Manual Viscometer PCE-RVI 3

Total Page:16

File Type:pdf, Size:1020Kb

Manual Viscometer PCE-RVI 3 PCE Americas Inc. PCE Instruments UK Ltd. 711 Commerce Way Units 12/13 Suite 8 Southpoint Business Park Jupiter Ensign way FL-33458 Hampshire / Southampton USA United Kingdom, SO31 4RF From outside US: +1 From outside UK: +44 Tel: (561) 320-9162 Tel: (0) 2380 98703 0 Fax: (561) 320-9176 Fax: (0) 2380 98703 9 [email protected] [email protected] www.pce-instruments.com/english www.pce-instruments.com Version 1.0 27.08.2014 OPERATING INSTRUCTIONS Table of contents 1 General Information................................................................................................... 3 1.1 Introduction ......................................................................................................................................... 3 1.2 Area of Application .............................................................................................................................. 3 1.3 Hazard Symbols .................................................................................................................................. 3 1.4 Safety Precautions .............................................................................................................................. 4 1.5 Certification, Warranty and Documentation ........................................................................................... 5 2 Technical Data .......................................................................................................... 6 3 Putting Viscometer into Operation ............................................................................. 7 3.1 Unpacking the Viscometer ................................................................................................................... 7 3.2 Delivery Content .................................................................................................................................. 7 3.3 Battery Replacement ........................................................................................................................... 8 3.4 Inserting the Spindle ............................................................................................................................ 8 3.5 Installing the Spindle Guard ................................................................................................................. 9 3.6 Stand Construction (optional) ..............................................................................................................10 4 Operation ................................................................................................................ 12 4.1 Switch on and Configuration ...............................................................................................................12 4.2 Measuring ..........................................................................................................................................14 5 Calibration of the Equipment ................................................................................... 16 5.1 Viscometer Function Check ................................................................................................................16 5.2 Viscometers Automatic “Zeroing” ........................................................................................................16 6 Optional accessories ............................................................................................... 17 7 About the Viscosity .................................................................................................. 18 7.1 Description .........................................................................................................................................18 7.2 Further information about Fluids ..........................................................................................................18 8 Viscosity Table ........................................................................................................ 20 9 Problem Solution ..................................................................................................... 20 2 OPERATING INSTRUCTIONS 1 General Information 1.1 Introduction The PCE-RVI 3 is a portable viscometer used to determine the viscosity of liquids. The ergonomical design of the viscometer (can also be used in combination with a sturdy optionally available stand), allows it to be used as either a mobile device or as a part of a permanent laboratory installation. The PCE-RVI 3 is battery powered and operates at a constant speed (20, 30, 50 or 60 rpm). The low energy consumption of the device enables it to be used non-stop for more than 24 hours without the need to replace the batteries. When ordering the device, the desired speed (rpm) must be stipulated, this is dependent upon the measuring range in which the viscometer is to be used. The viscosity values will be displayed in Milli-Pascal-Seconds (mPas). In order to cover the whole range of potential readings, the viscometer is supplied with a spindle set (R2- R7, or optionally R1). An outstanding feature of the PCE-RVI 3 is its user friendliness, enabling it to be used during the production process, in laboratories or research facilities, providing fast and reliable viscosity values. 1.2 Area of Application The Viscometer PCE-RVI 3 has been developed in order to determine the viscosity of a variety of liquids. The device should only be used by appropriately trained and qualified personnel. When using the Viscometer the normal laboratory precaution and safety measures should be observed at all times. The Viscometer must not be used for any purposes other than those stipulated in the operating instructions. If the advice above is not adhered to, any statutory guarantee is declared null and void. 1.3 Hazard Symbols The commissioning and operation of the PCE-RVI 3 is quite straight forward providing that the instructions within the operating instructions are adhered to at all times. It can be hazardous to use the device for any purposes other than those for which the equipment was intended. For this reason, certain points within this operating instruction are highlighted as potentially hazardous, and must be carefully observed to prevent equipment damage or personal injury. Hazard This symbol in conjunction with the appropriate advice, warns the user of any potential danger or hazard. If due care is not observed, this could result in damage to the equipment or personal injury. Caution This symbol combined with the appropriate advice warns of the danger of potential equipment damage, should the advice not be heeded. 3 OPERATING INSTRUCTIONS Information This symbol warns of specific details relating to the viscometer which must be heeded all times. Users must pay close attention to the advice in this operating instruction, and be aware of and take into account all safety and hygiene standards concerning the local working conditions. Before operating the equipment, each user of the device should have read and fully understood the operating instructions. 1.4 Safety Precautions Operator safety cannot be guaranteed should the following advice not be heeded. Battery Operation The Viscometer is battery powered. The casing of the viscometer must never be removed when the device is in operation. The exchange or replacement of parts or components or the changing of settings of the viscometer must only be carried out by trained and qualified personnel. Only original manufacturer’s parts must be used. Before changing the batteries, the device must be turned off and the spindle removed. Explosive Environment Hazard The device must be used in areas where there is a danger of explosion or within the proximity of inflammable gases, or where there could be a potential build up of explosive gases. Malfunction Risk In order to avoid any potential damage, the equipment should not be used within strong electro-magnetic fields. For instance transmitters such as cell phones should not be used within close proximity of the viscometer. Should an error occur despite these precautions, then the device should be powered off and the supplier should be contacted. 4 OPERATING INSTRUCTIONS 1.5 Certification, Warranty and Documentation Certification The Viscometer PCE-RVI 3 has been thoroughly tested and inspected prior to dispatch. The output readings have been checked and fully correspond with the appropriate data input. The device conforms to statutory international safety standards. Warranty The Viscometer PCE-RVI 3 has a two year warranty against defects in materials or workmanship. During this period, any defective parts will be repaired or replaced free of charge. Warranty claims other than those previously mentioned are expressly excluded. Improper modifications, or repairs carried out by unauthorized third parties will result in the warranty being declared invalid. Inappropriate use of the device or neglecting to observe the safety precautions in the operating instructions will also lead to the invalidation of the warranty. At the end of the warranty period, it is advisable to arrange for a service contract to be taken out, so as to guarantee continued trouble free use of the device. For further information, please contact your supplier. Documentation An operating instruction is applied with each device. Extra copies of the operating instruction may be obtained from your supplier, please quote the serial number of the device and the manual which is required. We endeavor to review and edit this manual and assume no liability for printing errors or
Recommended publications
  • BROOKFIELD DIAL READING VISCOMETER with Electronic Drive
    BROOKFIELD DIAL READING VISCOMETER with Electronic Drive Operating Instructions Manual No. M00-151-I0614 SPECIALISTS IN THE MEASUREMENT AND CONTROL OF VISCOSITY with offices in : Boston • Chicago • London • Stuttgart • Guangzhou BROOKFIELD ENGINEERING LABORATORIES, INC. 11 Commerce Boulevard, Middleboro, MA 02346 USA TEL 508-946-6200 or 800-628-8139 (USA excluding MA) FAX 508-946-6262 INTERNET http://www.brookfieldengineering.com TABLE OF CONTENTS I. INTRODUCTION .....................................................................................5 I.1 Components .......................................................................................................5 I.2 Utilities ................................................................................................................6 I.3 Specifications .....................................................................................................6 I.4 Set-Up ................................................................................................................7 I.5 IQ, OQ, PQ .........................................................................................................7 I.6 Safety Symbols and Precautions .......................................................................8 I.7 Cleaning .............................................................................................................8 II. GETTING STARTED ..............................................................................9 II.1 Operation ...........................................................................................................9
    [Show full text]
  • HAAKE Viscometer Standard Operating Procedure [Updated Sept 10, 2014]
    HAAKE Viscometer Standard Operating Procedure [Updated Sept 10, 2014] HAAKE Viscometer 7 R+ Location of Machine: Composites Lab, RFM 1218 Location of SOP and Machine Operating & Safety Manual: Composites Lab website under resources; Composites Lab TRACS site; and Hardcopy near machine. Emergency Contact: Call 911 Call EHS & Risk Management at 512-245-3616 Call Head Lab Technician, Dr. Ray Cook (office 512-245-2050) Call Dr. Jitendra S Tate (office 512-245-4872) Before using this machine: You must have permission from Dr. Tate. You must have received formal training from technician or, trained research student (designated by Dr. Tate) related to machine safety and operation. You must read and understand SOP and Machine Cleaning Manual. You must use this machine under direct supervision of Dr. Tate or, Dr. Cook or, trained research student (designated by Dr. Tate). You must have signed “Lab Rules” document with Dr. Tate. This document must be signed every semester fall, spring, and summer (as applicable). If you do NOT follow above instructions you will be held responsible for your own safety and damages. Safety Precautions: Protective Equipment: Prior to performing this procedure, the following personal protective equipment must be obtained and ready for use: Gloves, Safety Goggles, Face Mask, Lab Coat. Important Safeguards: 1. Prior to performing this procedure, the following safety equipment must be accessible and ready for use: (e.g. chemical fume hood, biological safety cabinet, laminar flow hood, chemical spill kits) Fume hood 2. All liquids should be drained to containers for chemical disposal and properly marked. 3. In the event that a hazardous material spill during this procedure, be prepared to clean with cleaner according to MSDS of materials used.
    [Show full text]
  • Building and Validating a Rotational Viscometer Brian Cherrington & Jack Rothstein Mechanical Engineering Faculty Mentors: Dr
    Building and Validating a Rotational Viscometer Brian Cherrington & Jack Rothstein Mechanical Engineering Faculty Mentors: Dr. Maria-Isabel Carnasciali, Dr. Samuel Daniels Abstract This project was an effort to redesign an initial prototype rotational viscometer to experimentally test whether or not viscosity values vary significantly when the geometry of the viscometer is changed. The scope of the project involved designing and building a viscometer that could vary the gap between the inner and outer cylinders, variation of the testing fluid’s temperature, and control of the device’s RPM. After weeks of planning, designing, and fabrication the new viscometer was complete. In order to control the device, monitor the sensor readings, and calculate the testing fluid’s viscosity a LabVIEW program was created. Testing on medium to high viscous fluids was completed to determine if the viscosity values and the geometry of the viscometer are dependent or independent of each other. The results did show a correlation between measured viscosity and variations in the geometry of the viscometer. More testing is required to further verify the results and properly calibrate the device. Introduction For this project a new design was conceptualized, fabricated, and tested. This new design met several criteria including, Viscosity is often referred to as a fluid’s thickness or how much it resists deformation due to an applied force. Designed for future use in ME labs; Rotational viscometers measure the amount of torque needed Designed to be durable, sustainable, and easy to to rotate an object moving through fluid at a known RPM. dissemble and clean; Using the measured torque, RPM, and dimensions of the Multiple inner cylinders for varying gap sizes; device, the viscosity can be calculated using equation 1.
    [Show full text]
  • Miniav®-X Automatic Viscometer Instruction & Operation Manual
    MiniAV®-X Automatic Viscometer Instruction & Operation Manual 81.2254 i CONTENTS 1 INTRODUCTION/INSTALLATION 1 The miniAV®-X Automatic Viscometer .................................................................................. 1 Measuring kinematic viscosity ............................................................................................... 2 Safety cautions ..................................................................................................................... 2 Specifications ....................................................................................................................... 4 Installation ............................................................................................................................ 4 Required installation components ............................................................................... 4 Vacuum Pump unit connections ................................................................................. 6 Bath unit connections ................................................................................................ 6 VISCPRO® for Windows® XP® ............................................................................................ 6 Installing VISCPRO® software .............................................................................................. 7 Computer requirements ............................................................................................. 7 Windows® XP® installation .......................................................................................
    [Show full text]
  • List of Equipments in the Department (Chemical Engineering) Mechanical
    List of Equipments in the Department (Chemical Engineering) Mechanical Operation lab Fluid Mechanics Lab Heat transfer Lab Mass Transfer lab • Cyclone Separator • Reynold’s Apparatus • Double Pipe Heat Exchanger • Tray Dryer • Plate & Frame Filter Press • Bernoulli’s Theorem Apparatus • Shell & Tube Heat Exchanger • Sieve Plate Distillation Column • Vibrating Screen • Pitot Tube Apparatus • Vertical Condenser • Liquid-Liquid Extraction • Jaw Crusher • Calibration of Orifice meter, • Computerized Control Shell & • Adsorption of CO 2 • Ball Mill Venturi meter and Rota meter Tube Heat Exchanger • Steam Distillation • Roll Crusher • Coefficient of Discharge of • Thermal Conductivity of Metal • Bubble Cap Distillation Column • Rotary Vacuum filter Orifice and Mouthpiece Bar • Cooling Tower • Fluidized Bed • Film & Drop Wise Condensation • Diffusivity Apparatus • Single Effect Evaporator • Fluidized Bed Dryer • Simple Steam Distillation • Simple Distillation • VLE Apparatus • Equilibrium Flash Distillation • Humidification & Dehumidification • Refractometer Process Control Lab Chemical Reaction Engg. Lab Fuel Combustion Energy Technology Lab Environmental Lab • Process Training Simulator with • Plug Flow Reactor • Flash & Fire Point Apparatus • BOD Incubator Modules (Software) • Isothermal Batch Reactor • Aniline Point Apparatus • pH Meter • Pressure Control System • Single Tube Packed Bed Reactor • Orsat Gas Analysis Apparatus • Sedimentation Apparatus • Flow Control System • RTD in CSTR / Mixed flow • Redwood Viscometer • UV-VIS Spectrophotometer • pH control System Reactor • Bomb Calorimeter • DO Meter • Real Time Simulator Trainer • RTD in Tubular Reactor • Smoke Point Apparatus • Digital Conductivity Meter • Level Control System • Adiabatic Batch Reactor • Temperature Control System • Distillation Column • Two Tank Interacting system • Two Tank Non-Interacting System • CSTR Control System Research Equipments • UV-Spectrophotometer • Gas Chomatography .
    [Show full text]
  • Department of Chemical Engineering
    DISTILLATION FLASK : Made of borosilicate glass is specified dimension. Capacity: 125 ml. GRADUATED RECEIVER: Capacity : 100 ml. sub-division 1 ml. the cylinder is made of heat resistance borosilicate glass. FLASK SUPPORT ASSEMBLY BOARD: Three asbestos board on each with centre hole 32 mm, 37.5 mm and 50 mm. are provided. TEMPERATURE CONTROLLER: By solid state variable heat controller. Complete Apparatus as described above but supplied with 3 Nos. flask support boards and glassware for operation on 220/230 V, 1ph, 50 c/s, A.C. mains. SPARES FOR ABOVE DISTILLATION APPARATUS: 1. Distillation Flask, borosilicate glass, Capacity : 125 ml. packet of 2(two) pieces. 2. Receiver, 100 ml. packet of 2(two) pieces . 3. Thermometer : Mercury-in-Glass, with NABL Certificate IP – 5C, packet of two pieces.; IP – 6C, packet of two pieces; ASTM – 7C, packet of two pieces. ASTM – 8C, packet of two pieces. 4. Heating Element, packet of two pieces. …………….. 5. Flask support plate, packet of one each (Total 3 nos.) 32 mm. Centre Hole; 37.5 mm. Centre Hole; 50 mm. Centre Hole 2. FLASH POINT PENSKY MARTENS (CLOSED) CONFORMS TO : IS: 1448 & 1209 – 58, IP: 34, ASTM: D-93 SPECIAL FEATURES: Cup & Cover with ebonite handle for operating at high Temperature. For determining the flash point of petroleum products having a flash point above 120º C (48.89º F). The instrument which will give trouble free service under continuous operating conditions. The cast iron air bath is fitted with heaters for uniform heating. An enclosed safety type heater made of nichrome heating element. Temperature is controlled by Digital Temperature Indicator cum controller which ensure smooth and easy control of the temperature.
    [Show full text]
  • Physical Quantity Measured by a Vibration Viscometer (Re: JCSS Standardization of Viscosity)
    Article for the 23rd Sensing Forum Theme: Physical Quantity Measured by a Vibration Viscometer (Re: JCSS Standardization of Viscosity) Presented by: Naoto Izumo R&D Division, A&D Company, Limited October 2 ~ 3, 2006 Tsukuba Center Inc. Tsukuba, JAPAN Physical Quantity Measured by a Vibration Viscometer Subtitle: The JCSS Standardization of Viscosity Naoto Izumo R&D Division, A&D Co., Ltd. Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013 Japan Abstract The objective of this article is to introduce a viscometer that utilizes a new viscosimetry measuring method. In addition, the article will recommend a new unit system, which is utilized in the vibration viscometer. Using examples, the article explains JCSS viscosity standardization and recent requirements for viscosity measurements. Keywords: Vibration Viscometer, Static Viscosity (Viscosity × Density), Viscosity JCSS, Cloud Point Introduction The following is an introduction of the vibration viscometer, a new method for measuring viscosity. In addition to providing a description of the physical quantity that is measured using the vibration viscometer, a new unit system for viscosity will be proposed. Furthermore, there is an explanation regarding the Japan Calibration Service System (JCSS) standardization of viscosity and viscosity measurements using actual examples. There is also discussion of recent requirements for measuring viscosity. History and Development of Viscosity Measurement The history of viscosity measurements is extensive and is believed to date back to when people began measuring the viscosities of engine oils with the advent of the automobile industry in the United States. In the U.S., it had become necessary to control the viscosities of engine oils as a method of maintaining the performance of engines.
    [Show full text]
  • QCM Viscometer for Bioremediation and Microbial Activity Monitoring Wesley A
    304 IEEE SENSORS JOURNAL, VOL. 3, NO. 3, JUNE 2003 QCM Viscometer for Bioremediation and Microbial Activity Monitoring Wesley A. Gee, Member, IEEE, Kirsti M. Ritalahti, William D. Hunt, and Frank E. Löffler Abstract—A quartz crystal microbalance has been used to parameter eliminates the necessity of complex data interpreta- monitor the polymer production of a bacterial population in tion of samples by trained technicians. liquid medium. The increasing amount of produced polymer The aim of this study was to show that the QCM is a unique corresponds to an increase in the viscosity of the liquid, which is directly measurable as the fluid contacts the surface of the quartz and effective method to monitor a biological growth process to crystal in the sensor system. This procedure is being developed as aid in characterizing unknown bacterial populations. As a vis- a novel method for measuring microbial polymer production and cometer, this high shear rate device could be used in conjunc- growth of an environmental isolate obtained from river sediment tion with low shear rate laboratory viscosity measurement tech- contaminated with petroleum hydrocarbons. This measurement niques that currently include mechanical (rotational), capillary, technique may be used to monitor growth characteristics of unknown anaerobic bacteria when used in conjunction with falling ball, and other gravity or positive displacement methods. other currently employed microbiological test methods, such as spectrophotometry, to measure turbidity. II. DESCRIPTION OF BACTERIAL STRAIN In the presence of glucose, a novel, strictly anaerobic bacterial isolate, designated strain JEL-1, produces a viscous, as yet uniden- An unusual bacterial population, designated strain JEL-1, tified, polymer.
    [Show full text]
  • LABORATORY Viscometers
    LABORATORY VISCOMETERS www.irmeco.de Viscometer Cannon-Fenske Routine Cannon-Fenske Routine Viscometer according to ASTM D445-446, ASTM D2515, ISO 3104-3105 used for quick and easy measurement of the viscosities of trans- parent Newtonian liquids. Constant value (K) indication at +40°C and +100°C. Made of borosilicate glass, and non-alterable timing marks. Size Nominal Kinematic Art. No. No. viscometer constant viscosity range (mm2/s)/s mm2/s 25 0.002 0.5 to 2 10 15 81025 50 0.004 0.8 to 4 10 15 81050 75 0.008 1.6 to 8 10 15 81075 100 0.015 3 to 15 10 15 81100 150 0.035 7 to 35 10 15 81150 200 0.1 20 to 100 10 15 81200 300 0.25 50 to 250 10 15 81300 350 0.5 100 to 500 10 15 81350 400 1.2 240 to 1200 10 15 81400 450 2.5 500 to 2500 10 15 81450 500 8 1600 to 8000 10 15 81500 600 20 4000 to 20000 10 15 81600 All IRMECO® capillary viscometers are supplied with a Works Calibration Certificate issued in accordance with the conditions of accreditation granted by a National Metrological Register. 2 Viscometer Cannon-Fenske Routine Cannon-Fenske Opaque Cannon-Fenske Opaque Viscometer (reverse flow) according to ASTM D445-446, ASTM D2515, ISO 3104-3105 used for dark Newtonian liquids; especially suitable for liquids so dark in colour that cannot be seen in a Cannon-Fenske routine viscometer. It is also used to study shearing stress and shearing rate.
    [Show full text]
  • Brookfield Digital Viscometer
    BROOKFIELD DIGITAL VISCOMETER MODELDV-1+ Operating Instructions Manual No. M/92-021-A-892 BROOKFIELD ENGINEERING LABORATORIES, INC. 240 Cushing Street, Stoughton, MA 02072 USA Phone: 617-344-4310/4313 800-628-8139 (U.S. except MA); Fax: 617-344-7141 Telex: 924497 BRENLAB STOU (Western Union); 200195 BEL (RCA) TABLE OF CONTENTS L J:N'TRODUCfiON ......................................................................... 3 1 Com:p<>nents ............................................................................ 3 2 Utilities ................................................................................... 4 3 Specifications ......................................................................... 4 4 Set-Up ............................. ;....................................................... 4 S Key Functions ........................................................................ 5 ll. GETTJ:N'G STARTED .................................................................. 6 1 Autozero ................................................................................. 6 2 Spindle Selection .................................................................... 6 3 Speed Selection & Setting ...................................................... 7 4 Autorange Operation .............................................................. 9 S Out of Range Operation ....................................................... 10 Appendix A Cone/Plate Viscometer Set-Up .................................. 11 Appendix B - Viscosity Ranges .......................................................
    [Show full text]
  • Protocol: Measuring Viscosity of Cosmetics with Microvisctm
    Protocol: Measuring Viscosity of Cosmetics with microVISCTM Key Words: Face lotion, hand lotion, cream, viscosity, shear thinning, cleaning, high shear, non-Newtonian fluid, protocol, thixotropy Goal: Cosmetic lotions are often non-Newtonian fluids with yield stresses and thixotropic structure. These properties are vital for their function as selfcare products, but also make their rheological properties difficult to characterize. In particular, data collection can be time consuming and instrument cleaning can be challenging. This application note will share an easy-to-implement protocol to precisely measure complex cosmetic formulations using VROC technology. Introduction Skin care is an important part of personal healthcare. The epidermis is one of the body’s largest organs and is the first line of defense against pathogens, so maintaining and promoting healthy skin is vital for healthy life. Skincare products, specifically lotions, have been used for decades to promote skin health. When developing these products, manufacturers must carefully choose ingredients that must meet both consumer tastes and regulatory standards. These constraints make it vital to characterize lotion formulations, but also these criteria make consistent and fast measurements more challenging. Lotions are comprised of multiple materials including polymers, oils, waxes, gels, and silicones (Sharma et al. 2018). These ingredients can dramatically alter the viscosity of the lotion, but also make measuring viscosity difficult, messy, and variable. The combination of these ingredients can even cause lotions to behave as thixotropic materials. Thixotropy is the time dependent shear thinning property of non-Newtonian fluids (Mewis 1979). Thixotropic materials will slowly return to their high viscosity state once shearing has ceased.
    [Show full text]
  • Visco Handbook THEORY and APPLICATION of VISCOMETRY with GLASS CAPILLARY VISCOMETERS Welcome to SI Analytics!
    Visco handbook THEORY AND APPLICATION OF VISCOMETRY WITH GLASS CAPILLARY VISCOMETERS Welcome to SI Analytics! We express our core competence, namely the production of analytical instruments, with our company name SI Analytics. SI also stands for the main products of our company: sensors and instruments. As part of the history of SCHOTT® AG, SI Analytics has nearly 80 years experience in glass technology and in the development of analytical equipment. As always, our products are manufactured in Mainz with a high level of innovation and quality. Our electrodes, titrators and capillary viscometers will continue to be the right tools in any location where expertise in analytical measurement technology is required. In 2011 SI Analytics became part of the listed company Xylem Inc., headquartered in Rye Brook / N.Y., USA. Xylem is a leading international provider of water solutions. We are pleased to introduce you to the Visco Handbook! It replaces the previous brochure "Theory and Practice of Capillary Viscometry". This has been updated, redesigned and restructured. The information content of some areas such as polymer analysis was increased and specially themed areas such as hydrodynamic principles were moved into their own appendices so as not to deter the reader by too much theory. The focus was placed on the practical and general information needed by each user of capillary viscometry. Both laboratory experiences and policies of the relevant standards are considered here. We thus hope to provide you with a faithful companion for everyday laboratory work, one that you can use profitably. We of SI Analytics are pleased to work with you successfully in the future.
    [Show full text]