Summer 1987 Gems & Gemology

Total Page:16

File Type:pdf, Size:1020Kb

Summer 1987 Gems & Gemology VOLUME XXIII SUMMER 1987 rn The quarterly journal of the Gemological Institute of America SUMMER 1987 Volume 23 Number 2 TABLE OF CONTENTS FEATURE 63 Gemstone Durability: Design to Display ARTICLES Deborah Dupont Martin 78 The Occurrence and Gemological Properties of Wessels Mine Sugilite James E. Shigley, John 1. Koivulti, and C. W Fryer NOTES, , 90 Three Notable Fancy-Color Diamonds: Purplish AND NEW Red, Purple-Pink, and Reddish Purple TECHNIQUES Robert E. Kane 96 The Separation of Natural from Synthetic Emeralds by Infrared Spectroscopy Carol M.Stockton 100 The Rutilated Topaz Misnomer John I. Koivula REGULAR 104 Gem Trade Lab Notes FEATURES Ill Editorial Forum 113 Book Reviews 115 Gemological Abstracts 122 Gem News ABOUT THE COVER: A wide variety of gemstones are now available for use in jewelry. While some of the more unusual stones lend themselves to fascinating designs, as evidenced by the 396.3-ct Iiunzite shown here, they also require special considerations. The article by Deborah Dupont Martin in this issue examines gemstone durability as it affects the handling of gems in various jewelry design, manufacturing, and care procedures. Included is a chart covering dura- bility variables for 31 sein species, The kunzite pendant, set in 18K gold wit11 6.33 ct of dia- mods, is courtesy of Tiffany es) Co., New York and Los Angeles. Photo @ Harold es) Ericu Van Pelt -Photographers, Los Angeles, CA. Typesetting for Gems & Gemology is by Scientific Con~position,Los Angeles, CA. Color separa- tions me. by Effective Graphics, Compton, CA. Printing is by Waverly Press. Easton, IWD. @ 1987 Gemological Institute of America All rights reserved ISSN 001 6-626X EDITORIAL Editor-in-Chicf Editor Editor, Gem Trade Lab Notes STAFF Richard T Liddicoat, Jr. Alice S. Keller C. W. Fryer Associate Editors 1660 Stewart St. Editor, Gemological Abstracts Peter C. Keller Santa Monica, CA 90404 Dona M. Dirlam Telephone: (213) 829-2991 D. Vincent Manson Editor, Book Reviews John Sinkankas Editorial Assistant Elise B. Misiorowski Nancy K. Hays Technical Editor Contributing Editor and Carol M. Stockton Subscriptions Editor, Gem News Lisa Hebenstreit, Manager John I. Koivula Diane J. Emmons, Assistant Managcr PRODUCTION Jennifer Erosions Julie Matz Cecile Miranda STAFF Linda Manion Patricia Mayer Ruth Patchick Susan Kingsbury Peter Johnston EDITORIAL William E. Boyajian Robert C. Kammerling Sallie Morton REVIEW BOARD Santa Monica, CA Santa Monica, CA San lose, CA Robert Crovvningshield Anthony R. Kampf Kurt Nassau New York, NY Los Angeles, CA Bernardsville, NJ Dennis Foltz Robert E. Kane Ray Page Santa Monica, CA Los Angeles, CA Santa Monica, CA Chuck Fryer John 1. Koivula George Rossman Santa Monica, CA Santa Monica. CA Pasadena, CA C. S. Hiirlbut, Jr. Hcnry 0. A. Mcyer James E. Shigley Cam bridge, MA West Lafayette, IN Santa Monica, CA SUBSCRIPTIONS Subscriptions in the U.S.A. aie priced as follows: $32.95 for one year (4 issues), $89.95 for three years (12 issues). Subscriptions sent elsewhere arc $42.00 for one year, $120.00 for three years. Special annual subscription rates arc available for all students activcly involved in a GIA program: $29.95 U.S.A., $39.00 elsewhere. Your student number must be listed at the time your subscription is entered. Single issues may be purchased for $8.50 in the U.S.A., S11.50 clscwherc. Discounts are given for bulk orders of 10 or more of any one issue. A limited number of back issues of G&G are also available for purchase. Please address all inquiries regarding subscriptions and the purchase of single copies or back issues to the Subscription Manager. For subscriptions and back issues in Italy, please contact Institute Gemn~ologicoMediterraneo, Via Marn~olaia#14, -38033, Cavalese TN, Italy. MANUSCRIPT Gems ed Gemology wclcomes the submission of articles on all aspects of the field. Please see the Suggestions for SUBMISSIONS Authors in the Summer 1986 issue of the journal, or contact the editor for a copy. Letters on articles published in Gems e) Gemology and other relevant matters are also wclcome. COPYRIGHT Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. AND REPRINT copyright law for private use of patrons. Instructors are permitted to photocopy isolated articles for noncommercial PERMISSIONS classroon~use without fee. For other copying, reprint, or republication permission, please contact the Editor. Gems a) Geinology is published quarterly by the Gemological Institute of America, a nonprofit educational organization for the jewelry industry, 1660 Stewart St., Santa Monica, CA 90404. Postmaster: Return undelivcrablc copies of Gems 6) Gemology to 1660 Stewart St., Santa Monica, CA 90404. Any opinions expressed in signed articles arc understood to be the views of the authors and not of the publishers. GEMSTONE DURABILITY: DESIGN TO DISPLAY By Deborah Dupont Martin Knowledge of the durability of a gem- n today's market, most jewelers no longer deal solely stone is critical to understanding the I with traditional gems such as diamonds, rubies, sap- risks involved in the various setting, re- phires, and pearls. The increasing availability and popu- pair, and cleaning procedures commonly larity of a wide range of colored stones-tanzanite, used by the jeweler. Some gemstones need tsavorite, iolite, and tourmaline (figure l), to name a few - attention in display because of their reac- has opened a host of new possibilities in jewelry, but it has tion to heat and/or light. This article re- views gemstone durability considerations also added a n~ultitude'ofnew risks. for 31 species and their varieties as they While many in the trade are qualified to deal effec- affect design decisions as well as repair, tively with most of these stones, virtually everyone cleaning, and display of the piece. I11 all associated with the design, manufacture, and sale of cases, tlie'reader is advised to consult an jewelry should be aware of the potential problems of a experienced bench jeweler before attempt- particular gem material. The designer must lznow which ing any potentially damaging procedures. mounting will protect the stone best while still enhancing The recon~ii~endatioiisin this article are its natural beauty. The bench jeweler is responsible for offered from a gemological viewpoint and determining what stones are at risk in which setting or as g~~idelinesonly. repair procedures. The salesperson, who has the greatest customer contact, must not only be aware of these design and bench considerations, but must also lznow the rules involved in various cleaning procedures and be able to ABOUT THE AUTHOR advise the customer regarding precautions in care and Ms. Marlin is an instructor in the Colored Stones wear. Some stones even require special display considera- Department 01 the Resident Gemology Program at tions because they are sensitive to light or to the heat that the Gemological Institute 01 America, Santa Monica, California. Prior to joining GIA, she can be produced in a case. worked as a bench jeweler for 10 years. The most important factor in designing, setting, re- Acknowledgments. The following people were ex- pairing, or cleaning a piece of jewelry is durability. Essen- tremely helpful in reviewing the manuscript and tially, durability is the gemstone's ability to resist scratch- providing informat~on:Thornton Mann, Chuck At- ing (hardness),breaking (toughness),and effects caused by more, Dino DeGhionno, and Archie Curtis. Robert Kane was especially helpful in providing informa- heat, light, or chemicals (stability). The present article tion tor the chart and photographs. Thanks to examines gemstone durability and discusses the limita- Chris Keenan lor supplying photographs. Special tions and advantages of different settings, repair and thanks to Steven C. Martin lor providing many in- sights and useful information, as well as encour- cleaning procedures, and display practices for many differ- agement. The following graciously supplied jewel- ent stones. A chart is included to provide guidelines ry for photographs: The Altobelli Jewelers, The relating to durability and how it affects these procedures Gold Masters, Silverhorn, Steven C. Martin, and C. Y Sheng. Ruth Patcliick did a wonderful job for 31 gem species and their varieties. typing the manuscript. It is important to note that the following information V> 1987 Gemolog~calInstitute of America pertains to natural gems only, including common enhan- Durability of Gemstones GEMS & GEMOLOGY Summer 1987 63 cements, but not to any man-made materials. The most types of setting, cleaning, and repair pro- identity of a gem must be established before any cedures (e.g., diamond and corundum) may be used procedure beyond cleaning with warm soapy water in a wide variety of jewelry designs. For stones of may be attempted. If you cannot determine with lesser durability, however, possible weaknesses certainty whether or not a stone has been en- must be considered in the selection of a setting hanced, assume that it has and take the more style (see chart). A gem with poor toughness, such conservative approach. Many qualified bench jew- as topaz, would not be a candidate for a channel or elers will be able to perform procedures that are flush style setting; chances are the stone would not recommended here, but such an individual is break. Heat-sensitive stones such as emerald, not always available. This article, therefore, is tsavorite, and tanzanite could be subject to dam- intended to serve as guidelines (and guidelines age if set in a style that requires soldering near only) in these areas. Since there is some risk stones already in place. involved with any stone, consultation with a Some inclusions can increase the chance of qualified bench jeweler is always recommended. breakage during setting. Because such inclusions The information in this article was compiled vary from stone to stone, it is wise to examine the based on Webster (1983),Sinlzanlzas (1972))Palache stone under magnification before setting it.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Sugilite in Manganese Silicate Rocks from the Hoskins Mine and Woods Mine, New South Wales, Australia
    Sugilite in manganese silicate rocks from the Hoskins mine and Woods mine, New South Wales, Australia Y. KAWACHI Geology Department, University of Otago, P.O.Box 56, Dunedin, New Zealand P. M. ASHLEY Department of Geology and Geophysics, University of New England, Armidale, NSW 2351, Australia D. VINCE 1A Ramsay Street, Essendon, Victoria 3040, Australia AND M. GOODWIN P.O.Bo• 314, Lightning Ridge, NSW 2834, Australia Abstract Sugilite relatively rich in manganese has been found at two new localities, the Hoskins and Woods mines in New South Wales, Australia. The occurrences are in manganese-rich silicate rocks of middle to upper greenschist facies (Hoskins mine) and hornblende hornfels facies (Woods mine). Coexisting minerals are members of the namansilite-aegirine and pectolite-serandite series, Mn-rich alkali amphiboles, alkali feldspar, braunite, rhodonite, tephroite, albite, microcline, norrishite, witherite, manganoan calcite, quartz, and several unidentified minerals. Woods mine sugilite is colour-zoned with pale mauve cores and colourless rims, whereas Hoskins mine sugilite is only weakly colour-zoned and pink to mauve. Within single samples, the chemical compositions of sugilite from both localities show wide ranges in A1 contents and less variable ranges of Fe and Mn, similar to trends in sugilite from other localities. The refractive indices and cell dimensions tend to show systematic increases progressing from Al-rich to Fe- Mn-rich. The formation of the sugilite is controlled by the high alkali (especially Li) and manganese contents of the country rock, reflected in the occurrences of coexisting high alkali- and manganese- bearing minerals, and by high fo2 conditions. KEYWORDS: sugilite, manganese silicate rocks, milarite group, New South Wales, Australia Introduction Na2K(Fe 3 +,Mn 3 +,Al)2Li3Sit2030.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • SSEF FACETTE No. 12 SWISS GEMMOLOGICAL INSTITUTE SCHWEIZERISCHES GEMMOLOGISCHES INSTITUT INSTITUT SUISSE DE GEMMOLOGIE
    SSEF FACETTE No. 12 SWISS GEMMOLOGICAL INSTITUTE SCHWEIZERISCHES GEMMOLOGISCHES INSTITUT INSTITUT SUISSE DE GEMMOLOGIE International Issue No. 12, January 2005 Reproduction allowed with reference to the Swiss Gemmological Institute SSEF In this Issue: - Diamonds are forever - New Diamond Courses 2005 - Coral en Vogue - LIBS in Gemmology - Lead glass in Ruby - New: Launching of SSEF Alumni - News from CIBJO and LMHC - GemmoBasel 2005 SSEF Facette No. 12, © 2005 Editorial Dear Reader The year 2004 was again packed with many inter- pearl research in China, instrumental development esting challenges for the SSEF laboratory but also in Florida, diamond conference in England, SSEF for the trade. We are lucky that business for the is always on the edge. And you may profit from SSEF was much better than predicted under tight this: SSEF is proud to have found a new analyti- general conditions. The high performance and the cal solution for the detection of beryllium diffusion degree of integrity of the SSEF is appreciated by a treated sapphires, which caused so much concern number of well-known international companies. We and “headache” to the international gem trade. The notice with pleasure that our origin determinations SSEF is the first laboratory offering an inexpensive and treatment identifications form an important part and reliable Be detection service. of our activity and strongly influence the price of a gem. Reliable SSEF We are glad to offer you the SSEF Facette in a new Test Reports for pearls and colourful look. We are continuing to produce guarantee the trade with this newsletter in three languages: German, French sometimes extremely and English.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Gemstones by Donald W
    GEMSTONES By Donald W. olson Domestic survey data and tables were prepared by Nicholas A. Muniz, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data coordinator. In this report, the terms “gem” and “gemstone” mean any gemstones and on the cutting and polishing of large diamond mineral or organic material (such as amber, pearl, petrified wood, stones. Industry employment is estimated to range from 1,000 to and shell) used for personal adornment, display, or object of art ,500 workers (U.S. International Trade Commission, 1997, p. 1). because it possesses beauty, durability, and rarity. Of more than Most natural gemstone producers in the United states 4,000 mineral species, only about 100 possess all these attributes and are small businesses that are widely dispersed and operate are considered to be gemstones. Silicates other than quartz are the independently. the small producers probably have an average largest group of gemstones; oxides and quartz are the second largest of less than three employees, including those who only work (table 1). Gemstones are subdivided into diamond and colored part time. the number of gemstone mines operating from gemstones, which in this report designates all natural nondiamond year to year fluctuates because the uncertainty associated with gems. In addition, laboratory-created gemstones, cultured pearls, the discovery and marketing of gem-quality minerals makes and gemstone simulants are discussed but are treated separately it difficult to obtain financing for developing and sustaining from natural gemstones (table 2). Trade data in this report are economically viable deposits (U.S.
    [Show full text]
  • The Seven Crystal Systems
    Learning Series: Basic Rockhound Knowledge The Seven Crystal Systems The seven crystal systems are a method of classifying crystals according to their atomic lattice or structure. The atomic lattice is a three dimensional network of atoms that are arranged in a symmetrical pattern. The shape of the lattice determines not only which crystal system the stone belongs to, but all of its physical properties and appearance. In some crystal healing practices the axial symmetry of a crystal is believed to directly influence its metaphysical properties. For example crystals in the Cubic System are believed to be grounding, because the cube is a symbol of the element Earth. There are seven crystal systems or groups, each of which has a distinct atomic lattice. Here we have outlined the basic atomic structure of the seven systems, along with some common examples of each system. Cubic System Also known as the isometric system. All three axes are of equal length and intersect at right angles. Based on a square inner structure. Crystal shapes include: Cube (diamond, fluorite, pyrite) Octahedron (diamond, fluorite, magnetite) Rhombic dodecahedron (garnet, lapis lazuli rarely crystallises) Icosi-tetrahedron (pyrite, sphalerite) Hexacisochedron (pyrite) Common Cubic Crystals: Diamond Fluorite Garnet Spinel Gold Pyrite Silver Tetragonal System Two axes are of equal length and are in the same plane, the main axis is either longer or shorter, and all three intersect at right angles. Based on a rectangular inner structure. Crystal shapes include: Four-sided prisms and pyramids Trapezohedrons Eight-sided and double pyramids Icosi-tetrahedron (pyrite, sphalerite) Hexacisochedron (pyrite) Common Tetragonal Crystals: Anatase Apophyllite Chalcopyrite Rutile Scapolite Scheelite Wulfenite Zircon Hexagonal System Three out of the four axes are in one plane, of the same length, and intersect each other at angles of 60 degrees.
    [Show full text]
  • POUDRETTEITE, Knarb3si12o3e, a NEW MEMBER of the OSUMILITE GROUP from MONT SAINT-HILAIRE, OUEBEC, and ITS CRVSTAL STRUCTURE Assr
    Canadian Mineralogist Vol. 25, pp.763-166(1987) POUDRETTEITE,KNarB3Si12O3e, A NEW MEMBEROF THE OSUMILITEGROUP FROM MONT SAINT-HILAIRE,OUEBEC, AND ITS CRVSTALSTRUCTURE JOEL D. GRICE, T. SCOTT ERCIT AND JERRY VAN VELTHUIZEN Mineral SciencesDivision, National Museumof Natural Sciences,Ottawa, Ontario KIA 0M8 PETE J. DUNN Departmentof Mineral Sciences,Smithsonian Institution, Washington,D.C, 20560,U,S.A. Assrnact positionC d coordinanceXII, le sodium,la position,4d unecoordinance VI, le bore,la position72 ir coordinance Poudretteiteis a newmineral species from the Poudrette IV, le silicium,la position71 i coordinanceIV, etla posi- quarry, Mont Saint-Hilaire,Quebec. It occursin a marble tion B estvacante. xenolith includedin nephelinesyenite, associated with pec- tolite, apophyllite, quartz and minor aegirine.It forms clear, Mots-clds: poudrettdite, nouvelle espbce min6rale, groupe colorlessto very pale pink, equidimensional,subhedral del'osumilite, mont Saint-Hilaire, borosilicate, affi ne. prismsup to 5 mm. It is brittle, H about 5, with a splin- mentde Ia structure. tery fracture;Dmetr. 2.51(l) g/cml, D"6".2.53 g/cm3. Uniaxialpositive, co 1.516(l), e 1.532(l).It is-hexagonal, spacegroup P6/ mcc, a I 0.239(l), c 13.485(3)A and,Z : 2. INTRoDUcTIoN The strongestten X-ray-diffractionlines in the powderpat- tern [d in A(r\(hkDl are: 6.74(30)(002),5.13 (100)(110), The optical and physical propertiesof members 4.07(30)(r 12), 3.70(30)(202), 3.3 6e(30)(004), 3.253 ( I 00) of the osumilite group are similar to those of com- (2r r), 2.9s6(40)(3 00), 2.8 I 5(60)(I I 4), 2.686(50)(213,204) mon mineralssuch as quartz and cordierite;for this and 2.013(30)(321).An analysisby electron microprobe reason, they are probably generally overlooked.
    [Show full text]
  • INTERNATIONAL GEMMOLOGICAL CONFERENCE Nantes - France INTERNATIONAL GEMMOLOGICAL August 2019 CONFERENCE Nantes - France August 2019
    IGC 2019 - Nantes IGC 2019 INTERNATIONAL GEMMOLOGICAL CONFERENCE Nantes - France INTERNATIONAL GEMMOLOGICAL August 2019 CONFERENCE Nantes - France www.igc-gemmology.org August 2019 36th IGC 2019 – Nantes, France Introduction 36th International Gemmological Conference IGC August 2019 Nantes, France Dear colleagues of IGC, It is our great pleasure and pride to welcome you to the 36th International Gemmological Conference in Nantes, France. Nantes has progressively gained a reputation in the science of gemmology since Prof. Bernard Lasnier created the Diplôme d’Université de Gemmologie (DUG) in the early 1980s. Several DUGs or PhDs have since made a name for themselves in international gemmology. In addition, the town of Nantes has been on several occasions recognized as a very attractive, green town, with a high quality of life. This regional capital is also an important hub for the industry (e.g. agriculture, aeronautics), education and high-tech. It has only recently developed tourism even if has much to offer, with its historical downtown, the beginning of the Loire river estuary, and the ocean close by. The organizers of 36th International Gemmological Conference wish you a pleasant and rewarding conference Dr. Emmanuel Fritsch, Dr. Nathalie Barreau, Féodor Blumentritt MsC. The organizers of the 36th International Gemmological Conference in Nantes, France From left to right Dr. Emmanuel Fritsch, Dr. Nathalie Barreau, Féodor Blumentritt MsC. 3 36th IGC 2019 – Nantes, France Introduction Organization of the 36th International Gemmological Conference Organizing Committee Dr. Emmanuel Fritsch (University of Nantes) Dr. Nathalie Barreau (IMN-CNRS) Feodor Blumentritt Dr. Jayshree Panjikar (IGC Executive Secretary) IGC Executive Committee Excursions Sophie Joubert, Richou, Cholet Hervé Renoux, Richou, Cholet Guest Programme Sophie Joubert, Richou, Cholet Homepage Dr.
    [Show full text]
  • Guide to Healing Uses of Crystals & Minerals
    Guide to Healing Uses of Crystals & Minerals Addiction- Iolite, amethyst, hematite, blue chalcedony, staurolite. Attraction – Lodestone, cinnabar, tangerine quartz, jasper, glass opal, silver topaz. Connection with Animals – Leopard skin Jasper, Dalmatian jasper, silver topaz, green tourmaline, stilbite, rainforest jasper. Calming – Aqua aura quartz, rose quartz, amazonite, blue lace agate, smokey quartz, snowflake obsidian, aqua blue obsidian, blue quartz, blizzard stone, blood stone, agate, amethyst, malachite, pink tourmaline, selenite, mangano calcite, aquamarine, blue kyanite, white howlite, magnesite, tiger eye, turquonite, tangerine quartz, jasper, bismuth, glass opal, blue onyx, larimar, charoite, leopard skin jasper, pink opal, lithium quartz, rutilated quartz, tiger iron. Career Success – Aqua aura quartz, ametrine, bloodstone, carnelian, chrysoprase, cinnabar, citrine, green aventurine, fuchsite, green tourmaline, glass opal, silver topaz, tiger iron. Communication – Apatite, aqua aura quartz, blizzard stone, blue calcite, blue kyanite, blue quartz, green quartz, larimar, moss agate, opalite, pink tourmaline, smokey quartz, silver topaz, septarian, rainforest jasper. www.celestialearthminerals.com Creativity – Ametrine, azurite, agatized coral, chiastolite, chrysocolla, black amethyst, carnelian, fluorite, green aventurine, fire agate, moonstone, celestite, black obsidian, sodalite, cat’s eye, larimar, rhodochrosite, magnesite, orange calcite, ruby, pink opal, blue chalcedony, abalone shell, silver topaz, green tourmaline,
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Winter 1999 Gems & Gemology
    WINTER 1999 VOLUME 35 NO. 4 TABLE OF CONTENTS EDITORIAL 173 Gems & Gemology Turns 65 Richard T. Liddicoat and Alice S. Keller 174 LETTERS FEATURE ARTICLE 176 Classifying Emerald Clarity Enhancement at the GIA Gem Trade Laboratory Shane F. McClure, Thomas M. Moses, Maha Tannous, pg. 185 and John I. Koivula NOTES AND NEW TECHNIQUES 186 Clues to the Process Used by General Electric to Enhance the GE POL Diamonds Karl Schmetzer 192 Diopside Needles as Inclusions in Demantoid Garnet from Russia: A Raman Microspectrometric Study Michael S. Krzemnicki pg. 187 196 Garnets from Madagascar with a Color Change of Blue-Green to Purple Karl Schmetzer and Heinz-Jürgen Bernhardt REGULAR FEATURES 202 Gem Trade Lab Notes 208 Gem News 224 Book Reviews 226 Gemological Abstracts 235 Index pg. 193 ABOUT THE COVER: In response to concerns expressed by the trade over the degree of pg. 201 clarity enhancement in emeralds, GIA Gem Trade Laboratory researchers have devised a methodology to establish the size, number, and position of filled fissures in an emerald, in order to classify the apparent degree of clarity enhancement achieved. The lead article in this issue reports on this research and the resulting classification system. The 10.5 ct emerald crystal in this gold and platinum pendant is from Jos, Nigeria. The pendant was designed by Elena Villa, and manufactured by Hans Dieter Krieger; it is courtesy of Gebrüder Bank, Idar-Oberstein, Germany. Photo © Harold & Erica Van Pelt––Photographers, Los Angeles, California. Color separations for Gems & Gemology are by Pacific Color, Carlsbad, California. Printing is by Fry Communications, Inc., Mechanicsburg, Pennsylvania.
    [Show full text]