Imitation, Empathy, and Mirror Neurons

Total Page:16

File Type:pdf, Size:1020Kb

Imitation, Empathy, and Mirror Neurons ANRV364-PS60-25 ARI 24 November 2008 18:59 Imitation, Empathy, and Mirror Neurons Marco Iacoboni Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Social Behavior, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095; email: [email protected] Annu. Rev. Psychol. 2009. 60:653–70 Key Words First published online as a Review in Advance on social cognition, theory of mind, mirror neuron system, embodiment September 15, 2008 The Annual Review of Psychology is online at Abstract psych.annualreviews.org There is a convergence between cognitive models of imitation, con- This article’s doi: structs derived from social psychology studies on mimicry and empa- by HARVARD UNIVERSITY on 03/06/09. For personal use only. 10.1146/annurev.psych.60.110707.163604 thy, and recent empirical findings from the neurosciences. The ideomo- Copyright c 2009 by Annual Reviews. tor framework of human actions assumes a common representational All rights reserved format for action and perception that facilitates imitation. Further- Annu. Rev. Psychol. 2009.60:653-670. Downloaded from arjournals.annualreviews.org 0066-4308/09/0110-0653$20.00 more, the associative sequence learning model of imitation proposes that experience-based Hebbian learning forms links between sensory processing of the actions of others and motor plans. Social psychol- ogy studies have demonstrated that imitation and mimicry are per- vasive, automatic, and facilitate empathy. Neuroscience investigations have demonstrated physiological mechanisms of mirroring at single-cell and neural-system levels that support the cognitive and social psychol- ogy constructs. Why were these neural mechanisms selected, and what is their adaptive advantage? Neural mirroring solves the “problem of other minds” (how we can access and understand the minds of others) and makes intersubjectivity possible, thus facilitating social behavior. 653 ANRV364-PS60-25 ARI 24 November 2008 18:59 Among cognitive models of imitation, the Contents ideomotor model and the associative sequence learning model seem to map well onto neu- INTRODUCTION .................. 654 rophysiological mechanisms of imitation. The COGNITIVE MECHANISMS ideomotor model assumes a common rep- OF IMITATION .................. 654 resentational format for action and percep- The Ideomotor Framework tion, whereas the associative sequence learning of Imitation..................... 654 model puts at center stage Hebbian learning as Associative Sequence Learning ..... 656 a fundamental mechanism linking sensory rep- IMITATION AND EMPATHY resentations of the actions of others to motor IN SOCIAL BEHAVIOR .......... 657 plans. Furthermore, social psychology studies Pervasiveness and Automaticity have documented the automaticity of imitation of Human Imitation............. 657 and mimicry in humans, a feature that also maps NEURAL MECHANISMS well onto some recently disclosed neurophysi- OF IMITATION .................. 659 ological bases of imitation. Neural Precursors This review discusses cognitive models, so- in Nonhuman Primates ......... 659 cial psychology constructs, and neural mech- Macaque Mirror Neurons anisms of imitation under the hypothesis that and Imitation in Monkeys ....... 662 these mechanisms were selected because they Human Brain Mechanisms offer the adaptive advantage of enabling the un- of Mirroring .................... 663 derstanding of the feelings and mental states of Neural Mirroring and Psychological others, a cornerstone of social behavior. Theories of Imitation ........... 665 WHY NEURAL MIRRORING AND IMITATION? ............... 666 COGNITIVE MECHANISMS OF IMITATION The Ideomotor Framework INTRODUCTION of Imitation Although mimicry is a pervasive phenomenon Theories of action can be divided into two in the animal kingdom, imitation certainly main frameworks. The most dominant frame- achieves its highest form in humans. Past work may be called the sensory-motor frame- authors—for instance, de Montaigne (1575), work of action. It assumes that actions are ini- by HARVARD UNIVERSITY on 03/06/09. For personal use only. Adam Smith (1759), Poe (1982), Nietzsche tiated in response to external stimuli. In this (1881), and Wittgenstein (1980)—have often framework, perception and action have inde- associated imitation with the ability to em- pendent representational formats. Stimuli must Annu. Rev. Psychol. 2009.60:653-670. Downloaded from arjournals.annualreviews.org pathize and understand other minds. The evo- be translated into motor responses by stimulus- lutionary, functional, and neural mechanisms response mapping mechanisms. This frame- linking imitation to empathy, however, have work has generated a large literature and el- been unclear for many years. Recently, there has egant experimental paradigms, as for instance Hebbian learning: been a convergence between cognitive mod- the work on stimulus-response compatibility associative learning is els of imitation, social psychology accounts of (Hommel & Prinz 1997, Proctor & Reeve implemented by simultaneous its pervasiveness and its functional links with 1990). Stimulus-response translational mecha- activation of cells that empathy and liking, and the neuroscience dis- nisms, however, do not easily account for the would lead to coveries of neural mechanisms of imitation similarity between the observed action and the increased synaptic and empathy. This convergence creates a solid action performed by the imitator that is re- strength between the framework in which theory and empirical data quired by imitation. Indeed, one of the main cells reinforce each other. problems of imitation often discussed in the 654 Iacoboni ANRV364-PS60-25 ARI 24 November 2008 18:59 literature inspired by sensory-motor models tor plan to lift the same finger. Brass and col- is the so-called correspondence problem (Ne- leagues tested this hypothesis in elegantly sim- haniv & Dautenhahn 2002). This problem ple experiments (Brass et al. 2000, 2001). Sub- can be summarized with the question: how is jects were shown two movements of the index the sensory input from somebody else’s action finger from the same starting position. In half transformed into a matching motor output by of the trials the finger would move upward, the imitator? and in the other half it would move downward. For the ideomotor framework of action, the Subjects were instructed to respond as fast as correspondence problem of imitation is not a possible using their own index finger. Within problem at all. Indeed, the ideomotor frame- each block of trials, subjects were instructed to work assumes a common representational for- use always the same motor response, either an mat for perception and action, an assump- upward or a downward movement. Thus, al- tion that makes translational processes between though perceptually subjects were seeing both stimuli and responses rather unnecessary. The upward and downward movements, motorically roots of the ideomotor framework were estab- they were only executing one of the two move- lished by the work of Hermann Martin Lotze ments. Given that response selection was not (Prinz 2005) and William James (1890). The required, the identity of the stimulus was com- starting point of actions, for Lotze and James, pletely irrelevant for the initiation of the motor is not a response to a sensory stimulation, but response. Here, the sensory-motor framework rather the representation of the goal that the would predict similar reaction times for re- agent intends to achieve. When an intention sponses that were identical to the stimulus (e.g., is unchallenged by a conflicting one, it acti- upward motor response for a stimulus showing vates the representation of the intended goal an upward finger movement) and for responses and the motor plan necessary to achieve it. The that were different from the stimulus (e.g., up- coactivation of the intended goal and the mo- ward motor response for a stimulus showing a tor plan required to achieve it—according to downward finger movement). In contrast, the the ideomotor framework—is the result of our ideomotor framework would predict faster re- experience. We have learned the effects of our action times for motor responses identical to own actions, and we expect certain effects when the stimulus compared to motor responses dif- we perform certain acts. This previous learning ferent from the stimulus. The results demon- makes it possible that just thinking about the strated a large chronometric advantage for re- intended goal automatically activates the rep- sponses identical to the stimuli, in line with the resentation of the action necessary to obtain it. predictions of the ideomotor framework (Brass by HARVARD UNIVERSITY on 03/06/09. For personal use only. Thus, when I think about rebooting my com- et al. 2000, 2001). puter, I automatically activate the representa- The ideomotor framework also predicts that tion of the finger movement necessary to press goals have higher priority than movements in Annu. Rev. Psychol. 2009.60:653-670. Downloaded from arjournals.annualreviews.org the appropriate key. imitation. Imitation experiments in children The ideomotor framework naturally ac- have confirmed this prediction. In one of these counts for imitation. According to this frame- experiments (Bekkering et al. 2000), children work, when I see somebody else’s actions and and experimenters were sitting on the opposite their consequences, I activate the representa- sides
Recommended publications
  • Mirror Neuron System and Social Cognition Spring Quarter 2017 Tuth 11:00 - 12:20 Pm CSB 005
    Department of Cognitive Science 0515 University of California, San Diego (858) 534-6771 La Jolla, CA 92093 COGS171: Mirror Neuron System and Social Cognition Spring Quarter 2017 TuTH 11:00 - 12:20 pm CSB 005 Instructor: J. A. Pineda, Ph.D. TA: TBN [email protected] Phone: 858-534-9754 SeCtion: F 9-9:50 am CSB 005 OffiCe Hours: M 9-11 am, CSB 107 (or by appointment) This class will examine the neuroanatomy, physiology, and funCtional Correlates of the human mirror neuron system and its putative role in soCial Cognition, e.g., aCtion understanding, empathy, and theory of mind. We will examine the developmental, neuroimaging, electrophysiologiCal, as well as clinical evidence for and against this hypothesis. All students will: 1. Write a CritiCal review or “thought” essay (no longer than 1 page) on the weeks labeled with an asterisk (Weeks 2,3,4,6,8,10) based on one of the required readings that week. See Class website (or ask instruCtor) for a sample of a CritiCal review. Essays are due on Tuesday of the assigned week - for a total of 6 essays, although only 5 will count towards grade (25%). 2. You will also be responsible for: • a term paper due at end of class (8-10 pages) on an issue relevant to mirroring and social cognition. You will work on this as a group of 3-4 students. See Class website for instruCtions on structure of proposal. (15%) • an oral presentation of the term paper (10-15 minutes). (10%) 3. Take the midterm (25%) and final (25%).
    [Show full text]
  • The Mirror Neuron System: How Cognitive Functions Emerge from Motor Organization Leonardo Fogassi
    The mirror neuron system: How cognitive functions emerge from motor organization Leonardo Fogassi To cite this version: Leonardo Fogassi. The mirror neuron system: How cognitive functions emerge from motor or- ganization. Journal of Economic Behavior and Organization, Elsevier, 2010, 77 (1), pp.66. 10.1016/j.jebo.2010.04.009. hal-00921186 HAL Id: hal-00921186 https://hal.archives-ouvertes.fr/hal-00921186 Submitted on 20 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: The mirror neuron system: How cognitive functions emerge from motor organization Author: Leonardo Fogassi PII: S0167-2681(10)00177-0 DOI: doi:10.1016/j.jebo.2010.04.009 Reference: JEBO 2604 To appear in: Journal of Economic Behavior & Organization Received date: 26-7-2009 Revised date: 19-4-2010 Accepted date: 20-4-2010 Please cite this article as: Fogassi, L., The mirror neuron system: How cognitive functions emerge from motor organization, Journal of Economic Behavior and Organization (2010), doi:10.1016/j.jebo.2010.04.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript.
    [Show full text]
  • Empathy, Mirror Neurons and SYNC
    Mind Soc (2016) 15:1–25 DOI 10.1007/s11299-014-0160-x Empathy, mirror neurons and SYNC Ryszard Praszkier Received: 5 March 2014 / Accepted: 25 November 2014 / Published online: 14 December 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract This article explains how people synchronize their thoughts through empathetic relationships and points out the elementary neuronal mechanisms orchestrating this process. The many dimensions of empathy are discussed, as is the manner by which empathy affects health and disorders. A case study of teaching children empathy, with positive results, is presented. Mirror neurons, the recently discovered mechanism underlying empathy, are characterized, followed by a theory of brain-to-brain coupling. This neuro-tuning, seen as a kind of synchronization (SYNC) between brains and between individuals, takes various forms, including frequency aspects of language use and the understanding that develops regardless of the difference in spoken tongues. Going beyond individual- to-individual empathy and SYNC, the article explores the phenomenon of syn- chronization in groups and points out how synchronization increases group cooperation and performance. Keywords Empathy Á Mirror neurons Á Synchronization Á Social SYNC Á Embodied simulation Á Neuro-synchronization 1 Introduction We sometimes feel as if we just resonate with something or someone, and this feeling seems far beyond mere intellectual cognition. It happens in various situations, for example while watching a movie or connecting with people or groups. What is the mechanism of this ‘‘resonance’’? Let’s take the example of watching and feeling a film, as movies can affect us deeply, far more than we might realize at the time.
    [Show full text]
  • Mirror Neurons and Their Reflections
    Open Access Library Journal Mirror Neurons and Their Reflections Mehmet Tugrul Cabioglu1, Sevgin Ozlem Iseri2 1Department of Physiology, Faculty of Medicine, Baskent University, Ankara, Turkey 2Department of Clinical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey Received 23 October 2015; accepted 7 November 2015; published 12 November 2015 Copyright © 2015 by authors and OALib. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Human mirror neuron system is believed to provide the basic mechanism for social cognition. Mirror neurons were first discovered in 1990s in the premotor area (F5) of macaque monkeys. Besides the premotor area, mirror neuron systems, having different functions depending on their locations, are found in various cortical areas. In addition, the importance of cingulate cortex in mother-infant relationship is clearly emphasized in the literature. Functional magnetic resonance imaging, electroencephalography, transcortical magnetic stimulation are the modalities used to evaluate the, activity of mirror neurons; for instance, mu wave suppression in electroencephalo- graphy recordings is considered as an evidence of mirror neuron activity. Mirror neurons have very important functions such as language processing, comprehension, learning, social interaction and empathy. For example, autistic individuals have less mirror neuron activity; therefore, it is thought that they have less ability of empathy. Responses of mirror neurons to object-directed and non-object directed actions are different and non-object directed action is required for the activa- tion of mirror neurons. Previous researchers find significantly more suppression during the ob- servation of object-directed movements as compared to mimed actions.
    [Show full text]
  • A Imitation Learning: a Survey of Learning Methods
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by BCU Open Access A Imitation Learning: A Survey of Learning Methods Ahmed Hussein, School of Computing Science and Digital Media, Robert Gordon University Mohamed Medhat Gaber, School of Computing and Digital Technology, Birmingham City University Eyad Elyan , School of Computing Science and Digital Media, Robert Gordon University Chrisina Jayne , School of Computing Science and Digital Media, Robert Gordon University Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few.
    [Show full text]
  • Mental States in Animals: Cognitive Ethology Jacques Vauclair
    Mental states in animals: cognitive ethology Jacques Vauclair This artHe addresses the quegtion of mentaJ states in animak as viewed in ‘cognitive ethology”. In effect, thk field of research aims at studying naturally occurring behaviours such as food caching, individual recognition, imitation, tool use and communication in wild animals, in order to seek for evidence of mental experiences, self-aw&&reness and intentional@. Cognitive ethologists use some philosophical cencepts (e.g., the ‘intentional stance’) to carry out their programme of the investigation of natural behaviours. A comparison between cognitive ethology and other approaches to the investigation of cognitive processes in animals (e.g., experimental animal psychology) helps to point out the strengths and weaknesses of cognitive ethology. Moreover, laboratory attempts to analyse experimentally Mentional behaviours such as deception, the relationship between seeing and knowing, as well as the ability of animals to monitor their own states of knowing, suggest that cognitive ethology could benefit significantly from the conceptual frameworks and methods of animal cognitive psychology. Both disciplines could, in fact, co&ribute to the understanding of which cognitive abilities are evolutionary adaptations. T he term ‘cognirive ethology’ (CE) was comed by that it advances a purposive or Intentional interpretation Griffin in The Question ofAnimd Au~aarmess’ and later de- for activities which are a mixture of some fixed genetically veloped in other publications’ ‘_ Although Griffin‘s IS’6 transmitred elements with more hexible behaviour?. book was first a strong (and certainly salutary) reacrion (Cognitive ethologists USC conceptual frameworks against the inhibitions imposed by strict behaviourism in provided by philosophers (such as rhe ‘intentional stance’)“.
    [Show full text]
  • Much Has Been Written About the Turing Test in the Last Few Years, Some of It
    1 Much has been written about the Turing Test in the last few years, some of it preposterously off the mark. People typically mis-imagine the test by orders of magnitude. This essay is an antidote, a prosthesis for the imagination, showing how huge the task posed by the Turing Test is, and hence how unlikely it is that any computer will ever pass it. It does not go far enough in the imagination-enhancement department, however, and I have updated the essay with a new postscript. Can Machines Think?1 Can machines think? This has been a conundrum for philosophers for years, but in their fascination with the pure conceptual issues they have for the most part overlooked the real social importance of the answer. It is of more than academic importance that we learn to think clearly about the actual cognitive powers of computers, for they are now being introduced into a variety of sensitive social roles, where their powers will be put to the ultimate test: In a wide variety of areas, we are on the verge of making ourselves dependent upon their cognitive powers. The cost of overestimating them could be enormous. One of the principal inventors of the computer was the great 1 Originally appeared in Shafto, M., ed., How We Know (San Francisco: Harper & Row, 1985). 2 British mathematician Alan Turing. It was he who first figured out, in highly abstract terms, how to design a programmable computing device--what we not call a universal Turing machine. All programmable computers in use today are in essence Turing machines.
    [Show full text]
  • Nonverbal Imitation Skills in Children with Specific Language Delay
    City Research Online City, University of London Institutional Repository Citation: Dohmen, A., Chiat, S. and Roy, P. (2013). Nonverbal imitation skills in children with specific language delay. Research in Developmental Disabilities, 34(10), pp. 3288-3300. doi: 10.1016/j.ridd.2013.06.004 This is the unspecified version of the paper. This version of the publication may differ from the final published version. Permanent repository link: http://openaccess.city.ac.uk/3352/ Link to published version: http://dx.doi.org/10.1016/j.ridd.2013.06.004 Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. City Research Online: http://openaccess.city.ac.uk/ [email protected] Full title: Nonverbal imitation skills in children with specific language delay Name and affiliations of authors Andrea Dohmen¹˒², Shula Chiat², and Penny Roy² ¹Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford OX1 3UD, UK ²Language and Communication Science Division, City University London, Northampton Square EC1V 0HB London, UK Corresponding author Andrea Dohmen University of Oxford / Department of Experimental Psychology 9 South Parks Road Oxford OX1 3UD, UK Email: [email protected] Telephone: 0044/1865/271334 2 Nonverbal imitation skills in children with specific language delay Abstract Research in children with language problems has focussed on verbal deficits, and we have less understanding of children‟s deficits with nonverbal sociocognitive skills which have been proposed to be important for language acquisition.
    [Show full text]
  • Social Cognition and the Mirror Neuron System of the Brain
    Motivating Questions Social Cognition and the Mirror How do our brains perceive the Neuron System of the Brain mental states of others despite their inaccessibility? How do we understand the actions, emotions and the intentions of others? Rationally? Intuitively? Jaime A. Pineda, Ph.D. Cognitive Neuroscience Laboratory How do we understand first- COGS1 class and third-person experiences? Classic Explanation A Different Perspective Theory-Theory (argument from analogy; disembodied Simulation Theory knowledge; visual hypothesis) (Direct-matching hypothesis; embodied knowledge) Map visual information onto Involves striate, extrastriate, motor representations of the inferotemporal lobe and same action superior temporal sulcus, among others Mirroring systems bridges between perception and action that allow for simulation Mirror neurons EEG Mu rhythms A Different Perspective The Mirror Neuron System Simulation Theory (Direct-matching hypothesis; embodied knowledge) Map visual information onto motor representations of the same action Mirroring systems bridges between perception and action that allow for simulation Mirror neurons EEG Mu rhythms Iacoboni and Dapretto, Nature Reviews, 2006,7:942-951 1 Biological Motion Biological Motion Perception: Monkeys Visual system's ability to Gender recover object information Activity engaged in Perret and colleagues from sparse input Emotional state (1989; 1990; 1994) Cells in superior temporal polysensory area (STPa) of the macaque temporal cortex appear sensitive to biological motion Oram & Perrett, J. Cog. Neurosci., 1994, 6(2), 99-116 Biological Motion Perception: Humans Brain Circuit for Social Perception (SP) An area in the superior • SP is processing of temporal sulcus (STS) in information that results in humans responds to the accurate analysis of biological motion the intentions of others • STS involved in the Other areas do as well, processing of a variety of including frontal cortex, social signals SMA, insula, thalamus, amygdala Grossman et al.
    [Show full text]
  • Deep Reinforcement Learning Via Imitation Learning
    Deep Reinforcement Learning via Imitation Learning Sergey Levine perception Action (run away) action sensorimotor loop Action (run away) End-to-end vision standard features mid-level features classifier computer (e.g. HOG) (e.g. DPM) (e.g. SVM) vision Felzenszwalb ‘08 deep learning Krizhevsky ‘12 End-to-end control standard state low-level modeling & motion motor observations estimation controller robotic prediction planning torques control (e.g. vision) (e.g. PD) deep motor sensorimotor observations torques learning indirect supervision actions have consequences Contents Imitation learning Imitation without a human Research frontiers Terminology & notation 1. run away 2. ignore 3. pet Terminology & notation 1. run away 2. ignore 3. pet Terminology & notation 1. run away 2. ignore 3. pet a bit of history… управление Lev Pontryagin Richard Bellman Contents Imitation learning Imitation without a human Research frontiers Imitation Learning training supervised data learning Images: Bojarski et al. ‘16, NVIDIA Does it work? No! Does it work? Yes! Video: Bojarski et al. ‘16, NVIDIA Why did that work? Bojarski et al. ‘16, NVIDIA Can we make it work more often? cost stability Learning from a stabilizing controller (more on this later) Can we make it work more often? Can we make it work more often? DAgger: Dataset Aggregation Ross et al. ‘11 DAgger Example Ross et al. ‘11 What’s the problem? Ross et al. ‘11 Imitation learning: recap training supervised data learning • Usually (but not always) insufficient by itself – Distribution mismatch problem • Sometimes works well – Hacks (e.g. left/right images) – Samples from a stable trajectory distribution – Add more on-policy data, e.g.
    [Show full text]
  • EEG Evidence for Mirror Neuron Activity During the Observation of Human and Robot Actions: Toward an Analysis of the Human Qualities of Interactive Robots
    ARTICLE IN PRESS Neurocomputing 70 (2007) 2194–2203 www.elsevier.com/locate/neucom EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots Lindsay M. Obermana,b,Ã, Joseph P. McCleeryb, Vilayanur S. Ramachandrana,b,c, Jaime A. Pinedac,d aCenter for Brain and Cognition, UC San Diego, La Jolla, CA 92093-0109, USA bDepartment of Psychology, UC San Diego, La Jolla, CA 92093-0109, USA cDepartment of Neurosciences, UC San Diego, La Jolla, CA 92093-0662, USA dDepartment of Cognitive Science, UC San Diego, La Jolla, CA 92093-0515, USA Received 4 February 2005; received in revised form 17 January 2006; accepted 1 February 2006 Available online 2 January 2007 Abstract The current study investigated the properties of stimuli that lead to the activation of the human mirror neuron system, with an emphasis on those that are critically relevant for the perception of humanoid robots. Results suggest that robot actions, even those without objects, may activate the human mirror neuron system. Additionally, both volitional and nonvolitional human actions also appear to activate the mirror neuron system to relatively the same degree. Results from the current studies leave open the opportunity to use mirror neuron activation as a ‘Turing test’ for the development of truly humanoid robots. r 2007 Elsevier B.V. All rights reserved. Keywords: Mirror neuron; Humanoid; Anthropomorphic; Robot; Volition; Action observation; Social interaction 1. Introduction observation/execution network known as the ‘mirror neuron’ system. A great deal of robotics research has recently investi- Single unit studies indicate that neurons in area F5 of the gated issues surrounding the creation of robots that are macaque premotor cortex, which are indistinguishable able to socially interact with humans and other robots from neighboring neurons in terms of their motor proper- [7,8,36].
    [Show full text]
  • Mirror Neuron System Could Result in Some of the Symptoms of Autism
    Broken Mirrors: A Theory of Autism Scienctific American - October 16, 2006 By Vilayanur S. Ramachandran and Lindsay M. Oberman At first glance you might not notice anything odd on meeting a young boy with autism. But if you try to talk to him, it will quickly become obvious that something is seriously wrong. He may not make eye contact with you; instead he may avoid your gaze and fidget, rock his body to and fro, or bang his head against the wall. More disconcerting, he may not be able to conduct anything remotely resembling a normal conversation. Even though he can experience emotions such as fear, rage and pleasure, he may lack genuine empathy for other people and be oblivious to subtle social cues that most children would pick up effortlessly. In the 1940s two physicians--American psychiatrist Leo Kanner and Austrian pediatrician Hans Asperger-- independently discovered this developmental disorder, which afflicts about 0.5 percent of American children. Neither researcher had any knowledge of the other's work, and yet by an uncanny coincidence each gave the syndrome the same name: autism, which derives from the Greek word autos, meaning "self." The name is apt, because the most conspicuous feature of the disorder is a withdrawal from social interaction. More recently, doctors have adopted the term "autism spectrum disorder" to make it clear that the illness has many related variants that range widely in severity but share some characteristic symptoms. Ever since autism was identified, researchers have struggled to determine what causes it. Scientists know that susceptibility to autism is inherited, although environmental risk factors also seem to play a role [see "The Early Origins of Autism," by Patricia M.
    [Show full text]