The Molecular Systematics of the Side-Blotched Lizards (IGUANIA: PHRYNOSOMATIDAE: UTA)

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Systematics of the Side-Blotched Lizards (IGUANIA: PHRYNOSOMATIDAE: UTA) Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-1999 The Molecular Systematics of the Side-blotched Lizards (IGUANIA: PHRYNOSOMATIDAE: UTA) Bradford Damion Hollingsworth Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Biology Commons Recommended Citation Hollingsworth, Bradford Damion, "The Molecular Systematics of the Side-blotched Lizards (IGUANIA: PHRYNOSOMATIDAE: UTA)" (1999). Loma Linda University Electronic Theses, Dissertations & Projects. 602. https://scholarsrepository.llu.edu/etd/602 This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. LOMA LINDAUNIVERSITY Graduate School E TH MOLECULAR SYSTEMATICS OF THESIDE-BLOTCHED LIZARDS (IGUANIA: PHRYNOSOMATIDAE: UTA) by BradfordDamion Hollingsworth A Dissertation in Partial Fulfillment of the Requirements forthe Degree Doctor of Philosophy in Biology June 1999 0 1999 Bradford Hollingsworth All Rights Reserved II Each person whose signature appears below certifies that this dissertation in their opinion is adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Ronald L. Carter, Professor of Biology Co-Chairperson L. Lee Grismer, Professor of Biology H. Pau uchheim, Professor of Geology William K. Hayes, Associate Profs r of Biology e. Garry P. Lars 1, Assistant Research Scientist, Beckman Research Institute of the City of Hope lii ACKNOWLEDGMENTS I would like to thank the numerous individuals who assisted me during the course of this analysis. Most notable are those who contributed to my growth as a biologist and a person. My committee chairs Ron Carter and Lee Grismer patiently supported me and provided valuable advice both in the lab and field. In addition, I would like to thank Garry Larson, Bill Hayes, and Paul Buchheim for their assistance as committee members and the remaining members of the faculty and student body in the Department of Natural Sciences at Loma Linda University for offering an educational atmosphere full of inspiration. I am grateful to the Center of Molecular Biology and Gene Therapy for the use of their automated sequencer and the DNA Sequencing Facility at California State University, Northridge and their technician Janine Wengert for generating numerous sequences. Many thanks to John J. Wiens at the Carnegie Museum of Natural History for his assistance on conducting the computer analyses and his insights into phylogenetic methods and evolutionary processes. • I would like to thank the many individuals who helped me during the extensive field work done for this project, including Lee Grismer, Ron Carter, Mike Cryder, Erik Gergus, Jesse Grismer, Eric Link, Gene Kim, Chris Mattison, Erik Mellink, Roland Sosa, Humberto Wong, Nelson Wong, and the many Mexican ranchers and fisherman who served as guides and naturalists, in addition to providing me with food and shelter. iv TABLE OF CONTENTS LIST OF FIGURES vi LIST OF TABLES viii ABSTRACT 1 INTRODUCTION 3 MATERIAL AND METHODS 9 Sampling 9 Operational Taxonomic Units 9 Ingroup Monophyly 14 DNA Sequence Data 14 Tree Reconstruction 17 Selection of Outgroups 22 Confidence, Support, and Signal 26 Comparison With Previous Analyses 27 RESULTS 31 Confidence, Support, and Signal 31 Combined DNA Sequences 31 Maximum Parsimony Analyses 31 Maximum Likelihood Analyses 42 Comparison With Upton and Murphy (1997) S 45 DISCUSSION 61 Phylogenetic Analyses 61 Comparison with the Analysis of Upton and Murphy (1997) 64 Ancestral Nature of Insular Populations 65 Geographical Concordance 73 Cryptic Species Boundaries 79 Exclusivity and Non-exclusivity 83 Taxonomy 85 LITERATURE CITED 91 APPENDIX 101 Appendix 1: Results of the computer program PAUP 101 LIST OF FIGURES FIGURES PAGE 1. Locality map showing the location of the eight insular endemic species of Uta. All continental landmasses and unmarked islands are inhabited by Uta stansburiana 2. Locality map showing the region of study and the 98 samples used in this analysis 10 3. Outgroup topologies of phrynosomatid genera: a) traditional topology of Etheridge and de Queiroz (1988) and Wiens (1993); b) combined tree of Reeder and Wiens (1996) and Wiens and Reeder (1997); and c) combined data tree of Schulte et al. (1998) 24 4. Strict consensus tree of the unweighted parsimony analysis using 98 ingroup samples and 11 outgroup taxa 33 5. Strict consensus tree of the weighted parsimony analysis (Tv:Ti = 5) using 98 ingroup samples and 11 outgroup taxa 40 6. Maximum likelihood tree using the same data set as in the parsimony analysis pruned to a total of 56 samples (see Table 6) 43 7. Reanalysis of Upton and Murphy (1997): a) unweighted parsimony analysis; and b) weighted parsimony analysis (Tv:Ti =5) 47 8. Reanalysis of data set from this analysis pruned to 22 taxa to match those of Upton and Murphy (1997; see Table 9): a) unweighted analysis using two outgroup species; b) tree from unweighted analysis (see Fig. 4) pruned to 22 taxa; c) unweighted analysis using 11 outgroup species unconstrained; and d) unweighted analysis using 11 outgroup species constrained to Reeder and Wiens (1996) topology 51 9. Analysis of the combined data set from DNA sequence generated in this analysis and Upton and Murphy (1997): a) unweighted parsimony analysis; and b) weighted parsimony analysis (Tv:Ti = 5) 55 10. Maximum likelihood tree using the combined data set from DNA sequence generated in this analysis and Upton and Murphy (1997): a) unweighted parsimony analysis; and b) weighted parsimony analysis (Tv:Ti = 5) 58 11. Phylogenetic tree from weighted analysis depicting the placement of ancestral insular populations (indicated with heavy bars) 66 vi FIGURES PAGE 12. Model of evolution for insular taxa derived from mainland ancestors from Grismer (1999c). A, B, C, and a4 are contemporary species depicting the chronological order of island colonization; A being first to colonize and C being the third to colonize. al = first continental ancestor; a, = second continental ancestor; a3 = third continental ancestor; and a4 = the last continental ancestor to evolve. The solid bars indicate the acquisition of derived character states in the continental ancestors 69 13. Map depicting the geographic position of the strongly supported groups within haploclade A (see Fig. 5 for designations) 75 14. Map depicting the geographic position of the strongly supported groups within haploclade B (see Fig. 5 for designations) 76 15. Map depicting the geographic position of haploclades A and B. Contact zone occurs between Santa Agueda (M-22) and San Bruno (M-21.) 80 16. Phylogenetic tee depicting the placement of currently named species and likely evolutionary species 87 vii LIST OF TABLES TABLE PAGE 1. Taxonomy of Uta based on Ballinger and Tinkle (1972) and Grismer (1994a)... 4 2. Scalar levels of the hierarchy of replicators, their mode of inheritance and replication, and their expected historical pattern 7 3. Specimen localities with their corresponding codes and species designation 11 4. Sequences of primers used in the PCR and sequencing reactions 15 5. PCR conditions used to amplify cytochrome b and cytochrome oxidase III gene fragments 16 6. Specimens selected for phylogenetic analysis using maximum likelihood 19 7. Summary of parameters in nucleotide substitution models 20 8. List of outgroup taxa used in the maximum parsimony and likelihood analyses 23 9. Samples selected from this analysis to combine with samples in the data set of Upton and Murphy (1997) 28 10. Comparison of likelihood scores from a single tree chosen from the parsimony analysis using the 56 taxa and the DNA sequence from cytochrome b and cytochrome oxidase 46 11. Likelihood ratio tests comparing statistical differences between increasingly complex models of DNA sequence evolution using 56 taxa and the DNA sequence from cytochrome b and cytochrome oxidase 46 12. Sequential Bonferroni correction for statistical tables for the comparison of models using the likelihood ratio test (see Table 9) 46 13. Results of the Wilcoxon Sign-Ranks Tests for the comparison between reduced taxa data sets and their most-parsimonious trees for the unweighted analyses 50 14. Results of the Wilcoxon Sign-Ranks Tests for the comparison between reduced taxa data sets and their most-parsimonious trees for the weighted analyses 53 15. Comparison of likelihood scores from a single tree chosen from the parsimony analysis using the 22 taxa data sets combined from this analysis and Upton and Murphy (1997) 60 viii TABLE PAGE 16. Likelihood ratio tests comparing statistical differences between increasingly complex models of DNA sequence evolution using the 22 taxa data sets combined from this analysis and Upton and Murphy (1997) 60 17. Sequential Bonferroni correction for statistical tables for the comparison of models using the likelihood ratio test (see Table 16) 60 18. Categories of strongly supported and geographically concordant groups of two or more populations 74 ix ABSTRACT THE MOLECULAR SYSTEMATICS OF THE SIDE-BLOTCHED LIZARDS (IGUANIA: PHRYNOSOMATIDAE: UTA) by
Recommended publications
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Spot-Tailed Earless Lizard Update: January 2017
    Spot-Tailed Earless Lizard Update: January 2017 Travis LaDuc Roel Lopez UT Austin Texas A&M Brad Wolaver Wade Ryberg UT Austin Texas A&M Mike Duran Toby Hibbitts The Nature Conservancy Texas A&M Ben Labay Matt Fujita UT Austin UT Arlington Jon Paul Pierre Corey Roelke UT Austin UT Arlington Ian Wright UT Austin Gautam Surya UT Austin Cody Shank UT Austin Photo by Mike Duran Thursday, January 26, 2017 Goals and Agenda Update of scien7fic progress since Sept. 2016 Discussion of ongoing research Findings So Far 1. Field data update for 2016 2. Insect survey update 3. Gene7cs status 4. Habitat modeling 1. Status 2. Road bias 3. Ground-truthing + possible addi7onal research… Study Area 2015 Surveys • April 22 – Sept 24 • 274 surveys in 57 counes • 18 coun7es with posive H. lacerata surveys • 174 H. lacerata observed 2016 Surveys • April 6 – Sept 28 • 171 surveys in 28 counes • 53 surveys in 7 coun7es with posive H. lacerata surveys • 170 H. lacerata observed • 91 animals marked; 2 recaptures 2016 Surveys • 171 surveys (April 6 – August 26) • 52 walking; 18 lizards seen (0.04 lizards/hr) • 119 driving; 152 lizards seen (0.30 lizards/hr) • 28 counes across historical range • Areas of 2015 sigh7ngs • Historical range where no 2015 sigh7ngs • 170 Holbrookia lacerata sighted • No new coun7es with H. lacerata from 2015 (save Suon Co.) • Juveniles observed in every unit 2016 Surveys • Mark-recapture: • 91 individuals iden7fied (all photographed, 61 toe-clipped) • Two recaptures • Combinaon road and walking surveys Diet / Insect Surveys Diet data obtained
    [Show full text]
  • An Inventory of a Subset of Historically Known Populations of The
    Section 6 (Texas Traditional) Report Review Form emailed to FWS S6 coordinator (mm/dd/yyyy): 9/11/2017 TPWD signature date on report: 8/31/2017 Project Title: To provide more evidence for the presence/absence of the southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis; STEL) in southern Texas. Final or Interim Report? Final Grant #: TX-E-165-R Reviewer Station: Austin ESFO Lead station concurs with the following comments: NA (reviewer from lead station) Interim Report (check one): Final Report (check one): Acceptable (no comments) Acceptable (no comments) Needs revision prior to final report (see Needs revision (see comments below) comments below) Incomplete (see comments below) Incomplete (see comments below) Comments: FINAL PERFORMANCE REPORT As Required by THE ENDANGERED SPECIES PROGRAM TEXAS Grant No. TX E-165-R (F14AP00824) Endangered and Threatened Species Conservation An Inventory of a Subset of Historically Known Populations of the Spot-tailed Earless Lizard (Holbrookia lacerata) Prepared by: Mike Duran Carter Smith Executive Director Clayton Wolf Director, Wildlife 31 August 2017 Final Report TPWD Contract #458178—31 August 2017 FINAL REPORT STATE: ____Texas_______________ GRANT NUMBER: ___ TX E-165-R-1__ GRANT TITLE: An Inventory of a Subset of Historically Known Populations of the Spot-tailed Earless Lizard (Holbrookia lacerata). REPORTING PERIOD: ____1 September 2014 to 31 August 2017 OBJECTIVE(S). To provide more evidence for the presence/absence of the southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis; STEL) in southern Texas. Segment Objectives: Task 1. March 1 – June 30, 2015 – Spring surveys. Task 2. September 15 – October 31, 2015 – Fall surveys.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • News Release Albuquerque, NM 87103 505/248-6911 505/248-6915 (Fax)
    U.S. Fish and Wildlife Service Public Affairs Office PO Box 1306 News Release Albuquerque, NM 87103 505/248-6911 505/248-6915 (Fax) Southwest Region (Arizona ● New Mexico ● Oklahoma ●Texas) www.fws.gov/southwest/ For Release: May 23, 2011 Contacts: Alisa Shull, (512) 490-0057 Lesli Gray, (972) 569-8588 THE SPOT-TAILED EARLESS LIZARD MAY WARRANT PROTECTION UNDER THE ENDANGERED SPECIES ACT The spot-tailed earless lizard (Holbrookia lacerata) may warrant federal protection as a threatened or endangered species, the U.S. Fish and Wildlife Service (Service) announced today, following an initial review of a petition seeking to protect the spot-tailed earless lizard under the Endangered Species Act (ESA). The Service finds that the petition presents substantial scientific or commercial information indicating that listing the spot-tailed earless lizard may be warranted. This finding is based on potential threats posed by predation from fire ants. Fire ants are known to adversely impact native fauna in general, including reptiles. Fire ants occur across a large part of the spot-tailed earless lizard’s range and may pose a threat through direct predation on adults, hatchlings and eggs. The spot-tailed earless lizard is divided into two distinct subspecies, based on morphological (physical) differences and geographic separation. The northern spot-tailed earless lizard subspecies (Holbrookia lacerata lacerata) historically occurred throughout the Edwards Plateau in Texas. The southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis) historically occurred through south Texas into parts of Mexico’s States of Coahuila, Nuevo Leon, and Tamaulipas. The present population of the spot-tailed earless lizard’s population status is largely unknown.
    [Show full text]
  • Biodiversity of Amphibians and Reptiles at the Camp Cady Wildlife
    Ascending and descending limbs of hydrograph Pulse flow ascending-descending limbs of hydrograph Low Peak Restora- Low Peak Pulse Low release release tion release release restoration Shape release mag- Shape mag- release Shape mag- Date and Shape mag- release de- mag- Date and Water nitude ascend- nitude (hector descend- nitude duration flow Total Low ascend- nitude (hector scend- nitude duration flow to Total Year Year Flow (m3/s) ing (m3/s) m) ing (m3/s) to base-flow days (m3/s) ing (m3/s) m) ing (m3/s) base-flow days 25 Apr-22 1995 na Pre-ROD 14 R 131 na G 27 28 May 1996 na Pre-ROD 9 R 144 na G, 1B 14 10 May-9 Jun 31 1997 na Pre-ROD 10 R 62 na G, 3B 13 2 May-2 Jul 62 1998 na Pre-ROD 47 R 192 na G 13 24 May-27 Jul 65 1999 na Pre-ROD 15 G 71 na G 13 8 May-18 Jul 72 2000 na Pre-ROD 9 R 66 na G 13 8 May-27 Jul 81 2002 normal Pre-ROD 9 R 171 59,540 G 13 27 Apr-25 Jun 28 2003 wet Pulse 9 R 74 55,272 G, 2B 12 29 Apr-22 Jul 85 13 R 51 4,194 G 12 23 Aug-18 Sep 27 2004 wet Pulse 9 R 176 80,300 G, 4B 12 4 May-22 Jul 80 16 R 48 4,465 G 14 21 Aug-14 Sep 25 2005 wet ROD 8 R, 2 B 197 79,880 G, 1B 13 27 Apr-22 Jul 87 2006 extra wet ROD 8 G, 5B 286 99,900 G, 2B 13 16 Apr-22 Jul 98 2007 dry ROD 8 R 135 55,963 G 13 25 Apr-25 Jun 62 2008 dry ROD 9 R, 1B 183 80,016 G, 3B 20 22 Apr-15 Jul 85 2009 dry ROD 8 R 125 54,952 G, 4B 12 24 Apr-6 Jul 74 2010 wet ROD 9 R 194 81,003 G, 3B 12 22 Apr-2 Aug 102 2011 wet ROD 7 R, 2B 329 89,033 G, 2B 13 26 Apr-1 Aug 98 2012 normal Pulse 9 R, 2B 172 79,819 G, 4B 13 4 Apr-26 Jul 114 13 R, 1B 39 4,811 R, 1B 13 12 Aug-20 Sep
    [Show full text]
  • Report of the Joint World Heritage
    World Heritage 41 COM Patrimoine mondial Paris, June 2017 Original: English UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION ORGANISATION DES NATIONS UNIES POUR L'EDUCATION, LA SCIENCE ET LA CULTURE CONVENTION CONCERNING THE PROTECTION OF THE WORLD CULTURAL AND NATURAL HERITAGE CONVENTION CONCERNANT LA PROTECTION DU PATRIMOINE MONDIAL, CULTUREL ET NATUREL WORLD HERITAGE COMMITTEE / COMITE DU PATRIMOINE MONDIAL Forty-first session / Quarante-et-unième session Krakow, Poland / Cracovie, Pologne 2-12 July 2017 / 2-12 juillet 2017 Item 7 of the Provisional Agenda: State of conservation of properties inscribed on the World Heritage List and/or on the List of World Heritage in Danger Point 7 de l’Ordre du jour provisoire: Etat de conservation de biens inscrits sur la Liste du patrimoine mondial et/ou sur la Liste du patrimoine mondial en péril MISSION REPORT / RAPPORT DE MISSION Islands and Protected Areas of the Gulf of California (Mexico) (1182ter) Îles et aires protégées du Golfe de Californie (Mexique) (1182ter) 9 - 15 April 2017 REPORT ON THE REACTIVE MONITORING MISSION TO ISLANDS AND PROTECTED AREAS OF THE GULF OF CALIFORNIA (Mexico) FROM 09 TO 15 APRIL 2017 Photo © IUCN/Meike Scheidat 1 Table of Contents ACKNOWLEDGEMENTS ........................................................................................................................... 3 EXECUTIVE SUMMARY AND LIST OF RECOMMENDATIONS ................................................................... 4 1 BACKGROUND TO THE MISSION ....................................................................................................
    [Show full text]
  • Sprint Performance of Phrynosomatid Lizards, Measured on a High-Speed Treadmill, Correlates with Hindlimb Length
    J. Zool., Lond. (1999) 248, 255±265 # 1999 The Zoological Society of London Printed in the United Kingdom Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length Kevin E. Bonine and Theodore Garland, Jr Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706-1381, U.S.A. (Accepted 19 September 1998) Abstract We measured sprint performance of phrynosomatid lizards and selected outgroups (n = 27 species). Maximal sprint running speeds were obtained with a new measurement technique, a high-speed treadmill (H.S.T.). Animals were measured at their approximate ®eld-active body temperatures once on both of 2 consecutive days. Within species, individual variation in speed measurements was consistent between trial days and repeatabilities were similar to values reported previously for photocell-timed racetrack measure- ments. Multiple regression with phylogenetically independent contrasts indicates that interspeci®c variation in maximal speed is positively correlated with hindlimb span, but not signi®cantly related to either body mass or body temperature. Among the three phrynosomatid subclades, sand lizards (Uma, Callisaurus, Cophosaurus, Holbrookia) have the highest sprint speeds and longest hindlimbs, horned lizards (Phryno- soma) exhibit the lowest speeds and shortest limbs, and the Sceloporus group (including Uta and Urosaurus) is intermediate in both speed and hindlimb span. Key words: comparative method, lizard, locomotion, morphometrics, phrynosomatidae, sprint speed INTRODUCTION Fig. 1; Montanucci, 1987; de Queiroz, 1992; Wiens & Reeder, 1997) that exhibit large variation in locomotor Evolutionary physiologists and functional morpholo- morphology and performance, behaviour, and ecology gists emphasize the importance of direct measurements (Stebbins, 1985; Conant & Collins, 1991; Garland, 1994; of whole-animal performance (Arnold, 1983; Garland & Miles, 1994a).
    [Show full text]
  • Amphibians and Reptiles of the State of Coahuila, Mexico, with Comparison with Adjoining States
    A peer-reviewed open-access journal ZooKeys 593: 117–137Amphibians (2016) and reptiles of the state of Coahuila, Mexico, with comparison... 117 doi: 10.3897/zookeys.593.8484 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states Julio A. Lemos-Espinal1, Geoffrey R. Smith2 1 Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM. Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de México, Mexico – 54090 2 Department of Biology, Denison University, Granville, OH, USA 43023 Corresponding author: Julio A. Lemos-Espinal ([email protected]) Academic editor: A. Herrel | Received 15 March 2016 | Accepted 25 April 2016 | Published 26 May 2016 http://zoobank.org/F70B9F37-0742-486F-9B87-F9E64F993E1E Citation: Lemos-Espinal JA, Smith GR (2016) Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining statese. ZooKeys 593: 117–137. doi: 10.3897/zookeys.593.8484 Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list com- prises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction.
    [Show full text]
  • Natural History of Sceloporus Goldmani (Squamata: Phrynosomatidae) in Its Southern Distribution
    Herpetology Notes, volume 10: 161-167 (2017) (published online on 19 April 2017) Natural History of Sceloporus goldmani (Squamata: Phrynosomatidae) in its southern distribution Rubén Alonso Carbajal-Márquez1, 3,* and Gustavo Ernesto Quintero-Díaz2, 3 Introduction. frequency of appearance (FA) was calculated as the total frequency of a component, divided by the total number The bunchgrass lizard Sceloporus goldmani Smith, of scats. To consider the importance of all species, the 1937, belonging to the S. scalaris group, was believed percentage of occurrence (PA) was also calculated as the to be extinct due to habitat destruction, and surveys total frequency of a component, divided by the sum of with unsuccessful results in the historical localities in all frequencies (Aranda et al., 1995). The activities were the states of Coahuila, Nuevo León and San Luis Potosí, carried out under authorization of scientific collection for this reason have not been included in the most recent through document number SGPA / DGVS / 05143/14 analyses (Smith and Hall, 1974; Thomas and Dixon, and SGPA / DGVS / 030709/16. 1976; Sinervo et al., 2010; Bryson et al., 2012; Leaché et al., 2013; Grummer et al., 2014; Grummer and Bryson, Results. 2014). Recently new populations of this species were found in the states of Aguascalientes, Jalisco, San Luis Morphology. The specimens of Sceloporus goldmani Potosí and Zacatecas (Carbajal-Márquez and Quintero- reported here agree with the characters of Smith’s (1937) Díaz, 2016). Here we provide a brief description of original description. The specimens (N = 21; 10 males, these new specimens, as well as observations on their 11 females) measured on average 44.08 mm ± 11.15 mm natural history, which until now were poorly known.
    [Show full text]
  • Inventory of Amphibians and Reptiles at Death Valley National Park
    Inventory of Amphibians and Reptiles at Death Valley National Park Final Report Permit # DEVA-2003-SCI-0010 (amphibians) and DEVA-2002-SCI-0010 (reptiles) Accession # DEVA- 2493 (amphibians) and DEVA-2453 (reptiles) Trevor B. Persons and Erika M. Nowak Common Chuckwalla in Greenwater Canyon, Death Valley National Park (TBP photo). USGS Southwest Biological Science Center Colorado Plateau Research Station Box 5614, Northern Arizona University Flagstaff, Arizona 86011 May 2006 Death Valley Amphibians and Reptiles_____________________________________________________ ABSTRACT As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002- 2004. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species.
    [Show full text]
  • Reptiles Squamata/Charinidae [ ] Lichanura Trivirgata Rosy Boa
    National Park Service U.S. Department of the Interior Species Checklist for Mojave National Preserve (MOJA) This species list is a work in progress. It represents information currently in the NPSpecies data system and records are continually being added or updated by National Park Service staff. To report an error or make a suggestion, go to https://irma.nps.gov/npspecies/suggest. Scientific Name Common Name Reptiles Squamata/Charinidae [ ] Lichanura trivirgata rosy boa Squamata/Colubridae [ ] Arizona elegans glossy snake [ ] Chionactis occipitalis western shovel-nosed snake [ ] Coluber flagellum coachwhip [ ] Coluber taeniatus striped whipsnake [ ] Diadophis punctatus ring-necked snake [ ] Hypsiglena chlorophaea desert nightsnake [ ] Lampropeltis californiae California kingsnake [ ] Phyllorhynchus decurtatus spotted leaf-nosed snake [ ] Pituophis catenifer gopher snake [ ] Rhinocheilus lecontei long-nosed snake [ ] Salvadora hexalepis western patch-nosed snake [ ] Sonora semiannulata western groundsnake [ ] Tantilla hobartsmithi Smith's black-headed snake [ ] Trimorphodon biscutatus California lyresnake Squamata/Crotaphytidae [ ] Crotaphytus bicinctores Great Basin collared lizard [ ] Gambelia wislizenii long-nosed leopard lizard Squamata/Eublepharidae [ ] Coleonyx variegatus western banded gecko Squamata/Helodermatidae [ ] Heloderma suspectum gila monster Squamata/Iguanidae [ ] Dipsosaurus dorsalis desert iguana [ ] Sauromalus ater common chuckwalla [ ] Sceloporus occidentalis western fence lizard [ ] Sceloporus uniformis yellow-backed
    [Show full text]