstrating that Tyler Coles consolidating water storage in Lake Mead and keeping Lake Powell at its Lea Rudee minimum active power pool elevation can save between 300,000 and 600,000 acre-feet of water per year. Executive Director Christi Wedig Change is coming to the Colorado River, for better or worse, both due to climate Program Director change and to ever-increasing demands on an over-committed resource. It is past Michael Kellett time for those who care about the river basin’s human and natural communities to Office and Projects Manager begin making common sense but determined changes to the way the river is Mike Sargetakis managed. Programs Coordinator Eric Balken A study of water supply and demand in the Colorado River Basin released last December by the Bureau of Reclamation confirms what everyone already Advisory Committee Dan Beard knew: we are sucking more water out of the river than nature is putting in. Philmer Bluehouse Ryan Brown Since the late 1990’s, water users in the seven Basin states and Mexico have Niklas Christensen been withdrawing about a million acre-feet more than rain and snowmelt Agustin Garza provide. Like draining a savings account, this has been done by drawing down Katie Lee Daniel McCool Lakes Powell and Mead, giant reservoirs that took over 20 years to fill, when Francis McDermott population and water demand were far less than they are today. Bruce Mouro Tom Myers According to the Bureau, users’ plans for yet more pipelines combined with Page Stegner the effects of global warming, which is steadily reducing the rain and snow Flake Wells Bill Wolverton falling in the basin, will push the annual deficit to from 3.2 to 8 million acre- feet by 2060. This is a cataclysmic shortfall considering that, from 1981 to 2010 the river has delivered just 10.8 million acre-feet a year into Lake Powell — well 429 East 100 South Salt Lake City, Utah 84111 below the 16 million acre feet expected by water planners 20 years ago. tel (801) 363-4450 fax (801) 363-4451 Both reservoirs Powell and Mead, which at one time held over three years [email protected] of water supply for the Basin, are now down to one-half that and falling fast. It www.glencanyon.org is clear from the science that the reservoirs are not going to be refilled. Hidden Passage The Bureau’s selected options for responding to the coming trainwreck Issue XIX Fall 2013 include some laudable conservation measures in cities and on farms, but also a number of schemes to “augment” the water supply of the Colorado River basin, Editor including a multi-billion dollar plan to pump part of the Missouri River 670 Wade Graham miles and a mile uphill from Kansas to Denver, and another plan to tow Arctic [email protected] icebergs down the Pacific Coast. Assistant Editor Mike Sargetakis Peddling such boondoggles has a long history: in decades past the Bureau and other agencies have straightfacedly proposed tunneling through multiple printed on 100% recycled paper mountain ranges to divert the Klamath River and the Columbia River Cover Photo: Philip Hyde southwards to slake the supposedly unquenchable thirst of the Southwest. In 2 the 1960s, the US government’s “Operation Ploughshare” Shifting water from Powell to Mead could be done at even planned to divert the Yukon south to Los Angeles using virtually no cost and stay within the mandates of the nuclear bombs to clear away inconvenient terrain. existing laws of the river. Indeed, the Bureau is already prioritizing storage in Mead: with the “equalization” policy Fortunately, none of these engineering schemes got off adopted the past two years, extra water has been released the drawing board, and the new crop shouldn’t, either. from Powell to Mead to keep the latter from dropping low Instead, we in the Colorado River Basin need to look at ways enough to trigger a politically-disastrous shortage to more efficiently use the water that we have — plenty of declaration by the Secretary of Interior. In effect, the Upper water for now and well into the future if we are willing to Basin states are already storing some of their water in Lake look beyond the status quo approach to managing the river. Mead. Finally in November, an agreement was signed with Mexico allowing it to store some of its water in Mead, too. Cities can keep [See article, page 12] getting more efficient: Las Vegas, for example, Maximizing has cut its per-capita storage in Lake Mead water use from 348 and using Lake Powell gallons per day to 240 for storage only in 20 years; Tucson during rare wet years residents use just 100 would keep Mead gallons per day. Farmers elevations higher, can too: agriculture protecting the water uses 85-90% of supply of Las Vegas, Colorado River water, Arizona, California water so heavily- and Mexico. It would subsidized that most also begin to heal the goes to grow thirsty, ecological damage low value cattle feed — Lake Powell has including 50 billion wreaked on Glen gallons a year for alfalfa Canyon and Grand that is shipped to Canyon, by exposing China. the majority of Glen Canyon’s 3,000 miles What is lacking in of side canyons and by the study’s options is sending downstream the easiest and cheapest the warmer water and — cutting waste in the higher flood flows that system. The two Cathedral in the Desert, 1966 Grand Canyon’s primary storage Photo: David Brower ecosystem requires. A reservoirs in the Basin, way to move some of the sediment Mead and Powell, lose huge volumes of water to evaporation blocked by Glen Canyon Dam into Grand Canyon would in the desert sun and seepage into the dry ground. Both likely also be required to fully reverse the canyon’s now stand half-empty. By consolidating the water in Lake precipitous ecological decline. Mead, which, unlike Lake Powell, directly supplies water to millions of people, the Bureau could save as much as The long-term problems of the Colorado River Basin 300,000 acre-feet a year — equal to the state of Nevada’s are enormous, complex, and politically fraught. But in the entire entitlement. short and medium terms, the Bureau of Reclamation ought to take the immediate, reasonable and doable steps in its The Bureau has failed to consider this approach in part purview to at the same time save a huge amount of water because it has collected data only on evaporation rates, not and begin the restoration of Glen and Grand Canyons, on water disappearing into the cracked sandstone nearly 400 miles of irreplaceable landscapes at the heart of underlying Lake Powell, which has sucked up a massive 18 the Colorado Plateau. million acre-feet since the dam was built. 3 FILL MEAD FIRST: A PLAN FOR SAVING COLORADO RIVER WATER & BEGINNING THE RESTORATION OF GLEN AND GRAND CANYONS by Michael Kellett The Colorado River Basin is facing an unprecedented water from Glen Canyon Dam are relentlessly damaging beaches and supply crisis. The massive Colorado River water management ecosystems downstream in the Grand Canyon. This outmoded system of dams, reservoirs, and diversions was built in approach to water management is undermining the goal of accordance with an interwoven set of laws, known as the “Law ensuring a sustainable water supply and healthy environment of the River.” The core of the Law of the River is the 1922 for the Colorado Basin. federal-state Colorado River Compact (Compact), which The Fill Mead First Plan allocated the river’s water among the seven Colorado Basin The Fill Mead First plan, proposed by Glen Canyon states — Arizona, California, and Nevada (the Lower Basin), Institute, can help to address these problems. Fill Mead First and Colorado, New Mexico, Utah, and Wyoming (the Upper would designate Lake Mead as the primary water storage and Basin). The Compact splits the flow of the Colorado River distribution facility for the upper and lower Colorado River between the Upper Basin and Lower Basin states, with each basins. Operation of Glen Canyon Dam would be changed to receiving an allocation of 7.5 million acre-feet of water per year. allow water to flow through the hydropower plant and outlet We now know that the Compact was based on inaccurate works as a run of river facility filling Lake Mead reservoir water supply projections. These early projections before impounding water upstream in Lake Powell. Powell overestimated the actual average river flow, underestimated would be kept close to the elevation of 3,490 feet above sea increases in population and water demand, and did not level — high enough to allow seasonal flow variations, flood foresee the long-term reduction of precipitation and water control, sediment distribution, power generation, reservoir- flow due to global climate change. Today, more water is based recreation, and a more natural water flow regime allocated under the Compact than actually flows in the through the Grand Canyon.
Recommended publications
  • PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
    PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms.
    [Show full text]
  • Comprehensive Review of the Fill Lake Mead First Initiative
    Comprehensive Review of the Fill Lake Mead First Initiative Trevor Carey ECL 290 February 28th, 2018 Lake Powell • Commissioned in 1966, full pool 1980 • 2nd largest man-made reservoir in United States (24.3 MAF) • Important for water storage and power generation for the Western United States USBR (2015) Impacts of Lake Powell and Glen Canyon Dam Fish Mollie & Aviva: Showed the dam almost eliminated sediment flows, decreased river temp. and allowed for a more hospitable environment for non-native fish. Vanessa: Discussed how dams contributed the extirpation of native fish. Water Rights Jesse & Jennifer: Native American’s access to water rights in the upper and lower basin, (Navajo water rights are in the Lake Powell watershed). Sediment Jeff: Sediment regime of the lower basin has been completely altered by impoundment of Lake Powell. Sarah: How dams contributed to changes to riparian ecosystems. Jasmin: Using high flow experiments to redistribute sediment and create beaches Dam Operation Marisa: Citizen science program looking at tidal effects caused by the dam Other Ann: Habitat destruction of the Kanab Ambersnail from high flows Fill Lake Mead First Initiative • Reservoir levels of both Lake Mead & Powell have been hovering around 50% full • Recent studies Barnett and Pierce (2008) and Kirk et al. (2017) showed reservoir levels will continue to decline, and hot drier conditions will be more common • Drain water from Lake Powell to fill Lake Mead • Glen Canyon dam would become a run of the river dam, with additional flood control capacity if needed Data courtesy of water-data.com Goals of FLMF • First proposed by Glen Canyon Institute in 2013 • Identified 3 goals of the initiative: 1.
    [Show full text]
  • Scoping Report: Grand Staircase-Escalante National
    CONTENTS 1 Introduction .............................................................................................................................................. 1 2 Scoping Process ....................................................................................................................................... 3 2.1 Purpose of Scoping ........................................................................................................................... 3 2.2 Scoping Outreach .............................................................................................................................. 3 2.2.1 Publication of the Notice of Intent ....................................................................................... 3 2.2.2 Other Outreach Methods ....................................................................................................... 3 2.3 Opportunities for Public Comment ................................................................................................ 3 2.4 Public Scoping Meetings .................................................................................................................. 4 2.5 Cooperating Agency Involvement ................................................................................................... 4 2.6 National Historic Preservation Act and Tribal Consultation ....................................................... 5 3 Submission Processing and Comment Coding .................................................................................... 5
    [Show full text]
  • Terrestrial Vertebrate Fauna of the Kaiparowits Basin
    Great Basin Naturalist Volume 40 Number 4 Article 2 12-31-1980 Terrestrial vertebrate fauna of the Kaiparowits Basin N. Duane Atwood U.S. Forest Service, Provo, Utah Clyde L. Pritchett Brigham Young University Richard D. Porter U.S. Fish and Wildlife Service, Provo, Utah Benjamin W. Wood Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Atwood, N. Duane; Pritchett, Clyde L.; Porter, Richard D.; and Wood, Benjamin W. (1980) "Terrestrial vertebrate fauna of the Kaiparowits Basin," Great Basin Naturalist: Vol. 40 : No. 4 , Article 2. Available at: https://scholarsarchive.byu.edu/gbn/vol40/iss4/2 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. TERRESTRIAL VERTEBRATE FAUNA OF THE KAIPAROWITS BASIN N. Diiane Atwood', Clyde L. Pritchctt', Richard D. Porter', and Benjamin W. Wood' .\bstr^ct.- This report inehides data collected during an investigation by Brighani Young University personnel to 1976, as well as a literature from 1971 review. The fauna of the Kaiparowits Basin is represented by 7 species of salamander, toads, mnphihians (1 5 and 1 tree frog), 29 species of reptiles (1 turtle, 16 lizards, and 12 snakes), 183 species of birds (plus 2 hypothetical), and 74 species of mammals. Geographic distribution of the various species within the basin are discussed. Birds are categorized according to their population and seasonal status.
    [Show full text]
  • Grand Canyon Helicopter Tours
    GRAND CANYON HELICOPTER TOURS * * $289 Adult • $269 Child (Ages 2 - 11) + $35 Fees $364 Adult • $344 Child (Ages 2 - 11) + $80 Fees GRAND CANYON SOAR LIKE AN EAGLE THROUGH THE GRAND CANYON • Descend 4,000 feet into the Grand Canyon MOST AND SEE THE BEAUTIFUL BOWL OF FIRE. • Touch down by the banks of the Colorado River POPULAR • Champagne picnic under an authentic Hualapai Indian shelter TOUR! & Las Vegas Tours • Air only excursion through the Grand Canyon • Views of Lake Mead, Hoover Dam, Fortication Hill and the Grand Wash Clis • Views of Lake Mead, Hoover Dam, Fortification Hill and the Grand Wash Clis • Tour Duration: Approximately 4 hours (hotel to hotel) World’s Largest Grand Canyon Air Tour Company, since 1965! • Tour Duration: Approximately 3 hours (hotel to hotel) • $40 SUNSET UPGRADE (PBW-4S) • ADD LIMO TRANSFERS & STRIP FLIGHT (PLW-1) $404 Adult • $384 Child (ages 2-11) + $80 Fees $349 Adult • $329 Child (Ages 2-11) + $40 Fees • ADD LIMO TRANSFERS & STRIP FLIGHT (PLW-4) $414 Adult • $394 Child (ages 2-11) + $80 Fees • ADD LIMO TRANSFERS, SUNSET & STRIP FLIGHT (PLW-4S) $454 Adult • $434 Child (ages 2-11) + $80 Fees $94 Adult • $74 Child (Ages 2 - 11) + $10 Fees TAKE TO THE SKIES OVER THE DAZZLING AND WORLD FAMOUS LAS VEGAS "STRIP"! • Views of the MGM, New York New York, Caesar’s Palace, Bellagio, Mirage and more • Fly by the Stratosphere Tower and downtown Glitter Gulch where Las Vegas began • Complimentary champagne toast L’excursion aérienne Die vielseitigste Papillon- Veleggiate al di sotto del キャニオン上空を低 La visita aérea más • Tour Duration: Approx.
    [Show full text]
  • Etched Magazine, January 2015 Issue
    MAGAZINE ([SHULHQFH7KH6RXWKZHVWFRP OUTDOOR Finding Common Ground 2015 PRESERVATION &2//$%25$7,21RECREATION $3.95 U.S. #theevolutionofelan Finding Common Ground PRESERVATION&2//$%25$7,21 RECREATION contents options art lovers a conversation with greg istock 18 creating art, music, and life in abstracts the art of interior design 22 artisans who bring function and style to life the allure of watercolor 26 an historical perspective through the eyes (and brush) of roland lee soul searchers the dark night of the soul 30 a space in time where new life begins let’s try some civility 32 the longing for meaningful (and civil) conversation adventure in wellness 34 a “dream” vacation that truly benefits mind, body, and soul adventure seekers the day we set the colorado river free 41 a grand experiment in ecological restoration boots and burgers 50 a deliciously novel hiking and dining guide concrete to canyons 58 when inner city students step foot into zion desert dwellers building ice age park 62 a prehistoric venture takes shape in urban style story keepers 66 expectations historic structures: in every issue the mouthpiece of history the green that turned golden 70 etched in time 8 the 50th anniversary of leaving their mark 10 dixie red hills golf course #theevolutionofelan 12 experiencethesouthwest.com 13 saving an oasis 74 meditations 14 the collaboration of preservation snapshots 92 and recreation in southern utah culture creators the hills are alive 80 a journey through the years of making music on our cover community arts and Writer, Rowan Jacobsen events information 84 Photography By: Fred Phillips the people, the places, the dates, the vibe...the culture of southern utah leaving their mark FINDING COMMON GROUND EXPERIENCE volume 9 – issue 1 ENJOY THE OUTDOOR ISSUE AWARENESS EDUCATE 2015 PRESERVE Darci Hansen Founder Editor in Chief │ │ Laurie James Design Editor ROWAN JACOBSEN writes about place and how it shapes ecosystems, │ │ cultures, cuisines, and us.
    [Show full text]
  • Map Showing Location of Selected Surface-Water Sites and Springs, Escalante River Drainage Basin, Garfield and Kane Counties, Utah By
    U.S. DEPARTMENT OF THE INTERIOR PREPARED IN COOPERATION WITH THE SCIENTIFIC INVESTIGATIONS REPORT 2004–5223 U.S. GEOLOGICAL SURVEY U.S. DEPARTMENT OF THE INTERIOR, BUREAU OF LAND MANAGEMENT, GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT Location of selected surface-water sites and springs, Escalante River drainage basin—Plate 1 Wilberg, D.E., and Stolp, B.J., 2004, Seepage Investigation and Selected Hydrologic Data for the Escalante River Drainage Basin, Garfield and Kane Counties, Utah, 1909-2002 111°45' 111°05' 114 ° 113 ° 112 ° 111° 42 ° T. 30 S. T. 31 S. Great 15 Salt 110 ° 109 ° B 41 ° Lake ou Salt Lake City lde r M Provo ou 40 ° nt ain 39 ° Utah Study 38 ° area Garfield County Kane County 37 ° E a s t F o T. 31 S. r k T. 32 S. 21 East Fork Boulder Creek near Boulder EXPLANATION B o u Boundary of study area l d u e s Platea r Aquariu C r Boundary of Grand Staircase-Escalante National Monument e e k Road k e e r C C ir Stream c r e le e C D l 16 38°00' if Surface-water site and number k fs or 22 East Fork Deer Creek near Boulder t F 38°00' as Spring E +35 Mile marker—Labeled every 5 miles T. 32 S. T. 33 S. 12 Dixie National Forest s il n a i Tr a t n p u o Boulder rr o T u B M n i f f i D r e e T. 33 S.
    [Show full text]
  • Busting the Big One Activists Claim That Decommissioning Glen Canyon Dam Will Save Water and Restore a Wild Canyon
    BUSTING THE BIG ONE Activists claim that decommissioning Glen Canyon Dam will save water and restore a wild canyon. Are they right? BY Krista LaNGLOIS “I just read n 1963, Glen Canyon was pronounced dead. Glen Can- Meanwhile, Lake Powell may be squandering the very re- yon Dam had submerged its fabled grottoes, Ancestral source it was designed to protect. Every day, water slowly seeps what everyone Puebloan cliff dwellings and slickrock chutes beneath the into the soft, porous sandstone beneath the reservoir and evapo- else had I stagnant water of Lake Powell, and forever altered the rates off its surface into the desert air. When more water flowed in ecology of the Grand Canyon just downstream. the system, this hardly mattered. But in an era where “every drop forgotten.” For wilderness lovers, the 710-foot-tall concrete wall stuck counts,” says Eric Balken, executive director of the nonprofit Glen out of the Colorado River like a middle finger — an insult that Canyon Institute, it calls for a drastic re-evaluation of the Colo- —Jack Schmidt, helped ignite the modern environmental movement. In 1981, rado River’s plumbing. “The Colorado River can no longer sustain watershed scientist the radical group Earth First! faked a “crack” on the dam by two huge reservoirs,” Balken says. “There isn’t enough water.” who evaluated water unfurling a 300-foot-long black banner down the structure’s That’s one reason the Glen Canyon Institute is pushing an savings and loss from Lake Powell front. The Sierra Club’s first executive director, David Brower, audacious proposal called “Fill Mead First,” which calls for the and Lake Mead considered the dam’s construction a personal failure and spent U.S.
    [Show full text]
  • Executive Summary U.S
    Glen Canyon Dam Long-Term Experimental and Management Plan Environmental Impact Statement PUBLIC DRAFT Executive Summary U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand Canyon National Park Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement 1 CONTENTS 2 3 4 ACRONYMS AND ABBREVIATIONS .................................................................................. vii 5 6 ES.1 Introduction ............................................................................................................ 1 7 ES.2 Proposed Federal Action ........................................................................................ 2 8 ES.2.1 Purpose of and Need for Action .............................................................. 2 9 ES.2.2 Objectives and Resource Goals of the LTEMP ....................................... 3 10 ES.3 Scope of the DEIS .................................................................................................. 6 11 ES.3.1 Affected Region and Resources .............................................................. 6 12 ES.3.2 Impact Topics Selected for Detailed Analysis ........................................ 6 13 ES.4
    [Show full text]
  • Imperial Irrigation District Final EIS/EIR
    Contents Contents Section Page Preface/Abstract.................................................................................................................................iii List of Tables .....................................................................................................................................xv List of Figures .................................................................................................................................. xxi Acronyms.......................................................................................................................................xxvii Glossary ..........................................................................................................................................xxxv Executive Summary ......................................................................................................................ES-1 Introduction .....................................................................................................................ES-1 Project Background and History...................................................................................ES-2 Project Overview .............................................................................................................ES-3 Project Purpose, Need, and Objectives ........................................................................ES-6 Other Proposed Agreements, Plans, and Projects Related to Resources Affected by the Proposed Project..........................................................................ES-9
    [Show full text]
  • ATTACHMENT B Dams and Reservoirs Along the Lower
    ATTACHMENTS ATTACHMENT B Dams and Reservoirs Along the Lower Colorado River This attachment to the Colorado River Interim Surplus Criteria DEIS describes the dams and reservoirs on the main stream of the Colorado River from Glen Canyon Dam in Arizona to Morelos Dam along the international boundary with Mexico. The role that each plays in the operation of the Colorado River system is also explained. COLORADO RIVER INTERIM SURPLUS CRITERIA DRAFT ENVIRONMENTAL IMPACT STATEMENT COLORADO RIVER DAMS AND RESERVOIRS Lake Powell to Morelos Dam The following discussion summarizes the dams and reservoirs along the Colorado River from Lake Powell to the Southerly International Boundary (SIB) with Mexico and their specific roles in the operation of the Colorado River. Individual dams serve one or more specific purposes as designated in their federal construction authorizations. Such purposes are, water storage, flood control, river regulation, power generation, and water diversion to Arizona, Nevada, California, and Mexico. The All-American Canal is included in this summary because it conveys some of the water delivered to Mexico and thereby contributes to the river system operation. The dams and reservoirs are listed in the order of their location along the river proceeding downstream from Lake Powell. Their locations are shown on the map attached to the inside of the rear cover of this report. Glen Canyon Dam – Glen Canyon Dam, which formed Lake Powell, is a principal part of the Colorado River Storage Project. It is a concrete arch dam 710 feet high and 1,560 feet wide. The maximum generating discharge capacity is 33,200 cfs which may be augmented by an additional 15,000 cfs through the river outlet works.
    [Show full text]
  • Lake Mead and Lake Powell
    Colorado River Water Supply Report Agenda Number 12. Total System Contents: 27.507 MAF 68% 8/26/13 Reservoir Capacities (MAF) Reservoir Current Change Maximum 76% Lake Mead 12.25 + 0.02 25.90 Lake Powell 10.84 - 0.55 24.30 Flaming Gorge Reservoir 2.84 - 0.05 3.75 Navajo Reservoir 0.86 - 0.05 1.70 Blue Mesa Reservoir 0.37 - 0.03 0.83 Fontenelle Reservoir 0.23 - 0.01 0.34 Morrow Point Reservoir 0.11 0.00 0.12 44% Lake Powell 3,700’ 97% 45%, 10.839 MAF 3,590’ 51% Lake Mead 1,220’ 47%, 12.248 MAF 1,106’ 1,075’ 3,680 1,130 Lake Powell Elevations (2013 August 24-Month Study) Lake Mead Elevations (2013 August 24-Month Study) 3,660 1,120 3,640 1,110 3,620 1,100 3,600 1,090 3,580 1,080 Historical 3,560 1,070 Historical Maximum Probable Forecast Maximum Probable Forecast Most Probable Forecast Most Probable Forecast 3,540 1,060 Minimum Probable Forecast Minimum Probable Forecast Shortage 3,520 1,050 The August 2013 24-Month study projected that with an annual release of 8.23 MAF (as was consistent in water year Based on a 2013), the January 1st elevation of Lake Powell would be potential shortage 3,574 ft, which is less than 3,575 ft and places Lake Powell in 2016, impacts to in the mid-elevation release tier. Since Lake Mead is not CAP projected below 1,025 ft, according to the 2007 Interim Guidelines, demand in 2016 under this operational tier annual releases from Lake would include a 320 Powell to Lake Mead will be reduced to 7.48 MAF (for water KAF reduction to year 2014).
    [Show full text]