An Introduction to the Theory of Reproducing Kernel Hilbert Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kernel and Image
Math 217 Worksheet 1 February: x3.1 Professor Karen E Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. T Definitions: Given a linear transformation V ! W between vector spaces, we have 1. The source or domain of T is V ; 2. The target of T is W ; 3. The image of T is the subset of the target f~y 2 W j ~y = T (~x) for some x 2 Vg: 4. The kernel of T is the subset of the source f~v 2 V such that T (~v) = ~0g. Put differently, the kernel is the pre-image of ~0. Advice to the new mathematicians from an old one: In encountering new definitions and concepts, n m please keep in mind concrete examples you already know|in this case, think about V as R and W as R the first time through. How does the notion of a linear transformation become more concrete in this special case? Think about modeling your future understanding on this case, but be aware that there are other important examples and there are important differences (a linear map is not \a matrix" unless *source and target* are both \coordinate spaces" of column vectors). The goal is to become comfortable with the abstract idea of a vector space which embodies many n features of R but encompasses many other kinds of set-ups. A. For each linear transformation below, determine the source, target, image and kernel. 2 3 x1 3 (a) T : R ! R such that T (4x25) = x1 + x2 + x3. -
Fourier Spectrum Characterizations of Clifford $ H^{P} $ Spaces on $\Mathbf {R}^{N+ 1} + $ for $1\Leq P\Leq\Infty$
p n+1 Fourier Spectrum of Clifford H Spaces on R+ for 1 ≤ p ≤ ∞ Pei Dang, Weixiong Mai,∗ Tao Qian Abstract This article studies the Fourier spectrum characterization of func- p n+1 tions in the Clifford algebra-valued Hardy spaces H (R+ ), 1 ≤ p ≤ ∞. Namely, for f ∈ Lp(Rn), Clifford algebra-valued, f is further the non-tangential boundary limit of some function in p n+1 ˆ ˆ H (R+ ), 1 ≤ p ≤ ∞, if and only if f = χ+f, where χ+(ξ) = 1 ξ 2 (1 + i |ξ| ), the Fourier transformation and the above relation are suitably interpreted (for some cases in the distribution sense). These results further develop the relevant context of Alan McIn- tosh. As a particular case of our results, the vector-valued Clifford Hardy space functions are identical with the conjugate harmonic systems in the work of Stein and Weiss. The latter proved the cor- responding singular integral version of the vector-valued cases for 1 ≤ p < ∞. We also obtain the generalized conjugate harmonic systems for the whole Clifford algebra-valued Hardy spaces rather than only the vector-valued cases in the Stein-Weiss setting. Key words: Hardy space, Monogenic Function, Fourier Spectrum, Riesz Transform, Clifford Algebra, Conjugate Harmonic System arXiv:1711.02610v2 [math.CV] 14 Oct 2019 In memory of Alan McIntosh 1 Introduction The classical Paley-Wiener Theorem asserts that for a L2(R)-function f, scalar-valued, it is further the non-tangential boundary limit (NTBL) of a function in the Hardy H2 space in the upper half plane if and only if the Fourier transform of f, denoted by fˆ, satisfies the ˆ ˆ relation f = χ+f, where χ+ is the characteristic (indicator) function of the set (0, ∞), that This work was supported by the Science and Technology Development Fund, Macao SAR: 0006/2019/A1, 154/2017/A3; NSFC Grant No. -
Math 120 Homework 3 Solutions
Math 120 Homework 3 Solutions Xiaoyu He, with edits by Prof. Church April 21, 2018 [Note from Prof. Church: solutions to starred problems may not include all details or all portions of the question.] 1.3.1* Let σ be the permutation 1 7! 3; 2 7! 4; 3 7! 5; 4 7! 2; 5 7! 1 and let τ be the permutation 1 7! 5; 2 7! 3; 3 7! 2; 4 7! 4; 5 7! 1. Find the cycle decompositions of each of the following permutations: σ; τ; σ2; στ; τσ; τ 2σ. The cycle decompositions are: σ = (135)(24) τ = (15)(23)(4) σ2 = (153)(2)(4) στ = (1)(2534) τσ = (1243)(5) τ 2σ = (135)(24): 1.3.7* Write out the cycle decomposition of each element of order 2 in S4. Elements of order 2 are also called involutions. There are six formed from a single transposition, (12); (13); (14); (23); (24); (34), and three from pairs of transpositions: (12)(34); (13)(24); (14)(23). 3.1.6* Define ' : R× ! {±1g by letting '(x) be x divided by the absolute value of x. Describe the fibers of ' and prove that ' is a homomorphism. The fibers of ' are '−1(1) = (0; 1) = fall positive realsg and '−1(−1) = (−∞; 0) = fall negative realsg. 3.1.7* Define π : R2 ! R by π((x; y)) = x + y. Prove that π is a surjective homomorphism and describe the kernel and fibers of π geometrically. The map π is surjective because e.g. π((x; 0)) = x. The kernel of π is the line y = −x through the origin. -
Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand
Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand To cite this version: Michel Couprie, Gilles Bertrand. Discrete Topological Transformations for Image Processing. Brimkov, Valentin E. and Barneva, Reneta P. Digital Geometry Algorithms, 2, Springer, pp.73-107, 2012, Lecture Notes in Computational Vision and Biomechanics, 978-94-007-4174-4. 10.1007/978-94- 007-4174-4_3. hal-00727377 HAL Id: hal-00727377 https://hal-upec-upem.archives-ouvertes.fr/hal-00727377 Submitted on 3 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 3 Discrete Topological Transformations for Image Processing Michel Couprie and Gilles Bertrand Abstract Topology-based image processing operators usually aim at trans- forming an image while preserving its topological characteristics. This chap- ter reviews some approaches which lead to efficient and exact algorithms for topological transformations in 2D, 3D and grayscale images. Some transfor- mations which modify topology in a controlled manner are also described. Finally, based on the framework of critical kernels, we show how to design a topologically sound parallel thinning algorithm guided by a priority function. 3.1 Introduction Topology-preserving operators, such as homotopic thinning and skeletoniza- tion, are used in many applications of image analysis to transform an object while leaving unchanged its topological characteristics. -
Kernel Methodsmethods Simple Idea of Data Fitting
KernelKernel MethodsMethods Simple Idea of Data Fitting Given ( xi,y i) i=1,…,n xi is of dimension d Find the best linear function w (hyperplane) that fits the data Two scenarios y: real, regression y: {-1,1}, classification Two cases n>d, regression, least square n<d, ridge regression New sample: x, < x,w> : best fit (regression), best decision (classification) 2 Primary and Dual There are two ways to formulate the problem: Primary Dual Both provide deep insight into the problem Primary is more traditional Dual leads to newer techniques in SVM and kernel methods 3 Regression 2 w = arg min ∑(yi − wo − ∑ xij w j ) W i j w = arg min (y − Xw )T (y − Xw ) W d(y − Xw )T (y − Xw ) = 0 dw ⇒ XT (y − Xw ) = 0 w = [w , w ,L, w ]T , ⇒ T T o 1 d X Xw = X y L T x = ,1[ x1, , xd ] , T −1 T ⇒ w = (X X) X y y = [y , y ,L, y ]T ) 1 2 n T −1 T xT y =< x (, X X) X y > 1 xT X = 2 M xT 4 n n×xd Graphical Interpretation ) y = Xw = Hy = X(XT X)−1 XT y = X(XT X)−1 XT y d X= n FICA Income X is a n (sample size) by d (dimension of data) matrix w combines the columns of X to best approximate y Combine features (FICA, income, etc.) to decisions (loan) H projects y onto the space spanned by columns of X Simplify the decisions to fit the features 5 Problem #1 n=d, exact solution n>d, least square, (most likely scenarios) When n < d, there are not enough constraints to determine coefficients w uniquely d X= n W 6 Problem #2 If different attributes are highly correlated (income and FICA) The columns become dependent Coefficients -
Kernel Methods for Knowledge Structures
Kernel Methods for Knowledge Structures Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.) von der Fakultät für Wirtschaftswissenschaften der Universität Karlsruhe (TH) genehmigte DISSERTATION von Dipl.-Inform.-Wirt. Stephan Bloehdorn Tag der mündlichen Prüfung: 10. Juli 2008 Referent: Prof. Dr. Rudi Studer Koreferent: Prof. Dr. Dr. Lars Schmidt-Thieme 2008 Karlsruhe Abstract Kernel methods constitute a new and popular field of research in the area of machine learning. Kernel-based machine learning algorithms abandon the explicit represen- tation of data items in the vector space in which the sought-after patterns are to be detected. Instead, they implicitly mimic the geometry of the feature space by means of the kernel function, a similarity function which maintains a geometric interpreta- tion as the inner product of two vectors. Knowledge structures and ontologies allow to formally model domain knowledge which can constitute valuable complementary information for pattern discovery. For kernel-based machine learning algorithms, a good way to make such prior knowledge about the problem domain available to a machine learning technique is to incorporate it into the kernel function. This thesis studies the design of such kernel functions. First, this thesis provides a theoretical analysis of popular similarity functions for entities in taxonomic knowledge structures in terms of their suitability as kernel func- tions. It shows that, in a general setting, many taxonomic similarity functions can not be guaranteed to yield valid kernel functions and discusses the alternatives. Secondly, the thesis addresses the design of expressive kernel functions for text mining applications. A first group of kernel functions, Semantic Smoothing Kernels (SSKs) retain the Vector Space Models (VSMs) representation of textual data as vec- tors of term weights but employ linguistic background knowledge resources to bias the original inner product in such a way that cross-term similarities adequately con- tribute to the kernel result. -
Anisotropic Hardy Spaces and Wavelets
Anisotropic Hardy Spaces and Wavelets Marcin Bownik Author address: Department of Mathematics, University of Michigan, 525 East Uni- versity Ave., Ann Arbor, MI 48109 E-mail address: [email protected] 1 viii ANISOTROPIC HARDY SPACES AND WAVELETS Abstract In this paper, motivated in part by the role of discrete groups of dilations in wavelet theory, we introduce and investigate the anisotropic Hardy spaces associ- ated with very general discrete groups of dilations. This formulation includes the classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy space theory of Calder´on and Torchinsky. Given a dilation A, that is an n n matrix all of whose eigenvalues λ satisfy λ > 1, define the radial maximal function× | | 0 −k −k Mϕf(x) := sup (f ϕk)(x) , where ϕk(x)= det A ϕ(A x). k∈Z | ∗ | | | Here ϕ is any test function in the Schwartz class with ϕ =0. For 0 <p< we p 6 ∞ introduce the corresponding anisotropic Hardy space HA as a space of tempered 0 p n R distributions f such that Mϕf belongs to L (R ). Anisotropic Hardy spaces enjoy the basic properties of the classical Hardy spaces. For example, it turns out that this definition does not depend on the choice of the test function ϕ as long as ϕ = 0. These spaces can be equivalently introduced in terms of grand, tangential, or6 nontangential maximal functions. We prove the Calder´on-Zygmund decompositionR which enables us to show the atomic p decomposition of HA. As a consequence of atomic decomposition we obtain the p description of the dual to HA in terms of Campanato spaces. -
Abelian Categories
Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists. -
2.2 Kernel and Range of a Linear Transformation
2.2 Kernel and Range of a Linear Transformation Performance Criteria: 2. (c) Determine whether a given vector is in the kernel or range of a linear trans- formation. Describe the kernel and range of a linear transformation. (d) Determine whether a transformation is one-to-one; determine whether a transformation is onto. When working with transformations T : Rm → Rn in Math 341, you found that any linear transformation can be represented by multiplication by a matrix. At some point after that you were introduced to the concepts of the null space and column space of a matrix. In this section we present the analogous ideas for general vector spaces. Definition 2.4: Let V and W be vector spaces, and let T : V → W be a transformation. We will call V the domain of T , and W is the codomain of T . Definition 2.5: Let V and W be vector spaces, and let T : V → W be a linear transformation. • The set of all vectors v ∈ V for which T v = 0 is a subspace of V . It is called the kernel of T , And we will denote it by ker(T ). • The set of all vectors w ∈ W such that w = T v for some v ∈ V is called the range of T . It is a subspace of W , and is denoted ran(T ). It is worth making a few comments about the above: • The kernel and range “belong to” the transformation, not the vector spaces V and W . If we had another linear transformation S : V → W , it would most likely have a different kernel and range. -
23. Kernel, Rank, Range
23. Kernel, Rank, Range We now study linear transformations in more detail. First, we establish some important vocabulary. The range of a linear transformation f : V ! W is the set of vectors the linear transformation maps to. This set is also often called the image of f, written ran(f) = Im(f) = L(V ) = fL(v)jv 2 V g ⊂ W: The domain of a linear transformation is often called the pre-image of f. We can also talk about the pre-image of any subset of vectors U 2 W : L−1(U) = fv 2 V jL(v) 2 Ug ⊂ V: A linear transformation f is one-to-one if for any x 6= y 2 V , f(x) 6= f(y). In other words, different vector in V always map to different vectors in W . One-to-one transformations are also known as injective transformations. Notice that injectivity is a condition on the pre-image of f. A linear transformation f is onto if for every w 2 W , there exists an x 2 V such that f(x) = w. In other words, every vector in W is the image of some vector in V . An onto transformation is also known as an surjective transformation. Notice that surjectivity is a condition on the image of f. 1 Suppose L : V ! W is not injective. Then we can find v1 6= v2 such that Lv1 = Lv2. Then v1 − v2 6= 0, but L(v1 − v2) = 0: Definition Let L : V ! W be a linear transformation. The set of all vectors v such that Lv = 0W is called the kernel of L: ker L = fv 2 V jLv = 0g: 1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets. -
Additive Invariants on the Hardy Space Over the Polydisc
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Functional Analysis 253 (2007) 359–372 www.elsevier.com/locate/jfa Additive invariants on the Hardy space over the polydisc Xiang Fang 1 Department of Mathematics, Kansas State University, Manhattan, KS 64502, USA Received 21 March 2007; accepted 29 August 2007 Available online 10 October 2007 Communicated by G. Pisier Abstract In recent years various advances have been made with respect to the Nevanlinna–Pick kernels, especially on the symmetric Fock space, while the development on the Hardy space over the polydisc is relatively slow. In this paper, several results known on the symmetric Fock space are proved for the Hardy space over the polydisc. The known proofs on the symmetric Fock space make essential use of the Nevanlinna–Pick properties. Specifically, we study several integer-valued numerical invariants which are defined on an arbitrary in- variant subspace of the vector-valued Hardy spaces over the polydisc. These invariants include the Samuel multiplicity, curvature, fiber dimension, and a few others. A tool used to overcome the difficulty associated with non-Nevanlinna–Pick kernels is Tauberian theory. Published by Elsevier Inc. Keywords: Hardy space, polydisc; Samuel multiplicity; Curvature; Fiber dimension; Defect operator 0. Introduction and the main results The purpose of this paper is to prove several theorems on the Hardy space H 2(Dn) over the polydisc, whose symmetric Fock space versions are known, but the proofs rely on the properties of Nevanlinna–Pick kernels. In particular, our results allow one to formulate a theory of curvature invariant on H 2(Dn) in parallel to that on the symmetric Fock space [4]. -
Positive Semigroups of Kernel Operators
Positivity 12 (2008), 25–44 c 2007 Birkh¨auser Verlag Basel/Switzerland ! 1385-1292/010025-20, published online October 29, 2007 DOI 10.1007/s11117-007-2137-z Positivity Positive Semigroups of Kernel Operators Wolfgang Arendt Dedicated to the memory of H.H. Schaefer Abstract. Extending results of Davies and of Keicher on !p we show that the peripheral point spectrum of the generator of a positive bounded C0-semigroup of kernel operators on Lp is reduced to 0. It is shown that this implies con- vergence to an equilibrium if the semigroup is also irreducible and the fixed space non-trivial. The results are applied to elliptic operators. Mathematics Subject Classification (2000). 47D06, 47B33, 35K05. Keywords. Positive semigroups, Kernel operators, asymptotic behaviour, trivial peripheral spectrum. 0. Introduction Irreducibility is a fundamental notion in Perron-Frobenius Theory. It had been introduced in a direct way by Perron and Frobenius for matrices, but it was H. H. Schaefer who gave the definition via closed ideals. This turned out to be most fruit- ful and led to a wealth of deep and important results. For applications Ouhabaz’ very simple criterion for irreduciblity of semigroups defined by forms (see [Ouh05, Sec. 4.2] or [Are06]) is most useful. It shows that for practically all boundary con- ditions, a second order differential operator in divergence form generates a positive 2 N irreducible C0-semigroup on L (Ω) where Ωis an open, connected subset of R . The main question in Perron-Frobenius Theory, is to determine the asymp- totic behaviour of the semigroup. If the semigroup is bounded (in fact Abel bounded suffices), and if the fixed space is non-zero, then irreducibility is equiv- alent to convergence of the Ces`aro means to a strictly positive rank-one opera- tor, i.e.