The Regulatory Control of Radioactive Waste Management in Canada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inventory of Rad Waste in Canada 2012.Qxd
Inventory of Radioactive Waste in Canada Low-Level Radioactive Waste Management Office Ottawa, Canada 2012 Inventory of Radioactive Waste in Canada March 2012 LLRWMO-01613-041-10003 CC3-1/2012 978-1-100-54191-4 Inventory of Radioactive Waste in Canada Low-Level Radioactive Waste Management Office 1900 City Park Drive, Suite 200 Ottawa, Ontario Canada K1J 1A3 Inventory of Radioactive Waste in Canada Executive Summary This report presents the inventory of radioactive waste in Canada to the end of 2010. It is intended to provide an overall review on the production, accumulation and projections of radioactive waste in Canada. The data presented in this report has been gathered from many sources including regulatory documents, published reports and supplemental information provided by the nuclear regulator, waste producers and waste management facilities. Radioactive waste has been produced in Canada since the early 1930s when the first radium mine began operating at Port Radium in the Northwest Territories. Radium was refined for medical use and uranium was later processed at Port Hope, Ontario. Research and development on the application of nuclear energy to produce electricity began in the 1940s at the Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL). At present, radioactive waste is generated in Canada from: uranium mining, milling, refining and conversion; nuclear fuel fabrication; nuclear reactor operations; nuclear research; and radioisotope manufacture and use. Radioactive waste is primarily grouped into three categories: nuclear fuel waste, low- and intermediate-level radioactive waste, and uranium mining and milling waste. In accordance with Canada’s Radioactive Waste Policy Framework, the owners of radioactive waste are responsible for the funding, organization, management and operation of long-term waste management facilities required for their waste. -
Written Submission from the Whiteshell Laboratories Public
CMD 19-H4.3 File / dossier : 6.01.07 Date: 2019-09-02 Edocs: 5984562 Written submission from the Mémoire du Whiteshell Laboratories Public Whiteshell Laboratories Public Liaison Committee Liaison Committee In the Matter of the À l’égard de Whiteshell Laboratories Laboratoires de Whiteshell Application to renew the Nuclear Research Demande pour le renouvellement, pour une and Test Establishment Decommissioning période de dix ans, du permis de déclassement Licence for the Whiteshell Laboratories site d’un établissement de recherche et d’essais for a period of ten years nucléaires pour les Laboratoires de Whiteshell Commission Public Hearing Audience publique de la Commission October 2-3, 2019 Les 2 et 3 octobre 2019 This page was intentionally Cette page a été intentionnellement left blank laissée en blanc August 19, 2019 Canadian Nuclear Safety Commission 280 Slater Street, P.O. Box 1046, Station B Ottawa, ON K1P 5S9 RE: Application from Canadian Nuclear Laboratories Ltd. (CNL) to renew its Nuclear Research and Test Establishment Decommissioning Licence (NRTEDL) for the Whiteshell Laboratories (WL) The Public Liaison Committee (PLC) offers this letter as documentation of the committee’s awareness and involvement in the CNL application to renew its Nuclear Research and Test Establishment Decommissioning Licence (NRTEDL) for the Whiteshell Laboratories (WL). The committee has been in place since 2003 to facilitate two-way communication and consultation with surrounding communities and stakeholders. The committee meets approximately two times a year and includes the following representatives: Acsion Industries Inc.; RM of Lac du Bonnet; Town of Beausejour; Town of Lac du Bonnet; RM of Whitemouth; RM of Brokenhead; The Local Government District of Pinawa; Powerview/Pine Falls; RM of Alexander; Manitoba Sustainable Development (formerly Manitoba Conservation and Water Stewardship). -
CMD 18-M48.9A File/Dossier : 6.02.04 Date
CMD 18-M48.9A File/dossier : 6.02.04 Date : 2018-12-03 Edocs pdf : 5725730 Revised written submission from Mémoire révisé de Northwatch Northwatch In the Matter of À l’égard de Regulatory Oversight Report for Uranium Rapport de surveillance réglementaire des Mines, Mills, Historic and Decommissioned mines et usines de concentration d’uranium et Sites in Canada: 2017 des sites historiques et déclassés au Canada : 2017 Commission Meeting Réunion de la Commission December 12, 2018 Le 12 décembre 2018 Revised version with changes made on pages 5 and 6 November 20, 2018 Canadian Nuclear Safety Commission 280 Slater Street, P.O. Box 1046, Station B Ottawa, ON K1P 5S9 Ref. CMD 18-M48 Dear President Velshi and Commission Members: Re. Regulatory Oversight Report for Uranium Mines, Mills, Historic and Decommissioned Sites in Canada: 2017 On 29 June 2018 the Secretariat for the Canadian Nuclear Safety Commission provided notice that the Commission would hold a public meeting in December 2018 during which CNSC staff will present its Regulatory Oversight Report for Uranium Mines, Mills, Historic and Decommissioned Sites in Canada: 2017. The notice further indicated that the Report would be available after October 12, 2018, online or by request to the Secretariat, and that members of the public who have an interest or expertise on this matter are invited to comment, in writing, on the Report by November 13 2017. Northwatch provides these comments further to that Notice. Northwatch appreciates the extension of the deadline for submission of our comments by one week in response to delays in finalizing the contribution agreement which had to be in place prior to our technical experts beginning their review. -
The Nuclear Sector at a Crossroads: Fostering Innovation and Energy Security for Canada and the World
THE NUCLEAR SECTOR AT A CROSSROADS: FOSTERING INNOVATION AND ENERGY SECURITY FOR CANADA AND THE WORLD Report of the Standing Committee on Natural Resources James Maloney Chair JUNE 2017 42nd PARLIAMENT, 1st SESSION Published under the authority of the Speaker of the House of Commons SPEAKER’S PERMISSION Reproduction of the proceedings of the House of Commons and its Committees, in whole or in part and in any medium, is hereby permitted provided that the reproduction is accurate and is not presented as official. This permission does not extend to reproduction, distribution or use for commercial purpose of financial gain. Reproduction or use outside this permission or without authorization may be treated as copyright infringement in accordance with the Copyright Act. Authorization may be obtained on written application to the Office of the Speaker of the House of Commons. Reproduction in accordance with this permission does not constitute publication under the authority of the House of Commons. The absolute privilege that applies to the proceedings of the House of Commons does not extend to these permitted reproductions. Where a reproduction includes briefs to a Standing Committee of the House of Commons, authorization for reproduction may be required from the authors in accordance with the Copyright Act. Nothing in this permission abrogates or derogates from the privileges, powers, immunities and rights of the House of Commons and its Committees. For greater certainty, this permission does not affect the prohibition against impeaching or questioning the proceedings of the House of Commons in courts or otherwise. The House of Commons retains the right and privilege to find users in contempt of Parliament if a reproduction or use is not in accordance with this permission. -
Tering Distributions Using MCNP Simulations of Critical Measurements and Simplified Calculation Benchmarks K.S
International Conference on Nuclear Data for Science and Technology 2007 DOI: Assessment of evaluated (n,d) energy-angle elastic scat- tering distributions using MCNP simulations of critical measurements and simplified calculation benchmarks K.S. Kozier Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0 Abstract. Different evaluated (n,d) energy-angle elastic scattering distributions produce k-effective differences in MCNP5 simulations of critical experiments involving heavy water (D2O) of sufficient magnitude to suggest a need for new (n,d) scattering measurements and/or distributions derived from modern theoretical nuclear models, especially at neutron energies below a few MeV. The present work focuses on the small reactivity change of <1 mk that is observed in the MCNP5 D2O coolant-void-reactivity calculation bias for simulations of two pairs of critical experiments performed in the ZED-2 reactor at the Chalk River Laboratories when different nuclear data libraries are used for deuterium. The deuterium data libraries tested include ENDF/B-VII.0, ENDF/B-VI.4, JENDL-3.3 and a new evaluation, labelled Bonn-B, which is based on recent theoretical nuclear-model calculations. Comparison calculations were also performed for a simplified, two-region, spherical model having an inner, 250-cm radius, homogeneous sphere of UO2, without and with deuterium, and an outer 20-cm-thick deuterium reflector. 1 Introduction The present work focuses on the sensitivity of the ZED-2 MCNP5 CVR calculation bias to -
Nuclear in Canada NUCLEAR ENERGY a KEY PART of CANADA’S CLEAN and LOW-CARBON ENERGY MIX Uranium Mining & Milling
Nuclear in Canada NUCLEAR ENERGY A KEY PART OF CANADA’S CLEAN AND LOW-CARBON ENERGY MIX Uranium Mining & Milling . Nuclear electricity in Canada displaces over 50 million tonnes of GHG emissions annually. Electricity from Canadian uranium offsets more than 300 million tonnes of GHG emissions worldwide. Uranium Processing – Re ning, Conversion, and Fuel Fabrication Yellowcake is re ned at Blind River, Ontario, PELLETS to produce uranium trioxide. At Port Hope, Ontario, Nuclear Power Generation and Nuclear Science & uranium trioxide is At plants in southern Technology TUBES converted. URANIUM DIOXIDE Ontario, fuel pellets are UO2 is used to fuel CANDU loaded into tubes and U O UO URANIUM Waste Management & Long-term Management 3 8 3 nuclear reactors. assembled into fuel YUKON TRIOXIDE UO2 Port Radium YELLOWCAKE REFINING URANIUM bundles for FUEL BUNDLE Shutdown or Decommissioned Sites TRIOXIDE UF is exported for 6 CANDU reactors. UO enrichment and use Rayrock NUNAVUT 3 CONVERSION UF Inactive or Decommissioned Uranium Mines and 6 in foreign light water NORTHWEST TERRITORIES Tailings Sites URANIUM HEXAFLUORIDE reactors. 25 cents 400 kg of COAL Beaverlodge, 2.6 barrels of OIL Gunnar, Lorado NEWFOUNDLAND AND LABRADOR McClean Lake = 3 Cluff Lake FUEL PELLET Rabbit Lake of the world’s 350 m of GAS BRITISH COLUMBIA Cigar Lake 20% McArthur River production of uranium is NVERSION Key Lake QUEBEC CO mined and milled in northern FU EL ALBERTA SASKATCHEWAN MANITOBA F Saskatchewan. AB G R University of IN IC ONTARIO P.E.I. IN A Saskatchewan The uranium mining F T E IO 19 CANDU reactors at Saskatchewan industry is the largest R N TRIUMF NEW BRUNSWICK Research Council NOVA SCOTIA private employer of Gentilly-1 & -2 Whiteshell Point Lepreau 4 nuclear power generating stations Rophton NPD Laboratories Indigenous people in CANDU REACTOR Chalk River Laboratories Saskatchewan. -
The AECL Chalk River Laboratories (CRL) Was Established in 1944 In
WM’05 Conference, February 27 – March 3, 2005, Tucson, AZ STORED LIQUID WASTE REMEDIATION PROGRAM, PHASE 1, AT CHALK RIVER LABORATORIES R.P. Denault, P. Heeney, E. Plaice, K. Schruder, Waste Remediation & Enhancement Projects Division D. Wilder, Site Engineering & Project Management Division W. Graham, Components & Systems Division AECL, Chalk River Laboratories, MS #E4 Chalk River, ON, Canada K0J 1J0 [email protected] ABSTRACT Liquid intermediate- and high-level radioactive wastes presently stored in 21 tanks at the Chalk River Laboratories are being retrieved, conditioned and consolidated into a new storage system. The Liquid Waste Transfer and Storage project is responsible for designing, constructing and commissioning the storage system, specifying and procuring retrieval and transfer equipment and developing operating, maintenance and training procedures and materials. The project has characterized the existing wastes and completed an inspection of the present storage tanks and vaults. The conceptual design has progressed to include a criticality safety assessment, a safeguards analysis, selection of retrieval and transfer technologies and conceptual design of the new storage system. The transfer and collection of wastes from these 21 tanks will be a step forward in the goal of achieving a long-term management solution for the wastes. This paper provides an overview of the development of the conceptual design, including the new storage system, the retrieval system and the transfer systems, the laboratory program that supports the blending sequence and waste conditioning and the tank and vault inspection. INTRODUCTION Atomic Energy of Canada Limited (AECL) is a Federal Crown Corporation charged with leading the development of peaceful applications of nuclear technology in Canada. -
XA04CO125 the DESIG 0 0 REA= W. Heeds', A.G. Lee P.A. Carlsono
1101111IN111 XA04CO125 THE DESIG 0 0 REA= W. Heeds', A.G. Lee P.A. Carlsono H. McIlvain, J.R. Lebenhait' and R.F. LidStone AECL Research Whiteshell Laboratories Pinava, Manitoba, Canada ABSTRACT ARCL Is currently building the 10-MV APLE-XIO reactor at the Chalk River Laboratories to operate as a dedicated producer of commerclal-scale quantities of key medical and ndustrial radioisotopes and as a demonstration of the MAPL.R reactor design. In support of the safety and licensing analyses, static physics calculations have been performed to determine the neutronic performance and safety characteristics of the APLE-XIO reactor. This report summarizes results from the static physics calculations for several core conditions prior to commencing radioisotope production. 1. INTRODUCTION Atomic Energy of Canada Limited (AECL) is currently undertaking a Research Reactor Rationalization Program [1) hich ill define AECL's research reactor capabilities for the next ten to fifteen years. This rationalization program has been initiated to address several issues: 1. AECL's current research reactors, NRX and NRU, have operated for 44 and 34 years respectively. These reactors are ageing and are in need of rehabilitation or replacement. 2. There is a growing demand for radioisotopes hich has increased the number of radioisotope targets installed in the prime irradiation space in the NRU and NRX reactors. 3. The CANDU power reactor has achieved a successful operating and maintenance record and the demands for supporting research have changed significantly. 1. These authors are located at the Chalk River Laboratories, Chalk River, Ontario, Canada. 271 One major step in the rationalization program has been to develop the MAPLE reactor 12,3] to meet contemporary Canadian and international requirements for modest-cost, ultipurpose neutron sources. -
The Nuclear Generation Option
Maritime Link Appendix 6.01 Page 1 of 24 THE NUCLEAR GENERATION OPTION Prepared for Emera Inc. November 28, 2012 Maritime Link Appendix 6.01 Page 2 of 24 The Nuclear Generation Option 1.0 Introduction The objective of this report is to provide a general overview of the nuclear generation option by providing an overview of the technology, a summary of the experience in Canada with nuclear generation, and generalized or indicative estimates of the costs of constructing and operating nuclear power plants. The information contained in the report is drawn from publicly available sources and while Barra Strategies Incorporated has attempted to verify the quality of the information contained in the report, it may contain inaccuracies. In 2009, nuclear generation produced 15% of the electricity produced in Canada in 2009 and accounted for over 16.5% of the global production. Electricity Production by Fuel Source in TWh (2009) Fuel Source Canada World Coal and Peat 91.6 8,119 Oil 8.3 1,027 Gas 37.5 4,301 Biofuels 6.5 217 Waste 0.2 2,697 Hydro 364.0 3,329 Nuclear 90.4 2,697 Geothermal 0 67 Solar PV 0.1 20 Solar Thermal 0.0 1 Wind 4.5 273 Tide <0.1 <1 Other 10 TOTAL 603.2 20,132 Source: International Energy Agency 2.0 Nuclear Generation Technologies 2.1 Current Reactors There are a wide range of nuclear reactor technologies currently in service around the world. In all the designs, the heat produced by the continuous fission of atoms in the fuel is used to produce steam. -
Chalk River Laboratories
Canada’s Nuclear Sacrifice Area Considerations related to the relicensing of the Chalk River Laboratories a brief submitted to the Canadian Nuclear Safety Commission by the Concerned Citizens of Renfrew County prepared by Gordon Edwards Ph.D. September 6, 2011 Considerations related to the relicensing of the Chalk River Laboratories Table of Contents List of Recommendations 3 Introduction 5 The Licence Application 6 Plan of the Present Submission 9 Importance of the NRU Reactor 10 The Reason for the 2007 Shutdown 11 The NRX Accident 12 The Nuclear Safety Culture 14 The Authority and Independence of the CNSC 15 The MAPLE Reactors 17 The NRU Reactor Vessel Leak of 2009 18 A Caveat on the Continued Operation of NRU 20 Mitigating Radioactive Releases at CRL 22 Case 1: The Rod Bay Leak (onsite) Case 2: Tritium Effluents into the Ottawa River (offsite) Reporting Radioactive Emissions from CRL 26 The Hazards of Isotope Production 28 Deterioration of the FISST 30 Eliminating Weapons Grade Uranium 32 Repatriation of Irradiated HEU to the USA 33 Map and Inventory of Radioactive Wastes at CRL 35 The Nuclear Legacy Liabilities Program 36 Appendix: Towards a Healthy Regulatory Culture 39 2 Considerations related to the relicensing of the Chalk River Laboratories List of Recommendations: 1. That the CRL licence application be split into several: one for the NRU reactor (and perhaps the Z-2 reactor as well), one for the isotope production operation (including FISST and HEU), one for the radioactive waste storage tanks and dumps (including the remediation work affecting degraded irradiated fuel elements, underground plumes and radioactive sediments in the Ottawa River), and one for the multitude of buildings, radioisotope laboratories, defunct facilities and other activities at CRL. -
Ontario Mine Rescue Competition Awards
Ontario Mine Rescue Competition Awards JUNE 2018 Table of Contents Provincial Championship Award (M.S.A. Trophy) John Guthrie (Special Equipment) Award Firefighting Award First Aid Award Equipment Technician Award Kirkland Lake District Onaping District Red Lake District Southern District Sudbury District Thunder Bay/Algoma District Timmins District Former District Trophies Provincial Championship Award The M.S.A. Trophy, donated by MSA Canada Ltd., has been awarded to the top team in the annual Provincial Mine Rescue Competition since 1955. A cut and polished granitoid slab with plaque rests above a silver, trapezoidal engraved scene of a linked six-man mine rescue team wearing McCaa breathing apparatus. The team is traversing a double-tracked drift, as the lead rescuer holds a Wolf flame safety lamp, while the second holds a self-rescuer. The trophy originally consisted only of the slab and the first tier with the engraving. The bottom three tiers were added. 1950 – Pamour Porcupine Gold Mines 1987 – Denison Mines Ltd. 1951 – Hallnor Mines Ltd. 1988 – Denison Mines Ltd. 1952 – Hollinger Consolidated Gold Mines Ltd. 1989 – American Barrick Resources 1953 – Falconbridge Nickel Mines Ltd. - Holt McDermott Mine 1954 – MacLeod Cockshutt Gold Mines Ltd. 1990 – Sifto Canada, Goderich Mine 1955 – Kerr Addison Gold Mines Ltd. 1991 – Placer Dome Inc., Campbell Mine 1956 – Falconbridge Nickel Mines Ltd. 1992 – Placer Dome Inc., Dome Mine - East Mine 1993 – Inco Ltd., Frood Stobie Complex 1957 – Steep Rock Iron Mines Ltd. 1994 – Inco Ltd., Levack Complex 1958 – Steep Rock Iron Mines Ltd. 1995 – Inco Ltd., Frood Stobie Complex 1959 – Algom Uranium Mines Ltd. 1996 – Falconbridge, Onaping Craig Mine - Quirke Mine 1997 – Falconbridge 1960 – Falconbridge Nickel Mines Ltd. -
RADIONUCLIDE UPTAKE by BEAVER and RUFFED GROUSE in the SERPENT RIVER BASIN by F.V
E^ffiiSH^ SMS wmmmm ca9110891 RADIONUCLIDE UPTAKE BY BEAVER AND RUFFED GROUSE IN THE SERPENT RIVER BASIN by F.V. Clulow Laurentian University .^S^t^^^i^R «m *IMis Atomic Energy Commission de controle 1*1 Control Board de lenergie atomique INFO-0292 PO Box 1046 CP 1046 Onawa. Canada Ottawa Canada K1P5S9 K1P5S9 RADIONUCLIDE UPTAKE BY BEAVER AND RUFFED GROUSE IN THE SERPENT RIVER BASIN by F.V. Clulov, Laurentian University A research report prepared for the Atomic Energy Control Board Ottawa, Canada December 1988 Canada Research report RADIONUCLIDE UPTAKE BY BEAYER AND RUFFED GROUSE IN THE SERPENT RIVER BASIN / A report presented to the Atomic Energy Control Board by F. Clulow, Laurentian University. ABSTRACT Radionuclide levels were measured in tissues, gut contents, and diet items of adult beaver and ruffed grouse from the Serpent River drainage basin (which contains the city of Elliot Lake) and control sites in Ontario, and in beaver and muskrat fetuses frcm females taken in the same basin. Levels of radium 226 in beaver bone, muscle and kidney were highest in animals from locations close to uranium tailings; liver levels did not vary by site. Grouse taken near Elliot Lake has higher bone levels of radium 226 than distant controls; levels in other tissues did not vary by site. Environmental radi-Tn 226 levels were within ranges previously reported at these or similar locations elsewhere; levels in beaver and grouse gut contents reflected levels in diet items. Fetal beaver tissues had higher radium 226 levels than maternal tissues; fetal liver tissue carried higher levels than other body tissues in general; fetal levels varied with maternal levels but also inversely with fetal size (and thus age).