Mercury Exploration: Looking to the Future

Total Page:16

File Type:pdf, Size:1020Kb

Mercury Exploration: Looking to the Future 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1105.pdf MERCURY EXPLORATION: LOOKING TO THE FUTURE. K. E. Vander Kaaden1, D. T. Blewett2, P. K. Byrne3, N. L. Chabot2, C. M. Ernst2, S. A. Hauck, II4, F. M. McCubbin5, E. Mazarico6. 1Jacobs, NASA Johnson Space Center, Mail Code XI3, Houston, TX 77058, 2The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, 3Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 4Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH, 5ARES NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, 6NASA Goddard Space Flight Center, Greenbelt, MD. Corresponding Author E-mail: [email protected]. Past Exploration of Mercury: Prior to the return of Future Exploration of Mercury: Despite the data from the NASA MErcury Surface, Space influx of data from the Mariner 10 and MESSENGER ENvironment, GEochemistry, and Ranging spacecraft and the much-anticipated data that will be (MESSENGER) spacecraft [1], information relating to collected by BepiColombo, there is a limit to their Mercury was limited. From the NASA Mariner 10 scientific return. While orbiters could still provide finer flybys, in 1974 and 1975, ~45% of the planet was valuable context, they cannot directly sample surface imaged, its magnetic field was detected, H, He, and O materials, nor probe the interior as a landed mission can. in the exosphere were measured, and other physical Furthermore, an orbiter cannot retrieve a sample to be characteristics of the planet were determined [e.g., 2]. sent to Earth for laboratory-based analyses. Currently, Despite these data, much information about Mercury there is no Mercury mission in the planning stages to still had to be inferred. It was over 30 years before follow BepiColombo. Here, we advocate for the future MESSENGER provided the first in-depth study of the exploration of Mercury through landed science and innermost planet. Orbiting Mercury from 2011 to 2015, sample retrieval. the MESSENGER spacecraft was able to image the Landed Science. There are several major aspects of entirety of the planet and thus provide the first global Mercury’s character and evolution where substantial view of Mercury. Coupling multispectral images with knowledge gaps exist but where our current data from MESSENGER geochemical instruments, we understanding would be dramatically improved with have developed a better understanding of the data acquired from the planet’s surface via landed geochemical terranes on the planet and the unique instruments. Specifically, our view of the planet’s nature of Mercury’s composition compared to the other geochemical makeup, its interior structure, geological terrestrial planets [e.g., 3]. MESSENGER also provided evolution, and present-day processes at work there, as data that have led to great advancements in well as the planet’s polar volatile inventory, would be understanding the internal structure, exosphere, and substantially advanced by landed measurements [6]. In magnetosphere of Mercury [e.g., 4]. The treasure trove situ compositional and petrological observations would of MESSENGER data reveal Mercury as a geochemical improve our knowledge of the nature, origin, and end-member among the terrestrial planets. However, we abundance of Mercury’s low-reflectance material, the are left with many questions that can only be answered mineralogy of the planet’s varied surface materials, and with further exploration. the composition of diffuse deposits interpreted to be Present Exploration of Mercury: Launched on pyroclastic in nature. A seismometer, heat-flow probe, October 20, 2018, the joint ESA/JAXA dual-orbiter and magnetometer on a lander would robustly BepiColombo mission is due to arrive at Mercury in characterize the interior structure of the planet, the December 2025 [5]. The Mercury Planetary Orbiter is present-day level of seismicity, pertinent heat flow set to study the surface and the internal composition of related to the core dynamo, and the electrical and the planet. The other orbiter, Mio, will study Mercury’s thermal conductivity structure of the crust and mantle. magnetosphere. Combined, these two spacecraft will In situ geochronological measurements of the surface provide insight into the origin and evolution of Mercury, materials and investigations of the remnant by conducting a global characterization of the planet magnetization would provide additional information and investigating its interior, surface, exosphere and regarding the age of materials on Mercury’s surface, magnetosphere [5]. BepiColombo will build upon the surface geological processes and evolution, and the legacy of MESSENGER by advancing our history of interior melt production and dynamo understanding of the planet's magnetic field, volcanic generation, as well as crucial calibration of impact flux activity, permanently shadowed craters, the planet's in the inner Solar System. Furthermore, in situ imaging global contraction, unique surface features like hollows, of the surface would return key data on the regolith the origin of the carbon component of the planet's crust, properties such as grain size, shape, and mechanical its dynamic magnetosphere, and the evolution of its strength. In addition, a lander on the surface of Mercury exosphere. would have the unique opportunity to provide in situ 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1105.pdf measurements to understand the origin and composition answer key scientific questions including: What is the of the volatile compounds within Mercury’s polar composition of Mercury’s oldest crust? How does this deposits, the purity of the ice in these deposits, as well material compare with the other terrestrial planets? How as the physical and mechanical properties of the old is the crust of Mercury? What were the conditions volatiles, such as volume, grain size, strength, thickness, during Mercury’s core formation? What are the and evidence for layering. dominant volatile species associated with pyroclastic eruptions and polar deposits? What are the major, trace, and rare earth element compositions of these various deposits? What is the mineralogy and petrology associated with pyroclastic, polar ice, and LRM deposits? What are the radiometric ages of these deposits? How pure is the ice in these deposits? Challenges. Despite strong scientific promise, the landed exploration of Mercury and the delivery to Earth of a sample of the planet for laboratory analyses would be a substantial undertaking. One of the main concerns, and perhaps the greatest challenge, is the large amount Figure 1. Enhanced color image of Rachmaninoff of launch energy and ∆V required for both reaching Basin (dark blue, center) obtained by the Mercury and landing on its surface [7]. Furthermore, the MESSENGER Mercury Dual Imaging System. thermal environment that a lander must endure will need Sample Retrieval. Although the data from remote- to be carefully considered. The large fluctuation in sensing and in-situ analysis missions provide a wealth temperature on Mercury is challenging for the longevity of knowledge regarding the physical and chemical of the instruments. Regardless, the sending of any characteristics of a planetary body, there are critical landed mission to Mercury must include consideration science questions that can only be fully addressed via of the diversity of materials present on the surface. examination of a sample in Earth-based laboratories, Similarly, the size of any retrieved sample should be where sustained, highly sensitive analytical sufficiently large that some of the materials can be measurements are possible. The exact mineralogy of a preserved for future analysis when technology has far Mercury sample could be fully characterized, yielding exceeded our current abilities. insight into trace element abundances, isotopic ratios, Conclusion: To ensure the continued exploration of mineralogy, and petrology at microscopic levels. The the Sun’s closest planetary neighbor, development of presence or absence of key mineral phases (e.g., Si- mission concepts need to begin now. The planned metal and graphite) would directly test published hypotheses for the history of Mercury and lend insight seven-year cruise of the BepiColombo mission, into the early evolution of the planet. Additionally, comparable to some outer Solar System missions, radiometric dating of a sample would place reflects the difficulty in reaching the innermost planet, unprecedented constraints not only on the various hence time is of the essence. Landed instruments and geologic features across the surface of the planet but on sample retrieval from Mercury would lead to the inner Solar System impact flux itself. Further, transformative Solar System science that places new Mercury has been likened to some exoplanets in terms and vital constraints on the building blocks and of the highly reducing conditions under which it formed. thermochemical evolution of Mercury and the other Therefore, examination of a sample from Mercury terrestrial planets. Any delay in the planning and would lend insight into the formation and evolution of execution of missions to follow BepiColombo will be a small, iron-rich rocky planets in general. Lastly, as detriment to our exploration and understanding of demonstrated by ongoing analysis of Apollo lunar enigmatic Mercury. samples, a sample from Mercury
Recommended publications
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering
    The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering Laurel Mossman, Kate Schein, and Amelia Peoples Senior Division Group Documentary Word Count: 499 Our group chose the topic, Donna Shirley and her Mars rover, because of our connections and our interest level in not only science but strong, determined women. One of our group member’s mothers worked for a man under Ms. Shirley when she was developing the Mars rover. This provided us with a connection to Ms. Shirley, which then gave us the amazing opportunity to interview her. In addition, our group is interested in the philosophy of equality and we have continuously created documentaries that revolve around this idea. Every member of our group is a female, so we understand the struggles and discrimination that women face in an everyday setting and wanted to share the story of a female that faced these struggles but overcame them. Thus after conducting a great amount of research, we fell in love with Donna Shirley’s story. Lastly, it was an added benefit that Ms. Shirley is from Oklahoma, making her story important to our state. All of these components made this topic extremely appealing to us. We conducted our research using online articles, Donna Shirley’s autobiography, “Managing Martians”, news coverage from the launch day, and our interview with Donna ​ ​ Shirley. We started our research process by reading Shirley’s autobiography. This gave us insight into her college life, her time working at the Jet Propulsion Laboratory, and what it was like being in charge of such a barrier-breaking mission.
    [Show full text]
  • Kevin Gill ‘11G
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 14, NUMBER 1, FALL 2018 EXPLORING THE UNIVERSE: Meet Kevin Gill ‘11G Michelle Marrone (From Rivier Today, Fall 2018) From the comfort of his lab chair in sunny, southern California, Kevin Gill ’11G has a view into outer space. As a Science Data Software Engineer at NASA’s Jet Propulsion Laboratory (JPL), he spends his time planning and designing technology in support of environmental science and space exploration, as well as data visualization and planetary imaging. His recent work not only produced the first-ever close views of Saturn, but also contributed to NASA’s team winning an Emmy Award. Kevin earned his M.S. in Computer Science at Rivier and has been designing software to render the unique images he gathers ever since. He used an algorithm he developed during his program at Rivier to generate hypothetical images portraying Mars as a vibrant planet with oceans, an oxygen-rich atmosphere, and a green biosphere. The images went viral and within a week his work was featured on major media networks—Discovery News, Fox News, Universe Today, and the Huffington Post. His work captured NASA’s attention and paved the way for his career move. “Rivier taught me many of the algorithms and development practices I still use today at NASA,” says Kevin. “In fact, I can trace the lineage of code currently running on NASA systems directly to my final master’s project at the University.” The systems and tools he develops support a range of scientists specializing in the areas of climate, oceanography, asteroids, planetary science, and others.
    [Show full text]
  • Laser Retroreflectors for Insight and an International Mars Geophysical Network (MGN)
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1492.pdf Laser Retroreflectors for InSight and an International Mars Geophysical Network (MGN). S. Dell’Agnello1, G.O. Delle Monache1, L. Porcelli1,2, M. Tibuzzi1, L. Salvatori1, C. Mondaini1, M. Muccino1, L. Ioppi1, O. Luongo1, M. Petrassi1, G. Bianco1,3, R. Vittori1,4, W.B. Banerdt5, J.F. Grinblat5, C. Benedetto3, F. Pasquali3, R. Mugnuolo3, D.C. Gruel5, J.L.Vago6 and P. Baglioni6. 1Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Frascati (INFN–LNF), Via E. Fermi 40, 00044, Frascati, Italy ([email protected]); 2Dipartimento di Fisica, Università della Calabria (UniCal), Via P. Bucci, 87036, Arcavacata di Rende, Italy; 3Agenzia Spaziale Italiana– Centro di Geodesia Spaziale “Giuseppe Colombo” (ASI–CGS), Località, Terlecchia 75100, Matera, Italy; 4Italian Air Force, Rome, Italy, ASI and Embassy of Italy in Washington DC; 5NASA–Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA 91109, USA; 6ESA–ESTEC, Noordwijk, The Netherlands. Abstract. There are laser retroreflectors on the Moon, of the INFN-ASI Affiliation-Association to NASA- but there were no laser retroreflectors on Mars until the SSERVI sservi.nasa.gov) is shown in the figure below. NASA InSight mission [1][2] landed and started oper- ating successfully on the surface of the red planet on Nov. 26, 2018. The ESA ExoMars Schiaparelli mis- sion, which unfortunately failed Mars landing in 2016, was carrying a laser retroreflector like InSight [3]. These instruments are positioned by measuring the time-of-flight of short laser pulses, the so-called “laser ranging” technique (for details on satellite/lunar laser ranging and altimetry see https://ilrs.gsfc.nasa.gov).
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • The New Horizons Spacecraft
    The New Horizons Spacecraft Glen H. Fountaina , David Y. Kusnierkiewicz a, Christopher B. Hersmana , Timothy S. Herdera , Thomas B. Coughlin a, William C. Gibsonb , Deborah A. Clancya , Christopher C. DeBoya , T. Adrian Hilla , James D. Kinnisona , Douglas S. Mehoke a, Geffrey K. Ottmana , Gabe D. Rogers a, S. Alan Sternc , James M. Strattona , Steven R. Vernona , Stephen P. Williams a aThe Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723 bSouth west Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, cSouth west Research Institute, 1050 Walnut St., Suite 400, Boulder, CO 80302 Abstract. The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO­OSS­01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one­way light time during the Pluto fly­by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power.
    [Show full text]
  • 1 the New Horizons Spacecraft Glen H. Fountain, David Y
    The New Horizons Spacecraft Glen H. Fountain, David Y. Kusnierkiewicz, Christopher B. Hersman, Timothy S. Herder, Thomas B Coughlin, William T. Gibson, Deborah A. Clancy, Christopher C. DeBoy, T. Adrian Hill, James D. Kinnison, Douglas S. Mehoke, Geffrey K. Ottman, Gabe D. Rogers, S. Alan Stern, James M. Stratton, Steven R. Vernon, Stephen P. Williams Abstract The New Horizons spacecraft was launched on January 19, 2006. The spacecraft was designed to provide a platform for the seven instruments designated by the science team to collect and return data from Pluto in 2015 that would meet the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other NASA missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a Radioisotope Thermoelectric Generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W.
    [Show full text]
  • MSL Relay Coordination and Tactical Planning in the Era of Insight, MAVEN, and TGO
    MSL Relay Coordination and Tactical Planning in the Era of InSight, MAVEN, and TGO Rachael Collins, Pegah Pashai, Emma Young, Chris Bennett, Sharon Laubach, Steven Thomas NASA Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 ipe [email protected] Abstract—This study examines an approach for optimizing the TABLE OF CONTENTS scheduling of regular relay communications between the Mars Science Laboratory (MSL) rover and the non-sun-synchronous 1. INTRODUCTION ......................................1 Mars orbiters MAVEN and TGO as well as the impacts of 2. BACKGROUND .......................................2 the approaching InSight landing on MSL relay and tactical planning. Rover operations require knowledge of recently ex- 3. CHALLENGES WITH THE INTRODUCTION OF IN- ecuted activities, termed decisional data, in order to inform SIGHT,MAVEN,&TGO ..........................3 tactical activity planning. As a result, timely and routine data 4. PROCESS AND TOOL IMPLEMENTATION ............5 return is critical for nominal rover operations. Mars orbiters are used as relay assets to achieve such timeliness. They also 5. PLANNING TIMELINE IMPACTS ................... 10 provide greater overall rover data throughput considering their 6. CONCLUSIONS ..................................... 11 larger data transfer capacity between Mars and Earth. Relay opportunities and their performance are thus tightly coupled to APPENDIX ............................................ 11 MSL’s operations efficiency and science return. ACKNOWLEDGMENTS ................................ 11 With InSight landing only 600 kilometers away and at the same REFERENCES ......................................... 12 longitude as MSL, orbiter view periods will be shared between the missions, resulting in fewer relay opportunities for MSL. The introduction of MAVEN and TGO as relay assets helps to 1. INTRODUCTION alleviate this, but the orbit geometries of these spacecraft in- troduce their own challenges.
    [Show full text]
  • Insight Spacecraft Launch for Mission to Interior of Mars
    InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November 26, 2018. It will allow us to better understand the origin of Mars. First Launch of Project Orion Project Orion took its first unmanned mission Exploration flight Test-1 (EFT-1) on December 5, 2014. It made two orbits in four hours before splashing down in the Pacific. The flight tested many subsystems, including its heat shield, electronics and parachutes. Orion will play an important role in NASA's journey to Mars. Orion will eventually carry astronauts to an asteroid and to Mars on the Space Launch System. Mars Rover Curiosity Lands After a nine month trip, Curiosity landed on August 6, 2012. The rover carries the biggest, most advanced suite of instruments for scientific studies ever sent to the martian surface. Curiosity analyzes samples scooped from the soil and drilled from rocks to record of the planet's climate and geology. Mars Reconnaissance Orbiter Begins Mission at Mars NASA's Mars Reconnaissance Orbiter launched from Cape Canaveral August 12. 2005, to find evidence that water persisted on the surface of Mars. The instruments zoom in for photography of the Martian surface, analyze minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere, and monitor daily global weather. Spirit and Opportunity Land on Mars January 2004, NASA landed two Mars Exploration Rovers, Spirit and Opportunity, on opposite sides of Mars.
    [Show full text]
  • 2020 Mars Base Camp Youth Guide
    YOUTH GUIDE Getting Started Welcome to your Mars Base Camp expedition! This will be an exciting opportunity for you to explore STEM through an expedition to Mars! Each activity in Mars Base Camp is named for a different mission to Mars as a way to celebrate and explore all that we have learned about the red planet. In this guide we will explore each of the 2020 4-H STEM Challenge activities: • Landing Zone Surveyor • Red Planet Odyssey • Crop Curiosity! • Insight from Mars Here is what you will find in your youth guide: • Quick Guide Activity Sheet for each of the four activities • Fact sheets and extra information that will help you complete your mission • Career connections • Notes page to take notes and write down ideas 2 4-H STEM CHALLENGE Quick Guide for Landing Zone Surveyor In this activity, you'll simulate the experience of arriving at Mars to conduct scientific exploration. Follow the instructions on this page to determine where you land on Mars, or whether you enter into orbit instead. Once you and your teammates know what parts of Mars you'll be exploring, use the Mars Scientist's Notebook on the next page to make observations. Orbit or Entry, Launch, Cruise and Descent Approach Phase and Landing Phase . 1. Lay the Mars map out on the floor and then designate a • Option One: If you went into orbit launch spot 3-5 feet away from the map. Mark the spot (A1, A4, D1 or D4), take the so you remember. Landing Site Card that corre- 2.
    [Show full text]
  • Imaging the Surface of Mercury Using Ground-Based Telescopes
    Planetary and Space Science 49 (2001) 1501–1505 www.elsevier.com/locate/planspasci Imaging the surface of Mercury using ground-based telescopes Michael Mendilloa; ∗, Johan Warellb, Sanjay S. Limayec, Je+rey Baumgardnera, Ann Spragued, Jody K. Wilsona aCenter for Space Physics, Boston University, 725 Commonwealth Avenue Boston, MA 02215, USA bAstronomiska Observatoriet, Uppsala Universitet, SE-751 20 Uppsala, Sweden cSpace Science and Engineering Center, University of Wisconsin, Madison, WI 53706, USA dLunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 26 October 2000; received in revised form 12 March2001; accepted 4 May 2001 Abstract We describe and compare two methods of short-exposure, high-deÿnition ground-based imaging of the planet Mercury. Two teams have recorded images of Mercury on di+erent dates, from di+erent locations, and withdi+erent observational and data reduction techniques. Both groups have achieved spatial resolutions of ¡ 250 km, and the same albedo features and contrast levels appear where the two datasets overlap (longitudes 270–360◦). Dark albedo regions appear as mare and correlate well withsmoothterrain radar signatures. Bright albedo features agree optically, but less well withradar data. Suchconÿrmations of state-of-the-artoptical techniquesintroduce a new era of ground-based exploration of Mercury’s surface and its atmosphere. They o+er opportunities for synergistic, cooperative observations before and during the upcoming Messenger and BepiColombo missions to Mercury. c 2001 Elsevier Science Ltd. All rights reserved. 1. Introduction maximum separation (elongation) to the west and east of the rising or setting Sun, respectively. Under suchconditions, In this paper, we compare the ÿrst results from two new Mercury can be separated from the Sun by up to 28◦.
    [Show full text]
  • First Look at Mercury
    PLANETARY SCIENCE Mariner 10 was launched to Mercury by way of Venus on November 3, 1973. It was not the first probe to visit Venus. Both the United States and the Soviet Union previously have sent probes to that mysterious, cloud-shrouded planet. However, Mariner 10 was the first to photographically explore the close-up appearance of the planet, and did so both in visibIe and in ultraviolet light. And Mariner 10 was the first probe of any kind to penetrate interplanetary space beyond the orbit of Venus and to achieve a close look at the planet Mercury. First Look Why go to Mercury? Who needs it? There basically are two kinds of reasons. The first is simple and profound and at Mercury difficult to quantify: The very act of exploration is a positive, cultural activity. No one knows what is going to be found. Finding out what Mercury, what Mars, or BRUCE C. MURRAY what the moon is really like, enlarges the consciousness of all the people who partake of that new reality. TV pictures are of special importance because they provide a way both for the scientist to discover features and concepts he could not have imagined and for the public to directly appreciate and participate in the exploration of a new world. Why go to Mercury? Who needs it? But there are more specific scientific objectives as well. For Mercury, the basic-and anomalous-scientific fact is A planetary scientist that it is a very dense planet: It contains a great amount of tells what the voyage mass for its size.
    [Show full text]