I NUMERICAL ANALYSIS of the EFFECTS of ATMOSPHERIC

Total Page:16

File Type:pdf, Size:1020Kb

I NUMERICAL ANALYSIS of the EFFECTS of ATMOSPHERIC NUMERICAL ANALYSIS OF THE EFFECTS OF ATMOSPHERIC PARAMETERS ON SPACE LAUNCH CENTER SAFETY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY İBRAHİM YAMAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING JANUARY 2016 i Approval of the thesis: NUMERICAL ANALYSIS OF THE EFFECTS OF ATMOSPHERIC PARAMETERS ON SPACE LAUNCH CENTER SAFETY submitted by İBRAHİM YAMAN in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver . Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Tuna Balkan . Head of Department, Mechanical Engineering Prof. Dr. Mehmet Haluk Aksel . Supervisor, Mechanical Engineering Dept., METU Dr. Mehmet Ali Ak . Co-Supervisor, Roketsan Missiles Inc. Examining Committee Members Prof. Dr. Kahraman Albayrak . Mechanical Engineering Dept., METU Prof. Dr. Mehmet Haluk Aksel . Mechanical Engineering Dept., METU Assoc. Dr. Mehmet Metin Yavuz . Mechanical Engineering Dept., METU Asst. Dr. Cüneyt Sert . Mechanical Engineering Dept., METU Asst. Dr. Özgür Uğraş Baran . Mechanical Engineering Dept., TEDU Date: . iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : İbrahim Yaman Signature : iv ABSTRACT NUMERICAL ANALYSIS OF THE EFFECTS OF ATMOSPHERIC PARAMETERS ON SPACE LAUNCH CENTER SAFETY Yaman, İbrahim M.S., Department of Mechanical Engineering Supervisor: Prof. Dr. M. Haluk Aksel January 2016, 147 Pages This thesis study aims at the problem of space launch center safety which is dependent on launch vehicle conceptual design and atmospheric parameters. Selection of the concept at the initial step of the satellite launch vehicle affects the project cost and space launch center safety directly. It is also important to model properties of atmospheric conditions and conduct safety analysis. Successful mission for a launch vehicle depends on providing the total velocity requirement. In this study, launch vehicle performance that is necessary for a successful mission was modelled. Different launch vehicle configurations are compared using a parametric cost model and best alternative in terms of lifetime cost is selected to be used for the safety analysis of space launch center safety. Atmospheric parameters, variation of temperature and pressure with altitude and winds with their deviations are modelled. Drop points of launch vehicle fragments under different atmospheric conditions are analyzed. In addition, seasonal variations of safety distance requirements due to secondary effects such as temperature, pressure and toxic pollutants are calculated. Keywords: Launch vehicle, Launch center safety, Launch vehicle cost analysis, Synthetic wind profile, Safety distances v ÖZ ATMOSFER PARAMETRELERİNİN UYDU FIRLATMA MERKEZİ GÜVENLİĞİNE ETKİLERİNİN NUMERİK ANALİZLERİ Yaman, İbrahim Yüksek Lisans, Makina Mühendisliği Bölümü Tez Yöneticisi: Prof. Dr. M. Haluk Aksel Ocak 2016, 147 sayfa Bu tez çalışmasında uydu fırlatma sistemi konfigürasyonu ve atmosfer parametrelerine bağlı olan uydu fırlatma merkezi güvenliği ele alınmıştır. Uydu fırlatma sistemi projelerinin ilk adımı olan kavramsal tasarımda yapılan kavram seçimi proje maliyetine ve fırlatma alanı güvenliğine doğrudan etki etmektedir. Atmosfer koşullarının modellenmesi fırlatma alanı açısından ayrıca önemlidir. Uydu fırlatma sistemlerinin görevlerini yerine getirebilmesi toplam hız ihtiyacının sistem tarafından sağlanabilmesine bağlıdır. Bu çalışmada görev için gereken uydu fırlatma sistemi performansı modellenmiştir. Fırlatma aracı alternatifleri parametrik bir maliyet modeli yardımı ile karşılaştırılmış ve toplam maliyet bakımından en iyi çözüm fırlatma merkezi güvenlik analizlerinde kullanılmak üzere seçilmiştir. Atmosfer parametreleri, sıcaklık ve basıncın yüksekliğe bağlı değişimi ve rüzgarlar ile bunların ortalama değerlerinden sapmaları modellenmiştir. Kaza durumları için fırlatma aracı parçalarının farklı atmosfer koşullarındaki düşme noktaları incelenmiştir. Ayrıca sıcaklık, basınç ve toksik kirleticer gibi ikincil etkilerin mevsimsel koşullara bağlı güvenlik mesafeleri hesaplanmıştır. Anahtar Kelimeler: Fırlatma aracı, Fırlatma alanı güvenliği, Fırlatma aracı maliyeti, Sentetik rüzgar profili, Güvenlik mesafeleri vi To My Family vii ACKNOWLEDGMENTS I would like to express my deepest gratitude and thanks to my thesis supervisor Prof. Dr. M. Haluk Aksel for his patience on me, invaluable guidance and encouragement throughout this study. I would also like to express sincere gratefulness to my colleagues in Roketsan A. Ş. who helped me through with their suggestions and valuable comments. Special thanks to my family that give me an insight look to any kind of problem and help me to gain a valuable self-confidence for my studies. Finally, I would like to thank my loved ones and friends, who have supported me throughout entire process and give me courage, both by keeping me cheerful and helping me going on. I will be grateful forever for your love and for the time spent together. Ankara, January 2016 İbrahim Yaman viii TABLE OF CONTENTS ABSTRACT .......................................................................................................... v ÖZ ........................................................................................................................vi ACKNOWLEDGMENTS .................................................................................. viii TABLE OF CONTENTS ......................................................................................ix LIST OF TABLES .............................................................................................. xii LIST OF FIGURES ............................................................................................ xiv LIST OF SYMBOLS .........................................................................................xvii LIST OF ABBREVIATIONS .............................................................................. xx CHAPTERS 1. INTRODUCTION ............................................................................................. 1 1.1. MOTIVATION .......................................................................................... 7 1.2. LITERATURE SURVEY ........................................................................... 9 1.3. SCOPE ..................................................................................................... 15 2. LAUNCH VEHICLE PERFORMANCE .......................................................... 17 2.1. CLASSIFICATION .................................................................................. 17 2.1.1. Reusable Launch Vehicles ................................................................. 17 2.1.2. Expandable Launch Vehicles ............................................................. 19 2.1.3. Recent Developments ........................................................................ 20 2.1.4. Future Projects ................................................................................... 23 2.2. LAUNCH VEHICLE PERFORMANCE .................................................. 24 2.2.1. Staging .............................................................................................. 27 2.2.2. Velocity Requirement ........................................................................ 29 2.2.3. Orbital Velocity ................................................................................. 30 2.2.4. Sun-Synchronous Orbits .................................................................... 35 2.2.5. Elliptic Orbits .................................................................................... 36 2.2.6. Rotational Gain .................................................................................. 36 ix 2.2.7. Gravity Losses ................................................................................... 38 2.2.8. Other Losses ...................................................................................... 39 2.2.9. Optimum Mass Distribution .............................................................. 42 3. ATMOSPHERIC PARAMETERS................................................................... 47 3.1. US STANDARD ATMOSPHERE 1976 .................................................. 48 3.2. NRLMSISE-00 ........................................................................................ 49 3.3. GLOBAL GRIDDED UPPER AIR STATISTICS (GGUAS) ................... 51 3.4. NASA MONTHLY VECTOR WIND PROFILE MODEL ....................... 54 3.4.1. Coordinate Systems ........................................................................... 54 3.4.2. Statistical Model and Wind Profile Construction ............................... 55 4. SPACE LAUNCH CENTER SAFETY ............................................................ 61 4.1. LAUNCH VEHICLE FRAGMENTS ....................................................... 61 4.1.1. Ballistic Coefficient ............................................................................ 62 4.1.2. Imparted Velocity ............................................................................... 64 4.2. SECONDARY EFFECTS ......................................................................
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • View and Print This Publication
    @ SOUTHWEST FOREST SERVICE Forest and R U. S.DEPARTMENT OF AGRICULTURE P.0. BOX 245, BERKELEY, CALIFORNIA 94701 Experime Computation of times of sunrise, sunset, and twilight in or near mountainous terrain Bill 6. Ryan Times of sunrise and sunset at specific mountain- ous locations often are important influences on for- estry operations. The change of heating of slopes and terrain at sunrise and sunset affects temperature, air density, and wind. The times of the changes in heat- ing are related to the times of reversal of slope and valley flows, surfacing of strong winds aloft, and the USDA Forest Service penetration inland of the sea breeze. The times when Research NO& PSW- 322 these meteorological reactions occur must be known 1977 if we are to predict fire behavior, smolce dispersion and trajectory, fallout patterns of airborne seeding and spraying, and prescribed burn results. ICnowledge of times of different levels of illumination, such as the beginning and ending of twilight, is necessary for scheduling operations or recreational endeavors that require natural light. The times of sunrise, sunset, and twilight at any particular location depend on such factors as latitude, longitude, time of year, elevation, and heights of the surrounding terrain. Use of the tables (such as The 1 Air Almanac1) to determine times is inconvenient Ryan, Bill C. because each table is applicable to only one location. 1977. Computation of times of sunrise, sunset, and hvilight in or near mountainous tersain. USDA Different tables are needed for each location and Forest Serv. Res. Note PSW-322, 4 p. Pacific corrections must then be made to the tables to ac- Southwest Forest and Range Exp.
    [Show full text]
  • Rsos/Fsos.  Personnel Directly Supporting Or Interacting with an RSO/FSO During NASA Range Flight Operations
    Range Flight Safety Operations Course: GSFC-RFSO Duration: 24 hours This introductory course focuses on the roles and responsibilities of the Range Safety Officer (RSO) or Flight Safety Officer (FSO) during Range Flight Safety activities and real-time support including pre- launch/flight, launch/flight, and recovery/landing for NASA Sounding Rocket, Unmanned Aircraft System, and Expendable Launch Vehicle operations. Range Flight Safety policies, guidelines, and requirements applicable to the duties of an RSO for each vehicle type are reviewed. Launch/Flight constraints and commit criteria, mission rules, day of launch/flight activities, and display techniques are presented. Tracking and telemetry, post-flight operations, lessons learned, and the use and importance of contingency plans are discussed. This course includes several classroom exercises to reinforce techniques and procedures utilized during Range Flight Safety operations. Due to the unique interaction with real-world equipment, this course is conducted at Wallops Flight Facility and class size is limited to a maximum of twelve (12) students. Prerequisites: SMA-AS-WBT-410, Range Flight Safety Orientation, or equivalent experience and/or training, is required. SMA-AS-WBT-335, Flight Safety Systems, or equivalent experience and/or training, is required. SMA-AS-WBT-435, NASA Range Flight Safety Analysis, or equivalent experience and/or training, is required. Target Audience: Anyone identified as needing initial training for personnel performing RSO/FSO functions during NASA range flight operations. Personnel in the management chain responsible for oversight of RSOs/FSOs. Personnel directly supporting or interacting with an RSO/FSO during NASA range flight operations. RELEASED - Printed documents may be obsolete; validate prior to use..
    [Show full text]
  • Nachbrenner 2021
    NACHBRENNER 2021 21.05.2021-10 Wissenswertes aus dem Bereich Militärluftfahrt und Luftkriegsführung Quelle: Ländercode: Schlüsselinformationen: Datum: Artikelname: 1 Inhaltsverzeichnis • 02 Sicherheitspolitik Schweiz und Air2030 • 07 Luft und Marineluftstreitkräfte sowie strategische und weitere luftgestützte Einsatzmittel • 16 Hubschrauber und Kipprotor-Flugzeuge • 18 Unbemannte Luftfahrzeuge (UAV) und Robotik • 21 Bewaffnung und weitere Nutzlasten • 23 Air Power • 39 Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance • 40 Cyber- und Electromagnetic Warfare • 42 Boden- und seegestützte Luftverteidigungssysteme • 44 Boden- und seegestützte Einsatzkräfte, Strategische Kampfmittel und Space Forces • 45 Geo- und Sicherheitspolitik, militärische Übungen • 48 Analysen, Studien, Reports, Fact Sheets, Infographics, Podcasts und Videos Sicherheitspolitik Schweiz und Air2030 www.proschweiz.ch Pro Schweiz Inhalt «Das Magazin für eine Das Land des Eigensinns 2 optimistische und Sicherheitspolitik – Wo stehen wir heute? 4 selbstsichere Schweiz» - Sicherheit gibt es nicht umsonst - Die Sichtweise zweier Luftwaffenoffizierinnen 10 Ausgabe Nr. 3 autonomiesuisse will Erfolgsmodell Schweiz sichern 16 Die Schweiz muss weder kuschen noch sich verstecken 18 Impressum 20 admin.ch Ernennung eines Der Bundesrat hat an seiner Sitzung vom 19. Mai 2021 Oberst i Gst Peter Bruns per 1. Juli 2021 zum 19.05.2021 Höheren Stabsoffiziers Kommandanten der Luftwaffenausbildungs- und Trainingsbrigade, unter gleichzeitiger Beförderung zum der Armee – Brigadier, ernannt. Er folgt auf Brigadier Peter Soller, den der Bundesrat am 12. März 2021 zum Kommandanten Br Peter Bruns Lehrverband Fliegerabwehr 33 ernannt hat. (Vollständige Medienmitteilung abrufbar unter: 2 https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-83579.html) latribune.fr Rafale, F-35, Eurofighter The Swiss Federal Council is expected to announce the choice of its future fighter aircraft by the end of June.
    [Show full text]
  • Centaur Dl-A Systems in a Nutshell
    NASA Technical Memorandum 88880 '5 t I Centaur Dl-A Systems in a Nutshell (NASA-TM-8888o) CElTAUR D1-A SYSTEBS IN A N87- 159 96 tiljTSBELL (NASA) 29 p CSCL 22D Andrew L. Gordan Lewis Research Center Cleveland, Ohio January 1987 . CENTAUR D1-A SYSTEMS IN A NUTSHELL Andrew L. Gordan National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY This report identifies the unique aspects of the Centaur D1-A systems and subsystems. Centaur performance is described in terms of optimality (pro- pellant usage), flexibility, and airborne computer requirements. Major I-. systems are described narratively with some numerical data given where it may 03 CJ be useful. v, I W INTRODUCT ION The Centaur D1-A launch vehicle continues to be a key element in the Nation's space program. The Atlas/Centaur and Titan/Centaur combinations have boosted into orbit a variety of spacecraft on scientific, lunar, and planetary exploration missions and Earth orbit missions. These versatile, reliable, and accurate space booster systems will contribute to many significant space pro- grams well into the shuttle era. Centaur D1-A is the latest version of the Nation's first high-energy cryogenic launch vehicle. Major improvements in avionics and payload struc- ture have enhanced mission flexibility and mission success reliability. The liquid hydrogen and liquid oxygen propellants and the pressurized stainless steel structure provide a top-performance vehicle. Centaur's primary thrust comes from two Pratt 8, Whitney constant- thrust, turbopump-fed, regeneratively cooled, liquid-fueled rocket engines. Each RL10A-3-3a engine can generate 16 500 lb of thrust, for a total thrust of 33 000 lb.
    [Show full text]
  • Mscthesis Joseangelgutier ... Humada.Pdf
    Targeting a Mars science orbit from Earth using Dual Chemical-Electric Propulsion and Ballistic Capture Jose Angel Gutierrez Ahumada Delft University of Technology TARGETING A MARS SCIENCE ORBIT FROM EARTH USING DUAL CHEMICAL-ELECTRIC PROPULSION AND BALLISTIC CAPTURE by Jose Angel Gutierrez Ahumada MSc Thesis in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Wednesday May 8, 2019. Supervisor: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Dr. Ryan Russell, The University of Texas at Austin Thesis committee: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Prof. dr. ir. Pieter N.A.M. Visser, TU Delft ir. Ron Noomen, TU Delft Dr. Angelo Cervone, TU Delft This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover picture adapted from https://steemitimages.com/p/2gs...QbQvi EXECUTIVE SUMMARY Ballistic capture is a relatively novel concept in interplanetary mission design with the potential to make Mars and other targets in the Solar System more accessible. A complete end-to-end interplanetary mission from an Earth-bound orbit to a stable science orbit around Mars (in this case, an areostationary orbit) has been conducted using this concept. Sets of initial conditions leading to ballistic capture are generated for different epochs. The influence of the dynamical model on the capture is also explored briefly. Specific capture trajectories are then selected based on a study of their stabilization into an areostationary orbit.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • JCT Develops Solutions to Environmental Problems P.O.BOX 16031, JERUSALEM 91160 ISRAEL 91160 JERUSALEM 16031, P.O.BOX
    NISSAN 5768 / APRIL 2008, VOL. 13 Green and Clean JCT Develops Solutions to Environmental Problems P.O.BOX 16031, JERUSALEM 91160 ISRAEL 91160 JERUSALEM 16031, P.O.BOX NISSAN 5768 / APRIL 2008, VOL. 13 Green and Clean JCT Develops Solutions to Environmental Problems P.O.BOX 16031, JERUSALEM 91160 ISRAEL 91160 JERUSALEM 16031, P.O.BOX COMMENTARY JERUSALEM COLLEGE OF TECHNOLOGY PRESIDENT Shalom! opportunity to receive an excellent education Prof. Joseph S. Bodenheimer allowing them to become highly-skilled, ROSH HAYESHIVA Rabbi Z. N. Goldberg Of the many things sought after professionals. More important ROSH BEIT HAMIDRASH we are proud at JCT, for our students is the opportunity available Rabbi Natan Bar Chaim nothing is more RECTOR at the College to receive an education Prof. Joseph M. Steiner prized than our focusing on Jewish values. It is this DIRECTOR-GENERAL students. In every education towards values that has always Dr. Shimon Weiss VICE PRESIDENT FOR DEVELOPMENT issue of “Perspective” been the hallmark of JCT and it is this AND EXTERNAL AFFAIRS we profile one of our students as a way of commitment to Jewish ethical values that Reuven Surkis showing who they are and of sharing their forms the foundation from which Israeli accomplishments with you. society will grow and flourish - and our EDITORS Our student body of 2,500 is a students and graduates take pride in being Rosalind Elbaum, Debbie Ross, Penina Pfeuffer microcosm of Israeli society: 21% are Olim committed to this process. DESIGN & PRODUCTION (immigrants) from the former Soviet Union, As we approach the Pesach holiday, the Studio Fisher Ethiopia, South America, North America, 60th anniversary of the State of Israel and JCT Perspective invites the submission of arti- Europe, Australia and South Africa, whilst the 40th anniversary of JCT, let us reaffirm cles and press releases from the public.
    [Show full text]
  • The New Commercial Spaceports
    The New Commercial Spaceports Derek Webber1 Spaceport Associates, Rockville, Maryland 20852,USA During the second half of the 20th Century, the first launch sites were established, mostly during the ‘fifties and ‘sixties. They were originally a product of the cold war and served military and civil government purposes. They were used for launching sounding rockets, space probes, for missile testing and injecting military, scientific, and eventually commercial satellites into orbit. Initially the sites were in either the USA or the former Soviet Union, but gradually they were introduced in other countries too. Governmental astronaut crews were also sent into orbit from these early launch sites. As the 21st Century begins, a new era is emerging where a fuller range of commercial missions will be undertaken and moreover where public space travel will become common place. This situation ushers in a new kind of launch facility, known as the commercial spaceport. I. Introduction here will be vastly different requirements for the future public space travelers, and their families and friends, T than are normally available at the traditional launch sites built fifty years ago. Indeed, the creation of this emerging kind of facility, the commercial spaceport, is in some ways a very necessary part of the creation of the new space businesses that the twenty-first century offers. It will be essential that, while the space tourism companies are becoming established in order to provide services to the new public space travelers, suitable ground based facilities will be developed in parallel to sustain and support these operations. This paper provides an insight into these commercial spaceport facilities, and their characteristics, in order to assist in both design and business planning processes.
    [Show full text]
  • 10/2/95 Rev EXECUTIVE SUMMARY This Report, Entitled "Hazard
    10/2/95 rev EXECUTIVE SUMMARY This report, entitled "Hazard Analysis of Commercial Space Transportation," is devoted to the review and discussion of generic hazards associated with the ground, launch, orbital and re-entry phases of space operations. Since the DOT Office of Commercial Space Transportation (OCST) has been charged with protecting the public health and safety by the Commercial Space Act of 1984 (P.L. 98-575), it must promulgate and enforce appropriate safety criteria and regulatory requirements for licensing the emerging commercial space launch industry. This report was sponsored by OCST to identify and assess prospective safety hazards associated with commercial launch activities, the involved equipment, facilities, personnel, public property, people and environment. The report presents, organizes and evaluates the technical information available in the public domain, pertaining to the nature, severity and control of prospective hazards and public risk exposure levels arising from commercial space launch activities. The US Government space- operational experience and risk control practices established at its National Ranges serve as the basis for this review and analysis. The report consists of three self-contained, but complementary, volumes focusing on Space Transportation: I. Operations; II. Hazards; and III. Risk Analysis. This Executive Summary is attached to all 3 volumes, with the text describing that volume highlighted. Volume I: Space Transportation Operations provides the technical background and terminology, as well as the issues and regulatory context, for understanding commercial space launch activities and the associated hazards. Chapter 1, The Context for a Hazard Analysis of Commercial Space Activities, discusses the purpose, scope and organization of the report in light of current national space policy and the DOT/OCST regulatory mission.
    [Show full text]
  • Celestial Coordinate Systems
    Celestial Coordinate Systems Craig Lage Department of Physics, New York University, [email protected] January 6, 2014 1 Introduction This document reviews briefly some of the key ideas that you will need to understand in order to identify and locate objects in the sky. It is intended to serve as a reference document. 2 Angular Basics When we view objects in the sky, distance is difficult to determine, and generally we can only indicate their direction. For this reason, angles are critical in astronomy, and we use angular measures to locate objects and define the distance between objects. Angles are measured in a number of different ways in astronomy, and you need to become familiar with the different notations and comfortable converting between them. A basic angle is shown in Figure 1. θ Figure 1: A basic angle, θ. We review some angle basics. We normally use two primary measures of angles, degrees and radians. In astronomy, we also sometimes use time as a measure of angles, as we will discuss later. A radian is a dimensionless measure equal to the length of the circular arc enclosed by the angle divided by the radius of the circle. A full circle is thus equal to 2π radians. A degree is an arbitrary measure, where a full circle is defined to be equal to 360◦. When using degrees, we also have two different conventions, to divide one degree into decimal degrees, or alternatively to divide it into 60 minutes, each of which is divided into 60 seconds. These are also referred to as minutes of arc or seconds of arc so as not to confuse them with minutes of time and seconds of time.
    [Show full text]