<<

198 9ApJ. . .341. .6583 -1 24-1 de laRechercheScientifiqueFrance, andtheUniversityofHawaii. operated bytheNationalResearch Council ofCanada,theCentreNationale Tololo Inter-AmericanObservatory, NationalOpticalAstronomyObserva- Center; GuestObserverattheCanada-France-Hawaii Telescope,whichis Astronomy, Inc.,undercontractwith theNationalScienceFoundation. tories, whichisoperatedbyAssociated UniversitiesforResearchin enough fordetailedopticalscrutiny.Theyarealsoobservable They exhibitthefullrangeofgalaxyactivity,yetremainclose , theso-calledpowerfulradiogalaxies(PRGs), rep- resent auniquelaboratoryforthestudyofactivityingalaxies. a cosmologyofH=100kmsMpcandq0).These having radiopowerat178MHz,P>5x10WHz for associated withpowerfulradiosources(whichwedefine as optical (broad-band)investigationoftheclassgalaxies The AstrophysicalJournal,341:658-678,1989June15 0 178 © 1989.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. 2 1 NationalResearchCouncilPostdoctoral Fellow,GoddardSpaceFlight VisitingAstronomerattheKittPeakNationalObservatoryandCerro This isthesecondinaseriesofpapersdedicatedto 24-1 - 2 colors andcolorgradientsforgiantellipticalgalaxies.Third,wenotethestrongsimilaritybetween fraction ofPRGsina“commonenvelope”withneighboringgalaxiesisevenlarger(40%fortheWE/ABS features suchasthesemaybeexplainedbygalaxyinteractionsinvolvingatleastonegas-rich,dynamically (Pi7s >5x10WHz),anddiscusstheimplicationsthesefindingshavefortheoriesconcerningorigin double/multiple nuclei,colors,andsurfacebrightnessprofiles. WE/ABS PRGsandbrightestclustergalaxies.Theyhavesimilarabsolutemagnitudes,incidenceratesof color variationsarerelatedtomerger-inducedstarformation.Incontrast,theWE/ABSPRGshavenormal extended andnotmerelyduetolightfromabrightnucleusoremission-linegas(bothofthesecon- giant ellipticalgalaxies[by~0.2magin(B—K)].Itisimportanttonotethatthesebluecolorsarespatially in form.ThesecondmajorconclusionisthattheSEPRGshaveunusuallyblueaveragecolorsrelativeto ness profilesfortheWE/ABSgalaxiesaretypicallyshallowerinslopethannormalradio-quietellipticalgal- kpc inprojectionfromthemainnucleus(30%ofWE/ABSPRGsandonly10%SEPRGs).The cold (i.e.,adiskgalaxy).Wefindthatabout20%ofourgalaxieshavesecondnucleuslessthan10 emission linespectra(SEPRGs)—butonly7%ofthePRGswithweakornolines(WE/ABS brightness (ii<25magarsec).Morespecifically,wefindthatabouthalfofthePRGswithstrongoptical Subject headings:galaxies:photometry—stellarcontentstructure the SEPRGsoftenexhibitstrongspatialvariationsincolor.Wehypothesizethatunusualcolorsand tributions havingbeenexplicitlyremoved),andassuchtheymustreflectthestellarcontentofPRG.Also axies, butsimilartobrightestclustergalaxies.SurfacebrightnessprofilesfortheSEgalaxiesaremorediverse sample galaxiesdisplayopticalmorphologicaldeviationsfromellipticalsymmetryathighlevelsofsurface galaxy interactions/mergersplayanimportantroleinthePRGphenomenon.Wefindthatover50%of are detailedinarecentpaperbySmithandHeckman. of activityingalaxies.Sampleselection,observationalprocedures,anddatareductiontechniquesforthisstudy PRGs)—exhibit peculiaropticalmorphologies(tails,fans,bridges,shells,anddustlanes).Narroworsharp PRGs and20%fortheSEgalaxies).Photometricinvestigationsofsampleindicatethatsurfacebright- v © American Astronomical Society • Provided by the NASA Astrophysics Data System We reportthreemajorconclusionsregardingthenatureofpowerfulradiogalaxies(PRGs).Thefirstisthat We presentresultsonthemorphology,photometricstructure,andcolorsof72powerfulradiogalaxies MULTICOLOR SURFACEPHOTOMETRYOFPOWERFULRADIOGALAXIES. I. INTRODUCTION radio sources:galaxies Laboratory forAstronomyandSolarPhysics,GoddardSpaceFlightCenter II. MORPHOLOGYANDSTELLARCONTENT Received 1988August29;acceptedDecember2 University ofMarylandAstronomyProgram 1 1,2 T. M.Heckman Eric P.Smith ABSTRACT AND 658 25-1 that galaxy-galaxyinteractionsmayplayamajorroleininiti- tion (SpinradandDjorgovski1987).Currentlyitisbelieved out tolargeredshifts(e.g.,Chambers,Miley,andvanBreugel phenomena occurringinotherclassesofactivegalaxies (cf. 1988) andthereforeareimportantprobesofearlygalaxyevolu- Hutchings andCampbell1983;Kennicuttetal1987). activity forPRGswoulddovetailwithevidencesimilar ating galaxyactivity.Alinkbetweeninteractions and (especially thosefoundatthe centersofrichclusters).These notions prevaileduntilquite recently,whenimproveddetec- “ D”orcD,”suggesting a kinshiptogiantellipticals powerful radiogalaxies,and typically classifiedsuchPRGsas powerful radiosourceshasbeenlesswelldeterminedexcept in power; P<10WHz)arerathernormalgiantellip- several nearbycases(e.g., Fornax A,CenA).Matthews, ticals. Themorphologyofthegalaxiesassociatedwithmore Morgan, andSchmidt(1964) conductedastudyofthemore 178 Most nearbyradiogalaxies(whicharegenerallylowin 198 9ApJ. . .341. .6583 8 1/4 results. Weconcludein§IXwith suggestionsforfurtherstudy. Section VIIIstatesourconclusions andinterpretationofthe ness distributions,andin§ VII wesummarizeourresults. profiles ofPRGsareinvestigated in§V.InVIwegivean color gradientsofthesample galaxies.Thesurfacebrightness magnitudes ofthePRGs,while§IVdealswithcolors and account ofoureffortsatmodeling thegalaxysurfacebright- will beasfollows:SectionIIdiscussestheopticalmorphol- low- (Smithetal.1986).Theplanofthispaper ogies ofthegalaxies.SectionIIIconcentratesonintegrated photometry, aswelltoourownresultsfromastudy of with previousworkonbrightestclusterandellipticalgalaxy surface photometrystudies.Wewillthencomparetheseresults we willdiscusstheresultsofthesemorphologyandmulticolor images, colorprofiles,andsurfacephotometry.Inthispaper data analysisandhavepresentedalargebodyofcalibrated hereafter PaperI),wehavedescribedourobservations and participants. be supportiveoftheideathatPRGsaremergerorinteraction were dueatleastinparttoapopulationofyoungstarswould nuclei andemission-linenebulae.Evidencethattheircolors galaxies, butthenatureofthesecolorswasuncertainbecause have colorsthatarebluerthanthoseofnormalgiantelliptical of thepresencebrightpointsourceslocatedingalaxy Tinsley 1978),presumablybecauseofenhancedstarformation. bluer thanthoseofnoninteractinggalaxies(Larsonand probes). Interactinggalaxiesareknowntohavecolorsthat Sandage (1972)demonstratedthatmanyofthePRGsalso of theusehigh-redshiftradiogalaxiesascosmological stellar contentisofconsiderableinterest(particularlyinlight galaxy’s past. tortions (afewtimes10yr),theyalsocouldprovidecluestoa after thedisappearanceofmore“spectacular”opticaldis- history. However,ifthegalaxylightprofileremainspeculiar brightness profile)ofagalaxytounderstanditsdynamical elliptical-elliptical anddisk-disk).Inlightofthis,itwould appear difficulttousethephotometricstructure(surface is thenaturalresultofviolentrelaxationinamerger(both (Schweizer 1982)haveshownthatanrlawlightdistribution least oneoftheparticipantscontainsadynamicallycold(disk) structure. Galaxymergersimulations(AW)andobservations nants withsharporcoherentfeaturesareproducedwhenat Quinn 1984;AguilarandWhite1986,hereafterAW).Rem- is ofprincipalinterestinlighttheextensivemodeling galaxy-galaxy interactions(e.g.,Toomreand1972; morphological peculiaritiesfoundinclassAPRGs.Notonly the incidencerate,butalsoformofopticalpeculiarities, radio morphologies.Thesegalaxiesrarely(~10%)exhibitthe absorption linespectra(“WE/ABS”)andusuallyhaveFRI galaxies aredefinedtohaveweakemissionlinesorpure these PRGshavepeculiarmorphologies.TheclassBradio phologies (“FRII”).Wefoundthatalargefraction(~50%)of Fanaroff-Riley (FanaroffandRiley1974)typeIIradiomor- sion lines(“SE”).Theyalsousuallyhave“edge-brightened” Class Aradiogalaxiesaredefinedtohavestrongopticalemis- phologies (Heckmanetal1986,hereafterH86;Hutchings a significantfraction(~30%-50%)hadpeculiaropticalmor- of largerandmorediversesamplesPRGsdemonstratedthat tors, advancedimageprocessingtechniques,andobservations 1987). In thefirstpaperofthisseries(SmithandHeckman1989, In additiontothemorphologyandstructureofPRGs,their In H86wearguedthatPRGsfallintotwobroadcategories. © American Astronomical Society • Provided by the NASA Astrophysics Data System MULTICOLOR SURFACEPHOTOMETRYOFPRGs.II. 2 4 -2 determining apositionangle forsuchroundisophotes).Sub- with ellipticitye<0.1because ofassociateddifficultiesin from Stromand(1978a, b,c)havemajor-axisposition angle twists(AP.A.)greaterthan 10°(afterrejectingisophotes by Galletta(1980),whofound thatonly8%ofallellipticals experience largemajor-axisisophotaltwists.Thedistribution of isophotaltwistinginnormal ellipticalshasbeeninvestigated reveals thestartlingnumberofgalaxiesinthissamplewhich implies arecentinteractionormerger.Sinceonly~4%of the (isophotes whicharenotellipticalinshape,butrather confidence levelusingaxcontingencytableanalysis). “square”). Neitherofthesekindsdistortionnecessarily in 49%oftheclassA(SE)galaxies,butonly10% find thatthesetypesofmorphologicalpeculiaritiesaredetected cold and/oragas-richsystem,presumablydiskgalaxy.We tion ofthephotometricmajoraxis),or“boxyisophotes” strongly twistedisophotes(astrongradialchangeintheposi- B (WE/ABS)PRGs.Thisdifferenceishighlysignificant(99.9% nomenon oftwistedisophotes. actions, provideevidencefortheinvolvementofadynamically These features,ifinterpretedwithinthecontextofgalaxyinter- dominantly azimuthalorientation),“fans”(similartotails,but linking twogalaxies),“shells”(curvilinearfeatureswithapre- from themainbodyofgalaxy),“bridges”(narrowemission (features withalength-to-widthratio>3:1whichextendout less narrow),anddustlanesorpatches(seeFig.1[Pis.10-13]). PRGs showclearlyboxyisophotes,wewillfocusonthephe- which arerelativelynarrowor“sharp”inappearance:tails models ofinteractinggalaxies.Inthefirstcategoryarefeatures several categoriesbasedonthephysicalintuitionprovidedby phological peculiarities,itisusefultosubdividetheminto different. these deviationstakeforthetwoclassesis,however,quite WE/ABS (52%)aremorphologicallydisturbed.Theforms which deviationsfromellipticalsymmetryarenotvisible most likelyonlyalowerlimit,becausetherecouldbecasesfor tions ofthoseobjectsclassedasSE(57%;seeTable1)and being lostintheskybackground.Wenotethatsimilarfrac- because ofthegalaxy’sdistance[aresult(1+z)cosmo- levels brighterthan25Vmagarcsec.Itmustbeemphasized that thefractionofgalaxieswithopticallypeculiarstructureis sample showmorphologicalpeculiaritiesatsurfacebrightness the peculiaritiesfoundinthissample.Wefindthat54%ofour fied someofthefeaturesfoundinopticallydistortedPRGs, and wehaveadoptedtheirterminologyforourclassificationof rather, azoologicalapproachmustbetaken.H86haveclassi- using theFourierdescriptorsforisophotes;seePaperI); good wayofquantifyingtheselargedeviationsfromelliptical emission-line gasmorphology.Thereis,unfortunately,no symmetry (asopposedtosmalloneswhichcanbestudied was donebyoneofus(E.S.)independentanyknowledge (nonelliptical) morphologies.Table1givesalistingofthegal- logical dimminginsurfacebrightness],thesefeaturespossibly images thatmanyofthegalaxiesdisplayunusual axies, catalogingthesedistortions,theclassificationofwhich in oursample.Itisreadilyapparentfrominspectionofthese Inspection oftheisophotalcontourmapsforourPRGs Into thesecondtypeofmorphologicalpeculiarityweclassify To considerfurtherthenatureandsignificanceofmor- Paper Ipresentedtheisophotalcontourmapsofgalaxies II. GALAXYMORPHOLOGY a) Peculiarities 659 00C/} LO PLATE 10

3C 223

(b)

positive image with fain, fan features to the northeast and L, ¿ 30 236 ^^ 'V^ "V™, 3C 382 image from the CFHT (3.6 m) reveals complex knotted structure ( f) 3C 321 negative imaee (n) 3r 171 v 1 themain body of the galaxy, (e) 3C 321 positive (h) 3C 171 negative image. siructure. U ) ^ m negative image, (g) 3C 171 positive image showing two lobes aligned roughly east-west. Smith and Heckman (see 341, 659)

© American Astronomical Society • Provided by the NASA Astrophysics Data System 198 9ApJ. . .341. .6583 Smith andHeckman{see341,659) © American Astronomical Society •Provided bythe NASAAstrophysics Data System E N 45" 30" Fig. 1.—Continued (d) PLATE 11 Smith andHeckman(see341,659) . I—Continued 198 9ApJ. . .341. .6583 Fig PLATE 12 © American Astronomical Society •Provided bythe NASAAstrophysics Data System E 15 N 3C 321 (f) (e) 198 9ApJ. . .341. .6583 Smith andHeckman(see341,659) © American Astronomical Society •Provided bythe NASAAstrophysics Data System Fig. 1.—Continued 3C 171 (h) PLATE 13 198 9ApJ. . .341. .658S 660 NGC 6047 NGC 708 3C 305 PKS 1358-113 PKS 1345+125 3C 285 3C 278 3C 277.3 3C 264 3C 236 3C 234 3C 227 3C 219 3C 198 PKS 0634-206 3C 29 PKS 2104-256B PKS 2058-281.. 3C 424 3C 405 3C 403 3C 390.3 3C 388 3C 382 3C 381 3C 371 3C 353 3C 348 3C 346 3C 338 3C 327 3C 321 3C 317 3C 315 3C 310 3C 303 3C 300 3C 296 3C 293 3C 223 3C 218 3C 196.1 3C 192 3C 171 3C 135 3C 120 3C 109 3C 105 3C98 3C89 3C88 3C84 3C 79 3C78 3C76.1 3C 75S 3C75N 3C 63 3C62 3C40 3C 33 3C 31 3C 17 PKS 2322- 3C 459 3C 449 3C 445 3C 442 3C 444 3C 436 3C 433 PKS 2104-256C Galaxy (1) 122 © American Astronomical Society • Provided by the NASA Astrophysics Data System Class WE WE WE WE ABS WE WE ABS WE WE SE SE WE WE SE SE SE SE SE SE SE SE SE SE SE SE SE WE WE WE ABS WE WE WE WE ABS WE WE ABS ABS ABS WE SE SE WE SE SE SE? WE SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE ABS SE WE SE SE SE SE SE (2) (B-V) 0.77 0.97 0.87 0.85 0.65 0.76 0.64 0.61 0.87 0.83 0.73 0.85 0.96 0.65 0.54 0.87 0.45 0.99 0.68 0.42 0.89 0.58 0.84 0.99 0.94 0.66 0.90 0.39 0.90 0.76 0.77 0.99 0.68 0.87 0.84 0.09 1.06 1.05 1.06 1.15 1.07 1.03 1.06 1.10 1.06 1.15 1.11 1.01 1.22 1.00 1.03 1.12 1.03 (3) * Derived QuantitiesandClassificationsforthePROSample <-21.26 <-21.48 -21.14 -22.01 -21.73 -22.12 -21.31 -21.55 -21.77 -21.43 -20.64 -22.15 -21.08 -21.48 -21.91 -21.02 -21.65 -21.39 -21.49 -21.74 -21.26 -20.20 -21.21 -21.78 -22.52 -20.15 -22.36 -20.63 -21.20 -21.71 -21.37 -21.29 -21.92 -20.73 -21.89 -21.18 -21.98 -22.04 -22.14 -20.70 -21.33 -21.35 -20.83 -21.62 -21.09 -21.47 -20.93 -21.45 -21.76 -21.63 -22.06 -20.45 -22.76 -21.34 -20.52 -22.72 -21.90 -21.14 -21.10 -22.22 -21.56 -22.52 -21.98 -21.61 -20.90 -19.56 -20.53 -22.57 -21.28 -21.56 -21.98 -21.66 M 25 (4) SMITH ANDHECKMAN -20.71 -21.56 -21.59 -21.28 -20.60 -20.53 -21.59 -21.04 -20.27 -21.73 -20.71 -21.21 -21.25 -20.80 -21.72 -20.83 -20.89 -21.17 -21.05 -20.76 -20.94 -21.33 -21.40 -20.15 -21.37 -20.54 -21.00 -21.78 -21.31 -21.20 -23.32 -20.94 -20.49 -21.13 -20.75 -21.85 -21.47 -21.72 -20.07 -19.62 -20.26 -20.91 -20.88 -20.93 -21.47 -20.76 -21.21 -21.24 -21.33 -21.14 -21.87 -22.12 -21.35 -21.01 -21.62 -22.30 -20.83 -21.77 -21.21 -21.04 -20.64 -20.76 -20.72 -21.42 -21.10 -21.63 -21.98 -21.66 -21.21 -19.62 -21.28 -21.93 M (5) 8 kpc TABLE 1 log r e 0.63 0.57 0.54 0.73 0.93 0.80 0.97 0.78 0.91 0.89 0.70 0.95 0.44 0.83 0.65 0.81 0.97 0.66 0.94 0.80 0.49 0.78 0.87 0.79 0.74 1.08 1.02 1.16 1.01 1.39 1.24 1.31 1.61 1.34 1.26 1.56 1.40 1.15 1.46 1.36 1.18 (6) 22.24 20.39 20.76 22.78 24.14 23.69 22.28 21.62 22.63 24.23 22.12 22.25 22.57 22.69 23.07 24.03 22.90 22.43 22.49 24.27 22.92 23.38 21.97 22.56 22.70 22.31 22.45 23.36 22.03 23.12 23.27 24.60 24.40 23.90 23.52 22.31 24.27 22.74 24.21 23.44 19.89 (7) log r2 2 0.95 0.78 0.92 0.79 0.71 0.99 0.86 0.92 0.68 0.86 0.86 0.62 0.75 0.86 0.98 0.53 0.57 0.72 0.59 0.77 0.99 0.92 0.95 0.52 0.62 0.65 0.72 0.82 0.72 0.85 0.69 0.79 0.85 0.75 0.97 0.63 0.68 0.91 0.81 0.66 0.93 0.69 0.96 0.93 0.82 0.74 0.87 0.58 0.86 0.79 0.70 0.79 0.96 0.93 0.68 0.99 0.94 0.78 0.59 0.96 0.86 0.64 0.49 0.69 0.99 0.90 1.01 1.02 1.07 1.14 (8) log r 2i 0.96 0.98 0.91 0.94 0.84 1.15 1.26 1.20 1.11 1.26 1.37 1.25 1.19 1.38 1.30 1.14 1.26 1.19 1.09 1.32 1.13 1.28 1.19 1.16 1.31 1.19 1.22 1.27 1.16 1.06 1.19 1.41 1.44 1.48 1.14 1.11 1.31 1.19 1.24 1.22 1.12 1.16 1.52 1.29 1.46 1.16 1.22 1.42 1.16 1.17 1.21 1.21 1.32 1.35 1.36 1.18 1.02 1.53 1.22 1.21 1.07 1.33 1.29 1.03 1.42 1.04 1.18 1.52 (9) log r 2i 2.01 1.64 1.07 1.31 1.29 1.28 1.49 1.20 1.66 1.39 1.52 1.44 1.07 1.42 1.46 1.43 (10) 1.42 1.25 1.33 1.45 1.52 1.28 1.41 1.48 1.30 1.22 1.43 1.09 1.56 1.40 1.31 1.28 1.38 1.39 1.43 1.51 1.33 1.64 1.28 1.42 1.12 1.73 1.37 1.78 1.48 1.63 1.25 1.30 1.05 1.61 TI T, S,TI TI T, D,B T, F,Dn TI, 2F,B T, F, TI? TI TI? 2F CE 2T TI? TI D, TI? T, F,CE,Dn CE CE, Dn CE S, TI CE S?, BI,TI S CE, Dn CE, Dn CE, Dn CE, Dn TI TI TI TI Dn, TI Dn CE, Dn 2T, D,BI F, T T TI D, Dn,TI 2T BI, TI S?, TI? CE CE Dn CE, Dn CE, Dn 2T Morphology (11) CE Comments 4 4 4 4, 5 4, 7 4, 5 2, 3,4 2, 7 7 7 2,9 2, 2, 6 2, 3, 4 2 2, 3,4 2, 3 7 5 5 5 7 7 7 2,9 2, 5 2, 6 2, 4,7,9 7 5 5 5 12 1 1 1, 2,4,9 1 1 1, 8 Yol. 341 4,9 (12) 3,4 3 5, 10 3,4 10 198 9ApJ. . .341. .6583 9 -2 (Bahcall 1977reportsthatmembersofatypicalclusterare embedded inacommonenvelopewithoneormorecompanion emission). radius fortheimpactparameterevery10yr.SeealsoBorne expected toexperienceacloseencounterorcollisionwiththis ple nucleiifthereweretwobrightnesspeaksinside9.6kpc. double (ormultiple)nuclei.Hedefinedanobjecttohavemulti- envelope (CE)systems.ThehighincidencerateofCEsystems (12) 54"aperture. magnitude wasclosetoSandage1972 Vandthereforeusedasm.(4)Magnitudecalculatedfrompatched dataframe(seePaperI).(5)CaseImagnitude common envelope;D=dustfeatures; Dn=doublenucleus;F1fan,2F2fans;Sshells;Ttail,2T =2tails;TItwistedisophotes. isophote. BCGs andfoundthatapproximately30%ofthesegalaxieshad on brightestclustergalaxies(BCGs).Hoessel(1980)studied among PRGsisparticularlyinterestinginlightofrecentwork the SEPRGsand42%ofWE/ABSareincommon may belarger(59%ofDjorgovski’sand20%Leach’s (1981) indicatesthatthefractionofellipticalswithÀP.A.>10° where fi=25Vmagarcsec.(10)Last isophotedeterminedbyellipse-fittingalgorithmusedforlimitingaperture becauseofuncertainextinction.(11)80"aperture. correction fornonstellaremission(see PaperI).(6)Magnitudecalculatedfrominner16kpcaperture.(7)Case IIImagnitudecorrectionfornonstellaremission.(8) Paper I. galaxies (seeFig.2[PI.14]).Morespecifically,about20%of highly asymmetricisophotes(e.g.,PKS1345+125,3C305). restrict ourÀP.A.measurementstothosegalaxieswith(1)no samples haveÀP.A.>10°).Giventhehighlydisturbednature sequent CCDphotometrybyDjorgovski(1985)andLeach Paper I). obvious interactingneighbors(e.g.,3C40,75)and(2)no of themorphologiesformanyourgalaxies,weneededto Magnitude calculatedfrom30"aperture centeredongalaxy.(9)Finalapertureusedformcalculatedfrom extrapolationofsurfacebrightnessprofiletoradius For theselattertwosubclassesofPRGsthereislittledoubt No. 2,1989 1984.) LaterstudiesbySchneider,Gunn,andHoessel(1983a, yet anothermeasureoftheatypicalmorphologiesforPRGs. phologies. Inlightoftheuncertaintiesassociatedwithfre- isophotal twists.WefindequalnumbersofSEandWE/ABS fication appearstobearnorelationshipthepresenceoflarge isophote twists(meanÀP.A.=~26°).Emission-lineclassi- induced byseeingeffects(Franx,Illingworth,andHeckman elliptical isophotes.ToavoidincludingspuriouslylargeÄP.A. mine whethertheremaininggalaxieshadoverall“quiescent” however, itisunclearatthistimewhetherisophotaltwisting quency andmagnitudeofisophotaltwistsinnormalgalaxies, galaxies withlargeisophotaltwistsandotherwisenormalmor- these otherwisemorphologicallynormalgalaxieshavelarge ÀP.A. (>10°)fromourstudy.Wefindthat55%(18of33) r =10"oneachgalaxy.Table2liststhegalaxieswithlarge about thepresenceororiginofanytwists.Wesoughttodeter- 2625 1988) wemeasuredmajor-axispositionanglesexteriorto 25 1/2- 12- -21/4 1/4 -2 -2 -2 1/2- Col. (2).—Opticalemissionlineclassification.SE=strongoptical lines;WE=weakopticalemissionABSabsorption-linespectrum.See Gol. (1)/—Galaxyname. Col. (9).—Radius(kpc),calculatedas(ah)ofthe24Vmagarcsecisophote (correctedforGalacticextinctionandredshift). Col. (8).—Radius(kpc),calculatedas(ab)ofthe22Vmagarcsecisophote (correctedforGalacticextinctionandredshift). Col. (7).—Surfacebrightness(magarcsec)atrforsamplegalaxies. Corrected forGalacticextinctionandredshift. Col. (6).—Scalelength,inkpc,forthegalaxyderivedfromleast-squaresfit tosurfacebrightnessprofile.Onlythosegalaxiesinthersamplewererecorded(see Col. (5).—AbsoluteVmagnitudeinteriorto8kpcradiusintherestframe ofthegalaxy(correctedforGalacticextinctionandredshiftbutnotnonstellar Col. (4).—AbsoluteVmagnitude(correctedforGalacticextinction,redshift, andnonstellaremission)ofthegalaxyintegratedoutto25magarcsec Col. (3).—{B—V)colorsintegratedouttothe25magarcsecisophote.An asteriskindicatesthatphotometrywasunreliableforcolors. Comments.—(1) CaseIImagnitude correction fornonstellaremission.(2)Surfacebrightnessprofiledidnot reach25magarcsecisophote.(3)Limiting Col. (12).—Commentsonindividual galaxies. Col. (11).—Morphologicalfeaturesdisplayedbytheradiogalaxy:B= bridges;BI=boxyisophotes;CEradiogalaxyandcompanionsurroundedbya Col. (10).—Radius(kpc),calculatedas(ah)ofthe25Vmagarcsecisophote (correctedforGalacticextinctionandredshift). Many (~30%)ofthePRGsinoursampleappeartobe e b) CommonEnvelopeandDoubleNucleusSystems © American Astronomical Society • Provided by the NASA Astrophysics Data System MULTICOLOR SURFACEPHOTOMETRYOFPRGs.II. Notes toTable1 z nuclei. ThereisagainadistinctionbetweentheSEand nuclei (seeTable1).Thesedoublenucleus(Dn)galaxiesarea peaks insidethisradius.Adoptingdefinition,wefindthat b) foundanevenhigherincidenceofmultiplenuclei,with45% (32%) ascomparedwithonlyfourSEobjectsmultiple WE/ABS objects,with10WEgalaxieshavingmultiplenuclei subset oftheCEgalaxiesdistinguishedbyproximity of theirfirst-rankedgalaxieshavingoneormorebrightness fidence level.(TheSEgalaxiesaregenerallyathigherredshift morphology classes. multiple nuclei)andFRII(14%withradio powerful radiogalaxiesweredividedintoFRI(32%with been discernablegivenourseeingconditions,andassuming redshift [0.3056for3C109]anydoublenucleiwouldhave nuclei (10%).Thisdifferenceissignificantatthe~99%con- kpc].) LillyandPrestage(1987)foundsimilarresultswhen separation asthelowerredshiftobjects[mean~5.5 that theSEgalaxieshavedoublenucleiwithsamemean [ =0.049,0.122],yetevenouttoourhighest 19% ofthegalaxiesinoursamplehavedoubleormultiple could beproducedbydustlanesatthecentersofourgalaxies. disturbed instructure,wemustbewaryofclassifyingobjectsas having doubleormultiplenucleiwhen,infact,thesefeatures For example,weregalaxiessuchasNGC708or3C293at SE We addonecaveat:becausemanyofourgalaxiesarehighly logical peculiarities;(?)denotesanobject position-angle twistsandnoothermorpho- with marginalisophotaltwists,AP.A.^10°. PKS 1358-113 3C 303 3C 277.3 3C 198 3C 192 3C 105 3C 76.1 3C 63(?) 3C 62 Note.—Objects withlargemajor-axis Galaxies withAP.A.>10° TABLE 2 PKS 2104-256B 3C 436 PKS 2058-281 3C 424 3C 390.3 3C 388 3C 381 3C 371 3C 353 661 198 9ApJ. . .341. .6583 PLATE 14 Smith andHeckman(see341,661) this systemofellipticalgalaxies. Fig. 2.—PositiveimageofthePRG3C442obtainedwithKPNO2.1 mtelescope.Theradiogalaxyisthecentralobject.Noteasymmetricalenvelopeof American Astronomical Society •Provided bythe NASA Astrophysics Data System E N 3C 442 198 9ApJ. . . 341 . .658S -2 _1 -1 is formallysignificantatonly the 93%confidencelevel.Recent- mean absolutemagnitude=—21.55±0.08.We find for ourdatawhichincorporatesthesecorrectionsnon- determine empiricallymin thesecases.Forgalaxies ly, LillyandPrestage(1987) havealsoreportedthattheSE the 25magarcsecisophote, being=—21.42 that theSEobjectsarefainterby~0.35magthan WE hatching. WithouradoptedcosmologyofH=100km s 0.0