Evolution of the Helvetic Continental Margin

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Helvetic Continental Margin Evolution of the Helvetic Continental margin Christoph Klein 294826, M.Sc. Georesources Management Supervisors: Prof. Janos Urai Prof. Ralf Littke RWTH Aachen University Geländeseminar Alpen Christoph Klein 294826 Table of Contents 1. Introduction ..................................................................................................................................... 2 2. Evolution of Pangaea ....................................................................................................................... 3 3. Evolution of the Helvetic Continental margin ................................................................................. 6 Triassic/Jurassic ................................................................................................................................... 6 Cretaceous ........................................................................................................................................... 6 4. Conclusion ....................................................................................................................................... 7 5. List of references ............................................................................................................................. 8 1. Introduction In 1911, Nowak proposed the term of the Helveticum (from lat. Helvetia). Firstly described in Switzerland it is the most external and lowermost superunit and equivalent to upper Bavarian layers and the Dauphinois in France. The Helveticum is a geologic subdivision of the Alps and described as marine sediments from upper Cretaceous and Tertiary origin. Nowadays, formations of the Helveticum can be found in the northern Alpine mountain ranges where outcrops are present at the surface. The Helvetic nappes were detached from their former crystalline basement of Penninic origin and massively thrusted over the Infrahelvetic complex and the external massif of the Alps. In Switzerland, Germany and Austria the Helvetic nappes are also partly thrusted over the Molasse Basin. Over the top of the Helvetic nappes the Penninic nappes were overthrusted. The region is tectonically defined to the South by Ultrahelvetic respectively Flysch formations and to the North by sediments of the folded Molasse (see Figure 1). For the reason that the Mesozoic orogeny of the Alps was controlled by subduction, collision and closure of two oceanic domains, results of bathymetric research showed that the Tertiary Helveticum was originally deposited at the southern margin of the European plate. The sedimentation was subdivided in the northern Helvetic facies and the southern Helvetic facies. Those facies are divided by the Intrahelvetic barrier, which is regionally different in its thickness as well as in its composition. Geländeseminar Alpen Christoph Klein 294826 Figure 1: Palaeogeographic map of the Alps, present-day situation of the superunits of the Alps. Note: not a precise map in tectonical matter (After Froitzheim et al., 1996). 2. Evolution of Pangaea The evolution of the Alps is a typical example of a collisional belt and was strongly influenced by the processes that were present during the breaking apart of the ancient Pangaean continent. By splitting apart a lot of different zones of sedimentation were created which were for example deep ocean basins, shallow marginal seas and barrier zones. In the late Triassic 230 M years ago, the Pangaean continent was forced to split along a rifting system. This rift was induced from the Tethys Ocean between Arabia and Greece-Italy and led to a breaking apart between Gondwana and Laurasia (Wegener, 1920). In the following the Palaeotethys was closed by subduction, so that the Turkish island was connected to the Laurasian Continent (see Figure 2). Presumably 170 M years ago, in the eastern parts the rifting system was relocated to the North and cut off the islands of Greece-Italy from the Laurasian Continent, which was the birth of the Piemont Ocean. It consists mainly of oceanic lithosphere and is defined mainly by a classic alpine ophiolitic basement. In westerly direction the rift evolved further in the direction to Mexico and began to separate North America from Africa-South America. The created graben was the ancestor of the modern Atlantic Ocean and made a connection to the Neotethys Ocean (see Figure 3). The central Atlantic Ocean was born approximately 120 M years ago, when North America and Africa drifted more and more apart. Iberia began to separate from North America, which was the consequence of the mid-ocean ridge of the Atlantic Ocean as well as of two transform faults, which formed northerly and southerly of Iberia. Additional transform faults propagated on both sides of Greenland. The situation of the southern European Continent is shown in Figure 5. Iberia shows an appendix, the Briançonnais-Microcontinent, which is framed to the North by the Valais Ocean and on the southern side by the Piemont-Ocean. (Pfiffner, 2009) Geländeseminar Alpen Christoph Klein 294826 Figure 2: Tectonic situation of the Pangaean continent in the Early Triassic approximately 237 M years ago. Birth of the growth of a rift system between Gondwana and Laurasia coming from the Tethys Ocean (Scotese, 1997). At that time the Dauphinois-Helveticum continental margin began to form on the southeast border of the European Continent. In between the Helvetic Continental margin and the South-, and East- alpine formations laid the Penninic Ocean. Those three areas are the most important for the looks of our Alps nowadays (Pfiffner, 2009). The Piemont Ocean was then influenced by multiple transform faults, which are a hint for an opening in an asynchronous matter as a consequence of the counter clockwise movement of Africa. The Briançonnais-Microcontinent, which largely consist of platform sediments with stratigraphic gaps, separated in the following from Iberia. Figure 3: Tectonic situation around 200 M years ago. Birthplace of the Central Atlantic Ocean and the Gulf of Mexico as a consequence of the breaking apart of North America from Africa. Palaeotethys has already been closed (Scotese, 1997). Geländeseminar Alpen Christoph Klein 294826 During the Cretaceous period a western oriented convergent plate movement of Europe and Africa- Arabia led to the closure of the Piemont-Ocean by subduction and was followed by the closure of the Valais-Ocean in the Cenozoic by collision of the Briançonnais-Microcontinent and the Adriatic continental margin (see Figure 5), later European continental margin (Dietrich, 1989). Complex tectonic movement led to the evolution of the Alps, which induced an even more complex geometry of the resulting rock formations. Figure 4: Late Cretaceous outlook of the earth’s tectonic situation. Growth of the Atlantic Ocean, counter clockwise movement of the African continent and beginning closure of the Piemont-Ocean and collision of the Briançonnais- Microcontinent (Scotese, 1997). Figure 5: Detailed outlook on the situation of the European Adriatic continental margin in the Early Cretaceous with the Briançonnais-Microcontinent and the Piemont Ocean (Penninic), (Pfiffner, 2009). Geländeseminar Alpen Christoph Klein 294826 3. Evolution of the Helvetic Continental margin a. Triassic/Jurassic Triassic sediments are prevalent sandstones and conglomerates. Being in the Triassic a continental stage, the Helvetic margin became a shelf in the Early Jurassic due to the opening of the Piemont Ocean, accompanied by the lateral spreading of both continental margins. The sequence of the sedimentary deposition was influenced by tectonic events and led in the Lower Jurassic (Lias) to a deposition of breccia, lime stones and sandstones. Additionally, dolomite can be found throughout this formation. The accumulation environment was shallow marine, which is proofed by ripple marks as well as cross lamination (Trümpy, 1975). On top of the dolomite layers a series of clay was formed due to lacustrine sedimentary conditions. In the middle of the Jurassic (Dogger) distractive geotectonics continued and induced huge fluctuation in the thickness of the different iron rich sandstone and breccia layers. In the following Late Jurassic (Malm) limestone was deposited from a deep sea environment and built formations that reach up to 500 m in thickness. Above that, limestone with alternating stratification of clay was deposited in a neritic depositional environment, which is explained and illustrated by Oolithes (Schmid, 2004). b. Cretaceous Figure 6: Strongly shortened geographic profile of the Alps at the end of the Early Cretaceous. Crosses: continental crust, white: sediment cover, black: oceanic crust, vertical ruling: lithospheric mantle (Froitzheim, 2012) Figure 6 shows the situation of the Alps at the end of the Early Cretaceous. The evolution of the Helvetic shelf in the Cretaceous can be separated into two sequences. The first sequence was a shallowing-upwards-sequence as a result of the uplift of the European continental shelf beginning in the Late Cretaceous. As a result of the uplift the Helvetic Ocean experienced a regression towards the South, which led to a fall dry of the northern Helvetic sedimentation area. Clay Formations (“Marnes Bleues”) were deposited, which can be dated to a worldwide anoxic event and have their maximum of thickness in the centre of the Vocontian Basin (Steinmann, 1994). Due to large scale tectonic changes it came in the Lutetian to an inversion of the continental shelf movement, which led Geländeseminar Alpen Christoph Klein 294826
Recommended publications
  • Fluid Flow and Rock Alteration Along the Glarus Thrust
    1661-8726/08/020251-18 Swiss J. Geosci. 101 (2008) 251–268 DOI 10.1007/s00015-008-1265-1 Birkhäuser Verlag, Basel, 2008 Fluid flow and rock alteration along the Glarus thrust JEAN-PIERRE HÜRZELER 1 & RAINER ABART 2 Key words: Glarus thrust, rock alteration, strain localization, Lochseiten calc tectonite ABSTRACT Chemical alteration of rocks along the Glarus overthrust reflects different the footwall units. In the northern sections of the thrust, the Lochseiten calc- stages of fluid rock interaction associated with thrusting. At the base of the tectonite has a distinct chemical and stable isotope signature, which suggests Verrucano in the hanging wall of the thrust, sodium was largely removed dur- that it is largely derived from Infrahelvetic slices, i.e. decapitated fragments of ing an early stage of fluid-rock interaction, which is ascribed to thrust-paral- the footwall limestone from the southern sections of the thrust, which were lel fluid flow in a damage zone immediately above the thrust. This alteration tectonically emplaced along the thrust further north. Only at the Lochseiten leads to the formation of white mica at the expense of albite-rich plagioclase type locality the original chemical and stable isotope signatures of the calc- and potassium feldspar. This probably enhanced mechanical weakening of the tectonite were completely obliterated during intense reworking by dissolution Verrucano base allowing for progressive strain localization. At a later stage and re-precipitation. of thrusting, fluid-mediated chemical exchange between the footwall and the hanging wall lithologies produced a second generation of alteration phenom- ena. Reduction of ferric iron oxides at the base of the Verrucano indicates DEDICATION fluid supply from the underlying flysch units in the northern section of the thrust.
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]
  • The Glarus Thrust: Excursion Guide and Report of a Field Trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16
    1661-8726/08/020323-18 Swiss J. Geosci. 101 (2008) 323–340 DOI 10.1007/s00015-008-1259-z Birkhäuser Verlag, Basel, 2008 The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16. 09. 2006) MARCO HERWEGH 1, *, JEAN-PIERRE HÜRZELER 2, O. ADRIAN PFIFFNER 1, STEFAN M. SCHMID 2, RAINER ABART 3 & ANDREAS EBERT 1 Key words: Helvetics, Glarus thrust, deformation mechanism, mylonite, brittle deformation, geochemical alteration, fluid pathway PARTICIPANTS Ansorge Jörg (ETHZ) Nyffenegger Franziska (Fachhochschule Burgdorf, University of Bern) den Brok Bas (EAWAG-EMPA) Pfiffner Adrian (University of Bern) Dèzes Pierre (SANW) Schreurs Guido (University of Bern) Gonzalez Laura (University of Bern) Schmalholz Stefan (ETHZ) Herwegh Marco (University of Bern) Schmid Stefan (University of Basel) Hürzeler Jean-Pierre (University of Basel) Wiederkehr Michael (University of Basel) Imper David (GeoPark) Wilson Christopher (Melbourne University) Mancktelow Neil (ETHZ) Wilson Lilian (Melbourne University) Mullis Josef (University of Basel) ABSTRACT This excursion guide results form a field trip to the Glarus nappe complex or- and fluid flow, and (iii) the link between large-scale structures, microstruc- ganized by the Swiss Tectonic Studies Group in 2006. The aim of the excursion tures, and geochemical aspects. Despite 150 years of research in the Glarus was to discuss old and recent concepts related to the evolution of the Glarus nappe complex and the new results discussed during the excursion,
    [Show full text]
  • Tracing the Exhumation of the Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar Dating of White Mica in Eclogites
    1661-8726/08/01S191-16 Swiss J. Geosci. 101 (2008) Supplement 1, S191–S206 DOI 10.1007/s00015-008-1281-1 Birkhäuser Verlag, Basel, 2008 Tracing the exhumation of the Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar dating of white mica in eclogites WALTER KURZ 1, ROBERT HANDLER 2 & CHRISTIAN BERTOLDI 3 Key words: 40Ar/39Ar dating, white mica, eclogite exhumation, microstructures, Subpenninic nappes, Tauern Window ABSTRACT New radiometric ages from the Subpenninic nappes (Eclogite Zone and Rote maximum age due to the possible influence of homogenously distributed Wand – Modereck Nappe, Tauern Window) show that phengites formed under excess argon. During exhumation deformation was localised along distinct eclogite-facies metamorphic conditions retain their initial isotopic signature, mylonitic shear zones. This stage is mainly characterised by the formation of even when associated lithologies were overprinted by greenschist- to amphib- dynamically recrystallized omphacite2 and phengite. Deformation resulted in olite-facies metamorphism. Different stages of the eclogite-facies evolution the resetting of the Ar isotopic system within the recrystallized white mica. can be dated provided 40Ar/39Ar dating is combined with micro-structural Flat argon release spectra showing ages of 32 Ma within mylonites record the analyses. An age of 39 Ma from the Rote Wand – Modereck Nappe is inter- timing of cooling along the exhumation path, and the emplacement onto the preted to be close to the burial age of this unit. Eclogite deformation within Venediger Nappe. Ar-release patterns and 36Ar/40Ar vs. 39Ar/40Ar isotope cor- the Eclogite Zone started at the pressure peak along distinct shear zones, and relation analyses indicate no significant 40Ar-loss after initial closure, and only prevailed along the exhumation path.
    [Show full text]
  • Alpine Thermal and Structural Evolution of the Highest External Crystalline Massif: the Mont Blanc
    TECTONICS, VOL. 24, TC4002, doi:10.1029/2004TC001676, 2005 Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc P. H. Leloup,1 N. Arnaud,2 E. R. Sobel,3 and R. Lacassin4 Received 5 May 2004; revised 14 October 2004; accepted 15 March 2005; published 1 July 2005. [1] The alpine structural evolution of the Mont Blanc, nappes and formed a backstop, inducing the formation highest point of the Alps (4810 m), and of the of the Jura arc. In that part of the external Alps, NW- surrounding area has been reexamined. The Mont SE shortening with minor dextral NE-SW motions Blanc and the Aiguilles Rouges external crystalline appears to have been continuous from 22 Ma until at massifs are windows of Variscan basement within the least 4 Ma but may be still active today. A sequential Penninic and Helvetic nappes. New structural, history of the alpine structural evolution of the units 40Ar/39Ar, and fission track data combined with a now outcropping NW of the Pennine thrust is compilation of earlier P-T estimates and geo- proposed. Citation: Leloup, P. H., N. Arnaud, E. R. Sobel, chronological data give constraints on the amount and R. Lacassin (2005), Alpine thermal and structural evolution of and timing of the Mont Blanc and Aiguilles Rouges the highest external crystalline massif: The Mont Blanc, massifs exhumation. Alpine exhumation of the Tectonics, 24, TC4002, doi:10.1029/2004TC001676. Aiguilles Rouges was limited to the thickness of the overlying nappes (10 km), while rocks now outcropping in the Mont Blanc have been exhumed 1.
    [Show full text]
  • Strain Localization in the Morcles Nappe (Helvetic Alps, Switzerland)
    1661-8726/08/020341-20 Swiss J. Geosci. 101 (2008) 341–360 DOI 10.1007/s00015-008-1264-2 Birkhäuser Verlag, Basel, 2008 Strain localization in the Morcles nappe (Helvetic Alps, Switzerland) NICHOLAS AUSTIN 1, *, BRIAN EVANS 1, MARCO HERWEGH 2 & ANDREAS EBERT 2 Key words: rheology, calcite, localization, recrystallization, microstructure, crystallographic preferred orientation ABSTRACT Deformation in orogenic belts is frequently accommodated in calcite-rich structure at a range of locations, with varying peak metamorphic tempera- lithologies, owing to their relatively low strength, particularly compared to tures, along the Morcles nappe. The strain-rates predicted by extrapolation quartz-rich rocks. Here, we investigate the coupling between calcite grain size, of these laboratory relationships agree well with the geologic constraints. We the presence and mineralogy of second phases, and crystallographic preferred then applied the same approach to the samples from the present study. The orientation (CPO) in a transect through deformed limestones, perpendicu- results indicate that strain became progressively localized towards the thrust lar to the dominant foliation in the inverted limb of the Morcles nappe of contact of the Morcles nappe, leading to an increase in strain rate of >1 order the Swiss Helvetic Alps. Calcite grain size becomes progressively finer as the of magnitude in a zone <0.50 m thick. For localization to occur system and/or thrust contact is approached, and there is a concomitant increase in CPO in- material softening is necessary. If dislocation activity is positively correlated tensity, with the strongest CPO’s in the finest-grained, quartz-rich limestones, with CPO, then softening cannot have occurred by a complete transition to nearest the thrust contact.
    [Show full text]
  • Abstract the Helvetic Nappe System in Western Switzerland Is a Stack of Fold Nappes and Thrust Sheets Em
    ABSTRACT The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em- placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly de- formed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhorn nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glarüs thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called ‘mechanical paradox’ which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e.
    [Show full text]
  • The Glarus Thrust: Excursion Guide and Report of a Field Trip of the Swiss
    1661-8726/08/020323-18 Swiss J. Geosci. 101 (2008) 323–340 DOI 10.1007/s00015-008-1259-z Birkhäuser Verlag, Basel, 2008 The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16. 09. 2006) MARCO HERWEGH 1, *, JEAN-PIERRE HÜRZELER 2, O. ADRIAN PFIFFNER 1, STEFAN M. SCHMID 2, RAINER ABART 3 & ANDREAS EBERT 1 Key words: Helvetics, Glarus thrust, deformation mechanism, mylonite, brittle deformation, geochemical alteration, fluid pathway PARTICIPANTS Ansorge Jörg (ETHZ) Nyffenegger Franziska (Fachhochschule Burgdorf, University of Bern) den Brok Bas (EAWAG-EMPA) Pfiffner Adrian (University of Bern) Dèzes Pierre (SANW) Schreurs Guido (University of Bern) Gonzalez Laura (University of Bern) Schmalholz Stefan (ETHZ) Herwegh Marco (University of Bern) Schmid Stefan (University of Basel) Hürzeler Jean-Pierre (University of Basel) Wiederkehr Michael (University of Basel) Imper David (GeoPark) Wilson Christopher (Melbourne University) Mancktelow Neil (ETHZ) Wilson Lilian (Melbourne University) Mullis Josef (University of Basel) ABSTRACT This excursion guide results form a field trip to the Glarus nappe complex or- and fluid flow, and (iii) the link between large-scale structures, microstruc- ganized by the Swiss Tectonic Studies Group in 2006. The aim of the excursion tures, and geochemical aspects. Despite 150 years of research in the Glarus was to discuss old and recent concepts related to the evolution of the Glarus nappe complex and the new results discussed during the
    [Show full text]
  • Towards a Nappe Theory
    https://doi.org/10.5194/se-2019-130 Preprint. Discussion started: 26 August 2019 c Author(s) 2019. CC BY 4.0 License. Towards a nappe theory: Thermo-mechanical simulations of nappe detachment, transport and stacking in the Helvetic Nappe System, Switzerland Dániel Kiss1, Thibault Duretz2,1, and Stefan M. Schmalholz1 1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland 2Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France Correspondence: Dániel Kiss ([email protected]) Abstract. Tectonic nappes are observed for more than a hundred years. Although geological studies often refer to a “nappe theory”, the physical mechanisms of nappe formation are still incompletely understood. We apply two-dimensional numerical simulations of shortening of a passive margin, to investigate the thermo-mechanical processes of detachment, transport and stacking of 5 nappes. We use a visco-elasto-plastic model with standard creep flow laws and Drucker-Prager yield criterion. We consider tectonic inheritance with two initial mechanical heterogeneities: (1) lateral heterogeneity of the basement-cover interface due to half-grabens and horsts and (2) vertical heterogeneities due to layering of mechanically strong and weak sedimentary units. The model shows detachment and horizontal transport of a thrust nappe and stacking of this thrust nappe above a fold nappe. The detachment of the thrust sheet is triggered by stress concentrations around the sediment-basement contact and the resulting 10 brittle-plastic shear band formation. The horizontal transport is facilitated by a basal shear zone just above the basement-cover contact, composed of thin, weak sediments. Fold nappe formation occurs by a dominantly ductile closure of a half-graben and the associated extrusion of the half-graben fill.
    [Show full text]
  • The Tauern Window (Eastern Alps, Austria): a New Tectonic Map, with Cross-Sections and a Tectonometamorphic Synthesis
    Swiss J Geosci (2013) 106:1–32 DOI 10.1007/s00015-013-0123-y The Tauern Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and a tectonometamorphic synthesis Stefan M. Schmid • Andreas Scharf • Mark R. Handy • Claudio L. Rosenberg Received: 31 August 2012 / Accepted: 11 March 2013 Ó Swiss Geological Society 2013 Abstract We present a tectonic map of the Tauern Window pressure overprint of some of the units of the Tauern Window, and surrounding units (Eastern Alps, Austria), combined with has a long history, starting in Turonian time (around 90 Ma) a series of crustal-scale cross-sections parallel and perpen- and culminating in Lutetian to Bartonian time (45–37 Ma). dicular to the Alpine orogen. This compilation, largely based on literature data and completed by own investigations, Keywords Alpine tectonics Á Metamorphism Á reveals that the present-day structure of the Tauern Window Age dating Á Orogenesis Á Lithosphere dynamics is primarily characterized by a crustal-scale duplex, the Venediger Duplex (Venediger Nappe system), formed during the Oligocene, and overprinted by doming and lateral extru- 1 Introduction sion during the Miocene. This severe Miocene overprint was most probably triggered by the indentation of the Southalpine The Tauern Window of the Eastern Alps exposes exhumed Units east of the Giudicarie Belt, initiating at 23–21 Ma and parts of Europe-derived crust that were accreted to the base of linked to a lithosphere-scale reorganization of the geometry an Adria-derived upper plate, represented today by the of mantle slabs. A kinematic reconstruction shows that Austroalpine nappes (e.g., Schmid et al.
    [Show full text]
  • Interactions Between Tectonics Erosion and Sedimentation During The
    Interactions between tectonics erosion and sedimentation during the recent evolution of the Alpine orogen : analogue modeling insights Cécile Bonnet, Jacques Malavieille, J. Mosar To cite this version: Cécile Bonnet, Jacques Malavieille, J. Mosar. Interactions between tectonics erosion and sedimentation during the recent evolution of the Alpine orogen : analogue modeling insights. Tectonics, American Geophysical Union (AGU), 2007, 26 (6), pp.TC6016. 10.1029/2006TC002048. hal-00404424 HAL Id: hal-00404424 https://hal.archives-ouvertes.fr/hal-00404424 Submitted on 22 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 26, TC6016, doi:10.1029/2006TC002048, 2007 Interactions between tectonics, erosion, and sedimentation during the recent evolution of the Alpine orogen: Analogue modeling insights Ce´cile Bonnet,1 Jacques Malavieille,2 and Jon Mosar3 Received 8 September 2006; revised 24 July 2007; accepted 4 October 2007; published 29 December 2007. [1] On the basis of a section across the northwestern Molasse Basin is largely driven by the subduction mecha- Alpine wedge and foreland basin, analogue modeling is nism of the European plate under the Adriatic promontory. used to investigate the impact of surface processes on the However, it appears that erosion of the overlying Penninic orogenic evolution.
    [Show full text]
  • GEOLOGICAL EXCURSION the WESTERN ALPS Field Guidebook
    Orléans University-Institute of Geology and Geophysics Cooperation program GEOLOGICAL EXCURSION IN THE WESTERN ALPS June 22 -July 2, 2018 Field guidebook excursion leaders: M. Faure & Y. Chen Monviso from Agnel Pass Orléans University-Peking University Cooperation program 1 A GEOLOGICAL EXCURSION IN THE WESTERN ALPS Field guide book 2018 M. Faure, Y. Chen PART I: GEOLOGICAL OUTLINE OF THE FRENCH-ITALIAN ALPS INTRODUCTION 1. The Alpine system in Europe. The European continent was progressively edificated by several orogenic events since the Archean (Fig. 1). Paleoproterozoic belts are restricted to Scandinavia. A Neoproterozoic orogen, called the Cadomian Belt, from the name of the Caen city in Normandy, and formed around 600 Ma, is observed in the northern part of the Massif Armoricain and also in Great Britain, in Spain, and East Europe. During the Paleozoic, three collisional belts are recognized, namely i) in western Scandinavia, Scotland, Ireland, Wales and Britain, the Caledonian Belt results of the collision between North America (or Laurentia) and Scandinavia (or Baltica) that gave rise to the Laurussia continent in Silurian; ii) the Variscan (or Hercynian) Belt that develops in Middle Europe from SW Iberia to Poland, results of the collision between Laurussia and Gondwana in Devonian and Carboniferous; iii) the Urals formed by the collision between Laurussia and Siberia in Carboniferous. As the result of the Paleozoic orogenies, in Permian, Europe and Africa belonged to the Pangea megacontinent. Fig. 1: Tectonic map of Europe During the Cenozoic, several orogenic belts are recognized in southern Europe (Fig. 1). The Pyrénées are due to the Eocene closure of a continental rift opened in Mesozoic between France and Iberia (= Spain and Portugal).
    [Show full text]