Latitude and Longitude Pre-Lab Video
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Major Geographic Regions and Popula on of the United States of America
Major geographic regions and populaon of the United States of America Major geographic regions and populaon of the United States of America Lesson plan (Polish) Lesson plan (English) Major geographic regions and populaon of the United States of America Link to the lesson Before you start you should know that the United Stated is an economically developed country; that the United States is an immigrant country founded mainly by immigrants from Europe and slaves brought from Africa; that a region’s natural environment influences its economic development. You will learn to show the great regions on a map of the United States; to name the major population groups inhabiting the United States; to name the reasons for the decline of the Native American culture. Nagranie dostępne na portalu epodreczniki.pl Nagranie dźwiękowe abstraktu Major geographic regions of the United States of America The United States of America is the fourth largest country in the world, with a surface area of 9,526,5 thousand sq. km, and the third most populous one, with 322 million inhabitants in 2010. This vast country is made up of continental states that lie in the central part of the North American continent, between the 25th parallel north and the 49th parallel north. Two more states, Alaska in the northwest extremity of North America and Hawaii in the Pacific Ocean, are located outside the main part of the United States. One of the crucial features of the natural environment of the United States is the meridional layout of its major geographic regions, which differ in altitude above sea level and landscape. -
Latitude/Longitude of the Exact Opposite Place LONGITUDE on Earth to Sydney, Australia, 33° 55‘ S, 151° 17‘ E 90° N 180° Sydney LATITUDE 151° 17’ E
GEO 101, January 16, 2014, Latitude and Longitude Finding your way … How geographers locate where things are… Most common locational system Best reference points are ends of rotational axis Latitude and Longitude Measures angular distance in degrees, not distance in miles or km Basic geometry: circle has 360 degrees Babylonians (≈600 BC) chose the number 360. The reason is that their number system was based on 60. To compare, we base our number system on 10. For us, 10 is a nice, round number and we find it very convenient to count in multiples of 10. But the Babylonians liked 60. LATITUDE Midway between N & S pole is Equator = 0° 90° N 0° 90° S 1 Latitude of Mobile ≈ 30° 42’ N. Parallels of latitude measure the angular distance (degrees) north or south of the Equator. Expressed in degrees, minutes, & seconds 60 minutes in 1 degree 60 seconds in 1 minute The lines themselves run east - west like the rungs on a ladder Find distance in miles between Latitude can be used to approximate Mobile and the Galapagos Islands, distances based on following: which is almost due south of Mobile 360° in a circle Galapagos 0° 10’ S Mobile 30° 42’ N ≈ 25,000 miles around earth 25,000 miles / 360° ≈ 69 miles in 1° Difference 30° 52’ or 30 + 52/60 degrees = 30.87° One degree of latitude always ≈ 69 miles This is true because parallels of latitude 30.87° x 69 mi/degree = 2130 miles stay same distance apart LONGITUDE Arbitrary starting place at Greenwich (London), England 180° = International Date Line East West N P 0° = Prime Meridian 2 One degree of longitude ONLY EQUALS 69 Meridians of longitude measure the miles, at the Equator. -
PRIME MERIDIAN a Place Is
Lines of Latitude and Longitude help us to answer a key geographical question: “Where am I?” What are Lines of Latitude and Longitude? Lines of Latitude and Longitude refer to the grid system of imaginary lines you will find on a map or globe. PARALLELS of Latitude and MERIDIANS of Longitude form an invisible grid over the earth’s surface and assist in pinpointing any location on Earth with great accuracy; everywhere has its own unique grid location, and this is expressed in terms of LATITUDE and LONGITUDE COORDINATES. Lines of LATITUDE are the ‘horizontal’ lines. They tell us whether a place is located in the NORTHERN or the SOUTHERN HEMISPHERE as well as how far North or South from the EQUATOR it is. Lines of LONGITUDE are the ‘vertical’ lines. They indicate how far East or West of the PRIME MERIDIAN a place is. • The EQUATOR is the 0° LATITUDE LINE. o North of the EQUATOR is the NORTHERN HEMISPHERE. o South of the EQUATOR is the SOUTHERN HEMISPHERE. • Lines of Latitude cross the PRIME MERIDIAN (longitude line) at right angles (90°). • Lines of Latitude circle the globe/world in an east- west direction. • Lines of Latitude are also known as PARALLELS. o As they are parallel to the Equator and apart always at the same distance. • Lines of Latitude measure distance north or south from the equator i.e. how far north or south a point lies from the Equator. • The distance between degree lines is about 69 miles (or about 110km). o A DEGREE (°) equals 60 minutes - 60’. -
307 Lesson 21: Eratosthenes' Measurement of the Earth the Most
307 Lesson 21: Eratosthenes’ Measurement of the Earth The most important parallel of latitude is the equator; it is the only parallel of latitude that is a great circle. However, in the previous lesson we learned about four other parallels of latitude which are of great importance because of the relative geometry of the Earth and the Sun. These are the Tropics of Cancer and Capricorn and the Arctic and Antarctic Circles. We briefly review the basic facts about these four parallels. At each moment on the day of the summer solstice, there is a single point on the surface of the Earth that is closet to the Sun. As the Earth rotates through the day of the summer solstice, this closest point to the Sun moves around the surface of the Earth and traces a parallel of latitude called the Tropic of Cancer. Another description of the Tropic of Cancer is that it is the set of all points on the Earth’s surface where the Sun is directly overhead at solar noon on the day of the summer solstice. The latitude coordinate of the Tropic of Cancer equals the measure of the angle that the Earth’s axis makes with the perpendicular to the ecliptic plane: approximately 23.5º N. On the day of the summer solstice, as the Earth rotates about its axis, the terminator (the division between daytime and nighttime) moves, and its northernmost point traces out a parallel of latitude called the Arctic Circle. Similarly, as the Earth rotates, the southernmost point of the terminator traces out a parallel of latitude called the Antarctic Circle. -
North Pole • South Pole
Divisions of the Earth The Earth can be divided in many ways. Today, we will learn about the seven most important divisions on the planet: • equator • northern hemisphere • southern hemisphere • tropic of Capricorn • tropic of Cancer • North Pole • South Pole Let’s find out more! Equator • The equator is an imaginary line that divides the Earth in half. • The equator is an equal distance between the North and South Poles. • The weather on the equator is hot all year round. • At the equator, day and night are both 12 hours long. Did You Know? Although the weather is generally hot, there is a mountain on the equator where you can ski! Challenge Question Why do you think places at the equator are hot? Northern Hemisphere • The part of the Earth north of the equator is called the northern hemisphere. • 80% of the world’s population lives in the northern hemisphere. • 90% of land is in the northern hemisphere. • The northern hemisphere includes all of north America, Europe and most of Asia and Africa. Southern Hemisphere • The part of the Earth south of the equator is called the southern hemisphere. • Only 20% of the world’s population lives in the southern hemisphere. • 90% of the planet’s water is in the southern hemisphere. • The southern hemisphere includes all of Australia, Antarctica and most of South America. Did You Know? When it is winter in the southern hemisphere, it is summer in the northern hemisphere! Tropic of Cancer • The tropic of Cancer is an imaginary line in the northern hemisphere. • It is also called the northern tropic. -
Arctic Circle Antarctic Circle Tropic of Cancer Tropic of Capricorn
ARCTIC OCEAN ARCTIC OCEAN Greenland (Denmark) Arctic Circle Alaska Norway (USA) Iceland Finland Sweden Russia 60° N NORTH Canada ATLANTIC See Europe OCEAN Kazakhstan enlargement Mongolia NORTH Azores 27 PACIFIC United States (Portugal) 40 of America Greece 53 OCEAN China 48 Japan See Middle East 1 Tibet enlargement (China) 30° N Morocco 41 4 Canary Islands 38 5 Tropic of Cancer (Spain) Libya NORTH Mexico Algeria 2 Taiwan Northern Oman India 36 28 Mariana PACIFIC Hawaii Mauritania Hong Kong Islands (USA) See Central America Mali Niger Sudan 54 31 OCEAN (USA) Cabo 45 Chad 19 Yemen Guam & the Caribbean Verde 22 8 10 60 Philippines enlargement 25 24 3 39 17 48 (USA) Ethiopia Sri Micronesia 46 15 12 50 Palau Colombia 26 20 30 11 48 Lanka Malaysia 7 EQUATOR 51 23 56 18 59 47 0° Ecuador 21 14 Kenya Maldives 44 42 Indonesia Papua Kiribati 16 9 Seychelles Tanzania New Solomon 33 Peru 55 Guinea Brazil Saint 13 Islands 37 43 French Helena Angola 32 58 Cook Polynesia (UK) 61 INDIAN Vanuatu (Fr.) 57 Islands Bolivia 62 35 OCEAN New Tropic of Capricorn 34 Caledonia Fiji Easter Island Paraguay SOUTH Namibia 6 Madagascar (Fr.) Pitcairn (Chile) Australia Island (UK) ATLANTIC 52 30°S OCEAN South 29 Uruguay Africa SOUTH Argentina PACIFIC Chile New OCEAN Zealand Falkland 150° W W 120° 90° W 0° E 120° 150° E Islands 30° E 60° E 90° E (UK) 1 Afghanistan 8 Burkina Faso 13 Comoros & 18 Equatorial Guinea 25 Guinea–Bissau 32 Malawi 39 Nigeria 45 Senegal 51 Suriname 58 Tuvalu 2 Bangladesh 9 Burundi NorwayMayotte 19 Eritrea 26 Guyana 33 Marshall Islands 40 North Korea 46 Sierra Leone 52 Swaziland 59 Uganda 3 Benin 10 Cambodia 14 Congo, Rep. -
“The Story of the Seasons”
“The Story of the Seasons” The Earth takes 365 and 1/4 days to complete one revolution around the sun and this amount of time is called a “year.” Every four years, 1/4 of a day will add up to 24- hour day, and we add an extra day (February 29th) to the calendar. This is why we have a “leap year” with one extra day every four years. The Earth’s orbit is nearly circular (or slightly elliptical) and Earth is actually closer to the sun during the northern hemisphere’s winter months. Summer On the first day of summer, June 20 or 21st, the Earth’s Northern Hemisphere is tilted 23.5° toward the sun. The day is known as the summer solstice. On this day the sun is at its highest point in the Northern Hemisphere sky at noon and directly over the Tropic of Cancer (the 23.5°N parallel of latitude). Solstice means “sun stop” in Latin. When the Northern Hemisphere is tilted toward the sun, that part of the Earth receives more direct rays of sunlight during the daytime than the Southern Hemisphere does. The Southern Hemisphere is tilted away from the sun and therefore, receives the sun’s rays at an angle. As a result, it is summer in the Northern Hemisphere and winter in the Southern Hemisphere. Conversely, during our winter months when the Northern Hemisphere is tilted away from the sun, it is summer in the Southern Hemisphere. During the summer, the land, oceans, and atmosphere in the Northern Hemisphere receive more direct rays of sunlight. -
Tropical Belt
Post-Visit Activity: Tropical Belt GRADE LEVEL K-3rd; California Content Standards for K, 1st and 3rd SUBJECTS Earth Sciences, Physical Sciences, History-Social Sciences DURATION Preparation: 10 minutes Activity: 45 minutes SETTING Classroom Students will: 1. locate the equator, Tropic of Cancer and Tropic of Capricorn on a map and globe of the world 2. identify and color the locations of tropical rainforests on a world map Materials world maps (one map per student) transparency (one per class) transparency markers crayons (one set per student) hole puncher (one per class) yarn (one ball per class) scissors (one per student) inflatable globe (one per class) Vocabulary equator: an imaginary circle around the middle of the Earth that divides the planet into two equal halves—the Northern Hemisphere and the Southern Hemisphere latitude: gives the location of a place on Earth north or south of the equator. Latitude measured in degrees (marked with °) ranging from 0° at the Equator (low latitude) to 90° at the poles (90° N for the North Pole or 90° S for the South Pole; high latitude). Tropic of Cancer: latitude 23°5' north of the equator and the most northerly latitude at which the sun can shine directly overhead Tropic of Capricorn: latitude 23°5' south of the equator and the most southerly latitude at which the sun can shine directly overhead Teacher Background The tropics are the geographic regions of the world centered on the equator. They are located in the equatorial region between the Tropic of Cancer (23°27’N) and the Tropic of Capricorn (23°27’S). -
Rangifer Tarandus Caribou) in BRITISH COLUMBIA
THE EARLY HISTORY OF WOODLAND CARIBOU (Rangifer tarandus caribou) IN BRITISH COLUMBIA by David J. Spalding Wildlife Bulletin No. B-100 March 2000 THE EARLY HISTORY OF WOODLAND CARIBOU (Rangifer tarandus caribou) IN BRITISH COLUMBIA by David J. Spalding Ministry of Environment, Lands and Parks Wildlife Branch Victoria BC Wildlife Bulletin No. B-100 March 2000 “Wildlife Bulletins frequently contain preliminary data, so conclusions based on these may be sub- ject to change. Bulletins receive some review and may be cited in publications. Copies may be obtained, depending upon supply, from the Ministry of Environment, Lands and Parks, Wildlife Branch, P.O. Box 9374 Stn Prov Gov, Victoria, BC V8W 9M4.” © Province of British Columbia 2000 Canadian Cataloguing in Publication Data Spalding, D. J. The early history of woodland caribou (Rangifer tarandus caribou) in British Columbia (Wildlife bulletin ; no. B-100) Includes bibliographical references : p. 60 ISBN 0-7726-4167-6 1. Woodland caribou - British Columbia. 2. Woodland caribou - Habitat - British Columbia. I. British Columbia. Wildlife Branch. II. Title. III. Series: Wildlife bulletin (British Columbia. Wildlife Branch) ; no. B-100 QL737.U55S62 2000 333.95’9658’09711 C00-960085-X Citation: Spalding, D.J. 2000. The Early History of Woodland Caribou (Rangifer tarandus caribou) in British Columbia. B.C. Minist. Environ., Lands and Parks, Wildl. Branch, Victoria, BC. Wildl. Bull. No. 100. 61pp. ii DISCLAIMER The views expressed herein are those of the author(s) and do not necessarily represent those of the B.C. Ministry of Environment, Lands and Parks. In cases where a Wildlife Bulletin is also a species’ status report, it may contain a recommended status for the species by the author. -
Hemisphere Equator the Arctic the Antarctic Tropics Tropic of Cancer
Half of a sphere or ball. People use the word to describe one half of the earth. The Hemisphere earth can be divided into the northern and southern hemispheres. Imaginary line around the middle of the Earth at an equal distance from the North Equator and South Pole. North and South Pole The places on earth which are the farthest north and the farthest south. The area of the world around the North Pole. It is extremely cold and there is very The Arctic little light in winter and very little darkness in summer. The Antarctic The area of the world around the South Pole. The region of the world around the equator. The part of the earth where the sun Tropics shines directly downwards. Tropic of Cancer An imaginary line which marks the northern edge of the tropics. 23.5° north Tropic of Capricorn An imaginary line which marks the southern edge of the tropics. 23.5° south Latitude Indicates the distance north or south of the equator. Longitude Indicates the distance to the east or west of the prime meridian. The line of longitude at zero degrees from which all other lines of longitude are Prime Meridian calculated. It passes through Greenwich, England. Normal body temperature is 36.5—37.5 °C. Hypothermia affects the body when its temperature drops below 35°C. Hypothermia is a potentially dangerous drop in body temperature, usually caused by prolonged exposure to cold temperatures You can use the sun to navigate if you are lost. The sun rises in the east and sets in the west. -
Compendium on Tropical Meteorology for Aviation Purposes
Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 930 Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WMO-No. 930 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at https://public.wmo.int/en/ meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 930 © World Meteorological Organization, 2020 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-10930-9 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
James K. Polk: Territorial Expansionist and the Evolution Of
JAMES K. POLK: TERRITORIAL EXPANSIONIST AND THE EVOLUTION OF PRESIDENTIAL POWER Chris Blubaugh A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS May 2013 Committee: Dr. Scott C. Martin, Advisor Dr. Edmund J. Danziger © 2013 Chris Blubaugh All Rights Reserved iii ABSTRACT Dr. Scott C. Martin, Advisor This thesis argues that through President James K. Polk’s leadership style (micro-managing domestic/foreign issues), his understanding of bureaucracy, and dominating his Cabinet, enabled Polk to achieve what his predecessors could not. Furthermore, Polk’s leadership and administrative style foreshadowed, and perhaps provided a precedent for the modern American presidency. To demonstrate Polk’s leadership style, two areas must be examined. First, explain Polk’s keys to success while in office, in particular his leadership style in relation to his policies. President Polk’s direct involvement in domestic and foreign issues enabled him to achieve his four administrative goals: tariff reduction, creation of an Independent Treasury, settlement of the Oregon Territory between the U.S. and England, and acquiring California. For example, he pushed economic legislation in Congress (Independent Treasury), and micro-managed the Mexican War to accomplish territorial objectives. Secondly, examine the departure that President Polk made from previous administrations in regards to administrative skill. Compared to preceding administrations, President Polk was an excellent leader who firmly managed his Cabinet. He consulted his Cabinet on policy questions, but the final decision was his to make. Furthermore, he knew precisely what he wanted to accomplish as president, and he understood the political channels he needed to consult to achieve his goals.